In the first breaking down of the sperm head a number of chromatin vesicles are formed equal to the number of chromosomes in the sperm.

The polar bodies are formed about the time the egg enters the glandular portion of the oviduct. They lie between the vitelline membrane and the cytoplasm.

In cell division, cytoplasmic currents are present. These currents precede nuclear division, and outline the paths by which the daughter nuclei later migrate apart. They are not confined to the immediate neighborhood of the nuclei, but extend into the region of the future blastomeres.

The spindles and asters are very minute in comparison with the size of the blastomeres and the appearance and curved paths of the currents indicate that cytoplasmic division is due to ameboid movements rather than to the tension of astral fibers.

The Development of Color in the Definitive Feather: R. M. Strong.

The colors of feathers, as was pointed out by Bogdanow ('58), Gadow ('82) and others, are due to the presence of pigment or to special conditions of structure. The pigmentation of the feather takes place in the earlier stages of the development of the feather. The dark brown pigments, commonly classed as melanins, appear to be formed in the cytoplasm of epithelial cells which are differentiated to produce pig-These pigment cells, or chromatoment. phores, send out branched processes to those cells which are to form pigmented elements of the future feather. granules pass from these pigment-cell processes into the cells composing the feather fundament. The formation and the distribution of pigment cease before cornification has proceeded far. There is no redistribution of pigment after the feather is fully formed and has burst forth from the sheath enclosing the feather germ.

A New Type of Hyper-metamorphosis:

James G. Needham.

This paper will be published in Psyche.

An Experimental Study of Regulation in Stenostoma: C. M. Child.

When portions are removed from chains of *Stenostoma* regeneration is complete, provided the piece is not below a certain size. In addition to the regeneration, the piece becomes more slender and narrower, the change first appearing, except under certain conditions, at the posterior end and extending anteriorly until it includes the whole body. The piece does not acquire the same proportions as the original, but approaches them more or less closely.

To explain this change, it is necessary, first, to examine the methods of locomotion and the locomotor structures of *Stenostoma*. The animal, like other rhabdocœls, is covered with cilia which constitute the locomotor organs.

When undisturbed, *Stenostoma* shows a strong tendency to attach itself to the substratum. The attachment by the tail, which is used as a sucker, is especially frequent and the tail adheres more closely than any other part of the ventral surface.

Most of the time when the animal is attached the lateral and dorsal cilia are vibrating and are thus acting in opposition to the organs of attachment; the result is the subjection of the body to a certain amount of mechanical tension. That such tension does exist is evident from a large number of observations.

If we suppose the animal to be attached by the posterior end and the lateral and dorsal cilia vibrating with equal speed and force, the tension upon the tissue at any cross section of the body will be proportional to the number of cilia which are anterior to that cross section, *i. e.*, the ten-