SCIENCE

EDITOBIAL COMMITTEE: S. NEWCOMB, Mathematics; R. S. WOODWARD, Mechanics; E. C. PICKERING, Astronomy; T. C. MENDENHALL, Physics; R. H. THURSTON, Engineering; IRA REMSEN, Chemistry; J. LE CONTE, Geology; W. M. DAVIS, Physiography; HENRY F. OSBORN, Paleontology; W. K. BROOKS, C. HART MERRIAM, Zoology; S. H. SCUDDER, Entomology; C. E. BESSEY, N. L. BRITTON, Botany; C. S. MINOT, Embryology, Histology; H. P. BOWDITCH, Physiology; J. S. BILLINGS, Hygiene; J. MCKEEN CATTELL, Psychology; J. W. POWELL, Anthropology.

FRIDAY, OCTOBER 6, 1899.

CONTENTS:

Address by the President of the British Associa- tion for the Advancement of Science: SIR MICH- AEL FOSTER	465
The International Catalogue of Scientific Litera- ture	482
The American Association for the Advancement of Science :	
Section E.—Geology and Geography: PROFES- SOR ARTHUR HOLLICK	487
Scientific Books :	
Trouessart's Catalogus Mammalium: DR. T. S. PALMER. Bather on Blastoidea: CHARLES SCHUCHERT. Köppen's Grundlinien der Mari- timen Meteorologie: R. DEC. WARD. Till- man's Descriptive General Chemistry, Torrey's Elementary Studies in Chemistry: PROFESSOR EDGAR F. SMITH. Books Received	491
Scientific Journals and Articles	497
Discussion and Correspondence :	
Naturalism and Philosophy: PROFESSOR W. K. BROOKS. Medical Sciences in the University:	100
PROFESSOR W. H. HOWELL	
Notes on Inorganic Chemistry: J. L. H	499
The New College Presidents	500
The Protection of Birds	501
The Companions of Polaris	501
Scientific Notes and News	502
University and Educational News	504

MSS. intended for publication and books, etc., intended for review should be sent to the responsible editor, Professor J. McKeen Cattell, Garrison-on-Hudson, N. Y.

ADDRESS BY THE PRESIDENT OF THE BRITISH ASSOCIATION FOR THE AD-VANCEMENT OF SCIENCE.*

HE who until a few minutes ago was your president said somewhere at the meeting at Bristol, and said with truth, that among the qualifications needed for the high honor of Presidency of the British Association for the Advancement of Science, that of being old was becoming more and more dominant. He who is now attempting to speak to you feels that he is rapidly earning that distinction. But the Association itself is older than its President; it has seen pass away the men who, wise in their generation, met at York on September 27, 1831, to found it; it has seen other great men who in bygone years served it as presidents, or otherwise helped it on, sink one after another into the grave. Each year, indeed, when it plants its flag as a signal of its yearly meeting, that flag floats half-mast high in token of the great losses which the passing year has brought. This year is no exception; the losses, indeed, are perhaps unwontedly heavy. I will not attempt to call over the sad roll-call; but I must say a word about one who was above most others a faithful and zealous friend of the Sir Douglas Galton joined the Association. Association in 1860. From 1871 to 1895, as one of the General Secretaries, he bore, and bore to the great good of the Associa-

* Dover Meeting, 1899.

Association's work. How great that share was is perhaps especially known to the many men, among whom I am proud to count myself, who during his long term of office served in succession with him as brother General Secretary. In 1895, at Ipswich, he left the post of General Secretary, but only to become President. So long and so constantly did he labor for the good of the Association that he seemed to be an integral part of it, and meeting as we do to-day, and as we henceforward must do, without Douglas Galton, we feel something greatly missing. This year, perhaps even more than in other years, we could have wished him to be among us; for today the Association may look with joy, not unmixed with pride, on the realization of a project in forwarding which it has had a conspicuous share, on the commencement of an undertaking which is not only a great thing in itself, but which, we trust, is the beginning of still greater things to come. And the share which the Association has had in this was largely Sir Douglas Galton's doing. In his address as President of Section A, at the meeting of the Association at Cardiff in 1891, Professor Oliver Lodge expounded with pregnant words how urgently, not pure science only, but industry and the constructive arts-for the interests of these are ever at bottom the same-needed the aid of some national establishment for the prosecution of prolonged and costly physical researches, which private enterprise could carry out in a lame fashion only, if at all. Lodge's words found an echo in many men's minds; but the response was for a long while in men's minds only. In 1895, Sir Douglas Galton, having previously made a personal study of an institution analogous to the one desired-namely, the Reichsanstalt at Berlin-seized the opportunity offered to him as President of the Association at Ipswich to insist, with the authority not

tion, a large share of the burden of the

only of the head for the time being of a great scientific body, but also of one who himself knew the ways and wants at once of science and of practical life, that the thing which Lodge and others had hoped for was a thing which could be done, and ought to be done at once. And now to-day we can say it has been done. The National Physical Laboratory has been founded. The address at Ipswich marked the beginning of an organized effort which has at last been crowned with success. A feeling of sadness cannot but come over us when we think that Sir Douglas Galton was not spared to see the formal completion of the scheme whose birth he did so much to help, and which, to his last days, he aided in more ways than one. It is the old story-the good which men do lives after them.

Still older than the Association is this nineteenth century, now swiftly drawing to its close. Though the century itself has yet some sixteen months to run, this is the last meeting of the British Association which will use the numbers eighteen hundred to mark its date.

The eyes of the young look ever forward; they take little heed of the short though ever-lengthening fragment of life which lies behind them; they are wholly bent on that which is to come. The eyes of the aged turn wistfully again and again to the past; as the old glide down the inevitable slope their present becomes a living over again the life which has gone before, and the future takes on the shape of a brief lengthening of the past. May I this evening venture to give rein to the impulses of advancing years? May I, at this last meeting of the Association in the eighteen hundreds, dare to dwell for a while upon the past, and to call to mind a few of the changes which have taken place in the world since those autumn days in which men were saying to each other that the last of the seventeen hundreds was drawing towards its end?

Dover in the year of our Lord seventeen hundred and ninety-nine was in many ways unlike the Dover of to-day. On moonless nights men groped their way in its narrow streets by the help of swinging lanterns and smoky torches, for no lamps lit the ways. By day the light of the sun struggled into the houses through narrow panes of blurred Though the town then, as now, was glass. one of the chief portals to and from the countries beyond the seas, the means of travel were scanty and dear, available for the most part to the rich alone, and, for all, beset with discomfort and risk. Slow and uncertain was the carriage of goods, and the news of the world outside came to the town-though it from its position learnt more than most towns-tardily, fitfully, and often falsely. The people of Dover sat then much in dimness, if not in darkness, and lived in large measure on themselves. They who study the phenomena of living beings tell us that light is the great stimulus of life, and that the fullness of the life of a being or of any of its members may be measured by the variety, the swiftness, and the certainty of the means by which it is in touch with its surroundings. Judged from this standpoint life at Dover then, as indeed elsewhere, must have fallen far short of the life of to-day.

The same study of living beings, however, teaches us that while from one point of view the environment seems to mould the organism, from another point the organism seems to be master of its environment. Going behind the change of circumstances, we may raise the question, the old question, Was life in its essence worth more then than now? Has there been a real advance?

Let me at once relieve your minds by saying that I propose to leave this question in the main unanswered. It may be, or it may not be, that man's grasp of the beautiful and of the good, if not looser, is not firmer than it was a hundred years ago. It may be, or it may not be, that man is no nearer to absolute truth, to seeing things as they really are, than he was then. I will merely ask you to consider with me for a few minutes how far, and in what ways, man's laying hold of that aspect of or part of truth which we call natural knowledge, or sometimes science, differed in 1799 from what it is to-day, and whether that change must not be accounted a real advance, a real improvement in man.

I do not propose to weary you by what in my hands would be the rash effort of attempting a survey of all the scientific results of the nineteenth century. It will be enough if for a little while I dwell on some few of the salient features distinguishing the way in which we nowadays look upon, and during the coming week shall speak of, the works of Nature around us-though those works themselves, save for the slight shifting involved in a secular change, remain exatcly the same-from the way in which they were looked upon and might have been spoken of at a gathering of philosophers at Dover in 1799. And I ask your leave to do so.

In the philosophy of the ancients, earth, fire, air, and water were called 'the elements.' It was thought, and rightly thought, that a knowledge of them and of their attributes was a necessary basis of a knowledge of the ways of Nature. Translated into modern language, a knowledge of these 'elements' of old means a knowledge of the composition of the atmosphere, of water, and of all the other things which we call matter, as well as a knowledge of the general properties of gases, liquids, and solids, and of the nature and effects of combustion. Of all these things our knowledge to-day is large and exact, and, though ever enlarging, in some respects complete. When did that knowledge begin to become exact?

To-day the children in our schools know that the air which wraps round the globe is is not a single thing, but is made up of two things, oxygen and nitrogen,* mingled together. They know, again, that water is not a single thing, but the product of two things, oxygen and hydrogen, joined together. They know that when the air makes the fire burn and gives the animal life, it is the oxygen in it which does the work. They know that all round them things are undergoing that union with oxygen which we call oxidation, and that oxidation is the ordinary source of heat and light. Let me ask you to picture to yourselves what confusion there would be tomorrow, not only in the discussions at the sectional meetings of our Association, but in the world at large, if it should happen that in the coming night some destroying touch should wither up certain tender structures in all our brains, and wipe out from our memories all traces of the ideas which cluster in our minds around the verbal tokens, oxygen and oxidation. How could any of us, not the so-called man of science alone, but even the man of business and the man of pleasure, go about his ways lacking those ideas? Yet those ideas were in 1799 lacking to all but a few.

Although in the third quarter of the seventeenth century the light of truth about oxidation and combustion had flashed out in the writings of John Mayow, it came as a flash only, and died away as soon as it had come. For the rest of that century, and for the greater part of the next, philosophers stumbled about in darkness, misled for the most of the time by the phantom conception which they called phlogiston. It was not until the end of the third quarter of the eighteenth century that the new light, which has burned steadily ever since, lit up the minds of the men of science. The light came at nearly the same time from England and from France. Rounding off the sharp corners of controversy, and joining, as we may fitly do to-day, the two countries as twin bearers of a common crown, we may say that we owe the truth to Cavendish, to Lavoisier, and Priestley. If it was Priestley who was the first to demonstrate the existence of what we now call oxygen, it is to Lavoisier we owe the true conception of the nature of oxidation and the clear exposition of the full meaning of Priestley's discovery, while the knowledge of the composition of water, the necessary complement of the knowledge of oxygen, came to us through Cavendish and, we may perhaps add, through Watt.

The date of Priestley's discovery of oxygen is 1774, Lavoisier's classic memoir 'on the nature of the principle which enters into combination with metals during calcination' appeared in 1775, and Cavendish's paper on the composition of water did not see the light until 1784.

During the last quarter of the eighteenth century this new idea of oxygen and oxidation was struggling into existence. How new was the idea is illustrated by the fact that Lavoisier himself at first spoke of that which he was afterwards, namely, in 1778, led to call oxygen, the name by which it has since been known, as 'the principle which enters into combination.' What difficulties its acceptance met with is illustrated by the fact that Priestley himself refused to the end of his life to grasp the true bearings of the discovery which he had made. In the year 1799 the knowledge of oxygen, of the nature of water and of air, and indeed the true conception of chemical composition and chemical change, was hardly more than beginning to be, and the century had to pass wholly away before the next great chemical idea, which we know by the name of the Atomic Theory of John Dalton, was made known. We have only to

^{*}Some may already know that there is at least a third thing, argon.

read the scientific literature of the time to recognize that a truth which is now not only woven as a master-thread into all our scientific conceptions, but even enters largely into the everyday talk and thoughts of educated people, was a hundred years ago struggling into existence among the philosophers themselves. It was all but absolutely unknown to the large world outside those select few.

If there be one word of science which is writ large on the life of the present time, it is the word 'electricity'; it is, I take it, writ larger than any other word. The knowledge which it denotes has carried its practical results far and wide into our daily life, while the theoretical conceptions which it signifies pierce deep into the nature of things. We are to-day proud, and justly proud, both of the material triumphs and of the intellectual gains which it has brought us, and we are full of even larger hopes of it in the future.

At what time did this bright child of the nineteenth century have its birth?

He who listened to the small group of philosophers of Dover, who in 1799 might have discoursed of natural knowledge would perhaps have heard much of electric machines, of electric sparks, of the electric fluid, and even of positive and negative electricity; for frictional electricity had long been known and even carefully studied. Probably one or more of the group, dwelling on the observations which Galvani, an Italian, had made known some twenty years before, developed views on the connection of electricity with the phenomena of living bodies. Possibly one of them was exciting the rest by telling how he had just heard that a professor at Pavia, one Volta, had discovered that electricity could be produced not only by rubbing together particular bodies, but by the simple contact of two metals, and had thereby explained Galvani's remarkable results. For, indeed, as

we shall hear from Professor Fleming, it was in that very year, 1799, that electricity as we now know it took its birth. It was then that Volta brought to light the apparently simple truths out of which so much has sprung. The world, it is true, had to wait for yet some twenty years before both the practical and the theoretic worth of Volta's discovery became truly pregnant, under the fertilizing influence of another discovery. The loadstone and magnetic virtues had, like the electrifying power of rubbed amber, long been an old story. But, save for the compass, not much had come from it. And even Volta's discovery might have long remained relatively barren had it been left to itself. When, however, in 1819. Oersted made known his remarkable observations on the relations of electricity to magnetism, he made the contact needed for the flow of a new current of ideas. And it is perhaps not too much to say that those ideas, developing during the years of the rest of the century with an ever-accelerating swiftness, have wholly changed man's material relations to the circumstances of life, and at the same time carried him far in his knowledge of the nature of things.

Of all the various branches of science, none perhaps is to-day, none for these many years past has been, so well known to, even if not understood by, most people as that of geology. Its practical lessons have brought wealth to many; its fairy tales have brought delight to more; and round it hovers the charm of danger, for the conclusions to which it needs touch on the nature of man's beginning.

In 1799, the science of geology, as we now know it, was struggling into birth. There had been from of old cosmogonies, theories as to how the world had taken shape out of primæval chaos. In that fresh spirit which marked the zealous search after natural knowledge pursued in the middle and latter part of the seventeenth century. the brilliant Stenson, in Italy, and Hooke, in our own country, had laid hold of some of the problems presented by fossil remains, and Woodward, with others, had labored in the same field. In the eighteenth century, especially in its latter half, men's minds were busy about the physical agencies determining or modifying the features of the earth's crust; water and fire, subsidence from a primæval ocean and transformation by outbursts of the central heat, Neptune and Pluto, were being appealed to, by Werner on the one hand, and by Desmarest on the other, in explanation of the earth's phenomena. The way was being prepared, theories and views were abundant, and many sound observations had been made; and yet the science of geology, properly so called, the exact and proved knowledge of the successive phases of the world's life, may be said to date from the closing years of the eighteenth century.

In 1783, James Hutton put forward in a brief memoir his 'Theory of the Earth,' which in 1795, two years before his death, he expanded into a book; but his ideas failed to lay hold of men's minds until the century had passed away, when in 1802, they found an able expositor in John Playfair. The very same year that Hutton published his theory, Cuvier came to Paris and almost forth with began, with Brongniart, his immortal researches into the fossils of Paris and its neighborhood. And four years later, in the year 1799 itself, William Smith's tabular list of strata and fossils saw the light. It is, I believe, not too much to say that out of these geology, as we now know it, sprang. It was thus in the closing years of the eighteenth century that was begun the work which the nineteenth century has carried forward to such great results. But at this time only the select few had grasped the truth, and even they only the beginning of it. Outside a narrow circle the

thoughts, even of the educated, about the history of the globe were bounded by the story of the Deluge—though the story was often told in a strange fashion—or were guided by fantastic views of the plastic forces of a sportive Nature.

In another branch of science, in that which deals with the problems presented by living beings, the thoughts of men in 1799 were also very different from the thoughts of men to-day. It is a very old quest, the quest after the knowledge of the nature of living beings, one of the earliest on which man set out; for it promised to lead him to a knowledge of himself, a promise which perhaps is still before us, but the fulfillment of which is yet far off. As time has gone on, the pursuit of natural knowledge has seemed to lead man away from himself into the furthermost parts of the universe, and into secret workings of Nature in which he appears to be of little or no account; and his knowledge of the nature of living things, and so of his own nature, has advanced slowly, waiting till the progress of other branches of natural knowledge can bring it Yet in the past hundred years, the aid. biologic sciences, as we now call them, have marched rapidly onward.

We may look upon a living body as a machine doing work in accordance with certain laws, and may seek to trace out the working of the inner wheels, how these raise up the lifeless dust into living matter, and let the living matter fall away again into dust, giving out movement and heat. Or we may look upon the individual life as a link in a long chain, joining something which went before to something about to come, a chain whose beginning lies hid in the farthest past, and may seek to know the ties which bind one life to another. As we call up to view the long series of living forms, living now or flitting like shadows on the screen of the past, we may strive to lay hold of the influences which fashion the garment of life. Whether the problems of life are looked upon from the one point of view or the other, we to-day, not biologists only, but all of us, have gained a knowledge hidden even from the philosophers a hundred years ago.

Of the problems presented by the living body viewed as a machine, some may be spoken of as mechanical, others as physical, and yet others as chemical, while some are, apparently at least, none of these. In the seventeenth century William Harvey, laying hold of the central mechanism of the blood stream, opened up a path of inquiry which his own age and the century which followed trod with marked success. The knowledge of the mechanics of the animal and of the plant advanced apace, but the physical and chemical problems had yet to wait. The eighteenth century, it is true, had its physics and its chemistry; but in relation at least to the problems of the living being, a chemistry which knew not oxygen and a physics which knew not the electricity of chemical action were of little avail. The philosopher of 1799, when he discussed the functions of the animal or of the plant involving chemical changes, was fain for the most part, as were his predecessors in the century before, to have recourse to such vague terms as ' fermentation' and the like; to-day our treatises on physiology are largely made up of precise and exact expositions of the play of physical agencies and chemical bodies in the living organisms. He made use of the words 'vital force' or 'vital principle' not as an occasional, but as a common, explanation of the phenomena of the living body. During the present century, especially during its latter half, the idea embodied in those words has been driven away from one seat after another; if we use it now when we are dealing with the chemical and physical events of life, we use it with reluctance, as a deus ex machina to be appealed to only when everything else has failed.

Some of the problems-and those, perhaps, the chief problems-of the living body have to be solved neither by physical nor chemical methods, but by methods of their own. Such are the problems of the nervous system. In respect to these the men of 1799 were on the threshold of a pregnant discoverv. During the latter part of the present century, and especially during its last quarter, the analysis of the mysterious processes in the nervous system, and especially in the brain, which issue as feeling. thought and the power to move, has been pushed forward with a success conspicuous in its practical, and full of promise in its theoretical, gains. That analysis may be briefly described as a following up of threads. We now know that what takes place along a tiny thread which we call a nerve-fiber differs from that which takes place along its fellow-threads, that differing nervous impulses travel along different nervous-fibers, and that nervous and psychical events are the outcome of the clashing of nervous impulses as they sweep along the closely-woven web of living threads of which the brain is made. We have learnt by experiment and by observation that the pattern of the web determines the play of the impulses, and we can already explain many of the obscure problems not only of nervous disease, but of nervous life, by an analysis which is a tracking out the devious and linked paths of nervous threads. The very beginning of this analysis was unknown in 1799. Men knew that nerves were the agents of feeling and of the movements of muscles; they had learnt much about what this part or or that part of the brain could do; but they did not know that one nerve-fiber differed from another in the very essence of its work. It was just about the end of the past century, or the beginning of the pres-

ent one, that an English surgeon began to ponder over a conception which, however, he did not make known until some years later, and which did not gain complete demonstration and full acceptance until still more years had passed away. It was in 1811, in a tiny pamphlet published privately, that Charles Bell put forth his 'New Idea' that the nervous system was constructed on the principle that "the nerves are not single nerves possessing various powers, but bundles of different nerves, whose filaments are united for the convenience of distribution, but which are distinct in office as they are in origin from the brain."

Our present knowledge of the nervous system is to a large extent only an exemplification and expansion of Charles Bell's 'New Idea,' and has its origin in that.

If we pass from the problems of the living organism viewed as a machine, to those presented by the varied features of the different creatures who have lived or who still live on the earth, we at once call to mind that the middle years of the present century mark an epoch in biologic thought such as never came before, for it was then that Charles Darwin gave to the world the 'Origin of Species.'

That work, however, with all the farreaching effects which it has had, could have had little or no effect, or, rather, could not have come into existence, had not the earlier half of the century been in travail preparing for its coming. For the germinal idea of Darwin appeals, as to witnesses, to the results of two lines of biologic investigation which were almost unknown to the men of the eighteenth century.

To one of these lines I have already referred. Darwin, as we know, appealed to the geological record; and we also know how that record, imperfect as it was then, and imperfect as it must always remain, has since his time yielded the most striking proofs of at least one part of his general conception. In 1799 there was, as we have seen, no geological record at all.

Of the other line I must say a few words.

To-day the merest beginner in biologic study, or even that exemplar of acquaintance without knowledge, the general reader, is aware that every living being, even man himself, begins its independent existence as a tiny ball, of which we can, even acknowledging to the full the limits of the optical analysis at our command, assert with confidence that in structure, using that word in its ordinary sense, it is in all cases absolutely simple. It is equally well known that the features of form which supply the characters of a grown-up living being, all the many and varied features of even the most complex organism, are reached as the goal of a road, at times a long road, of successive changes; that the life of every being, from the ovum to its full estate, is a series of shifting scenes, which come and go, sometimes changing abruptly, sometimes melting the one into the other, like dissolving views, all so ordained that often the final shape with which the creature seems to begin, or is said to begin its life in the world is the outcome of many shapes. clothed with which it in turn has lived many lives before its seeming birth.

All or nearly all the exact knowledge of the labored way in which each living creature puts on its proper shape and structure is the heritage of the present century. A1though the way in which the chick is moulded in the egg was not wholly unknown even to the ancients, and in later years had been told, first in the sixteenth century by Fabricius, then in the seventeeth century in a more clear and striking manner by the great Italian naturalist, Malpighi, the teaching thus offered had been neglected or misinterpreted. At the close of the eighteenth century the dominant view was that in the making of a creature out of the egg there was no putting on of wholly new parts, no epigenesis. It was taught that the entire creature lay hidden in the egg, hidden by reason of the very transparency of its substance, lay readymade but folded up, as it were, and that the process of development within the egg or within the womb was a mere unfolding, a simple evolution. Nor did men shrink from accepting the logical outcome of such a view-namely, that within the unborn creature itself lay in like manner, hidden and folded up, its offspring also, and within that again its offspring in turn, after the fashion of a cluster of ivory balls carved by Chinese hands, one within the other. This was no fantastic view put forward by an imaginative dreamer; it was seriously held by sober men, even by men like the illustrious Haller, in spite of their recognizing that as the chick grew in the egg some changes of form took place. Though so early as the middle of the eighteenth century Friedrich Casper Wolff and, later on, others had strenuously opposed such a view, it held its own not only to the close of the century, but far on into the next. It was not until a quarter of the present century had been added to the past that Von Baer made known the results of researches which once and for all swept away the old view. He and others working after him made it clear that each individual puts on its final form and structure not by an unfolding of preëxisting hidden features, but by the formation of new parts through the continued differentiation of a primitively simple material. It was also made clear that the successive changes which the embryo undergoes in its progress from the ovum to maturity are the expression of morphologic laws, that the progress is one from the general to the special, and that the shifting scenes of embryonic life are hints and tokens of lives lived by ancestors in times long past.

If we wish to measure how far off in biologic thought the end of the last century stands, not only from the end, but even from the middle of this one, we may imagine Darwin striving to write the 'Origin of Species' in 1799. We may fancy him being told by philosophers explaining how one group of living beings differed from another group because all its members and all their ancestors came into existence at one stroke when the first-born progenitor of the race, within which all the rest were folded up, stood forth as the result of a creative We may fancy him listening to a deact. bate between the philosopher who maintained that all the fossils strewn in the earth were the remains of animals or plants churned up in the turmoil of a violent universal flood, and dropped in their places as the waters went away, and him who argued that such were not really the 'spoils of living creatures,' but the products of some playful plastic power which out of the superabundance of its energy fashioned here and there the lifeless earth into forms which imitated, but only imitated, those of living things. Could he amid such surroundings by any flight of genius have beat his way to the conception for which his name will ever be known?

Here I may well turn away from the past. It is not my purpose, nor, as I have said, am I fitted, nor is this perhaps the place, to tell even in outline the tale of the work of science in the nineteenth century. I am content to have pointed out that the two great sciences of chemistry and geology took their birth, or at least began to stand alone, at the close of the last century, and have grown to be what we know them now within about a hundred years, and that the study of living beings has within the same time been so transformed as to be to-day something wholly different from what it was in 1799. And, indeed, to say more would

be to repeat almost the same story about other things. If our present knowledge of electricity is essentially the child of the nineteenth century, so also is our present knowledge of many other branches of physics. And those most ancient forms of exact knowledge, the knowledge of numbers and of the heavens, whose beginning is lost in the remote past, have, with all other kinds of natural knowledge, moved onward during the whole of the hundred years with a speed which is ever increasing. I have said. I trust, enough to justify the statement that in respect to natural knowledge a great gulf lies between 1799 and 1899. That gulf, moreover, is a two-fold one : not only has natural knowledge been increased. but men have run to and fro spreading it as Not only have the few driven they go. far back round the full circle of natural knowledge the dark clouds of the unknown which wrap us all about, but also the many walk in the zone of light thus increasingly gained. If it be true that the few to-day are, in respect to natural knowledge, far removed from the few of those days, it is also true that nearly all which the few alone knew then, and much which they did not know, has now become the common knowledge of the many.

What, however, I may venture to insist upon here is that the difference in respect to natural knowledge, whatever be the case with other differences between then and now, is undoubtedly a difference which means progress. The span between the science of that time and the science of to-day is beyond all question a great stride onwards.

We may say this, but we must say it without boasting. For the very story of the past which tells of the triumphs of science bids the man of science put away from him all thoughts of vainglory—and that by many tokens.

Whoever, working at any scientific prob-

lem, has occasion to study the inquiries into the same problem made by some fellowworker in the years long gone by, comes away from that study humbled by one or other of two different thoughts. On the one hand he may find, when he has translated the language of the past into the phraseology of to-day, how near was his forerunner of old to the conception which he thought, with pride, was all his own, not only so true but so new. On the other hand, if the ideas of the investigator of old, viewed in the light of modern knowledge, are found to be so wide of the mark as to seem absurd, the smile which begins to play upon the lips of the modern is checked by the thought, Will the ideas which I am now putting forth, and which I think explain so clearly, so fully, the problem in hand, seem to some worker in the far future as wrong and as fantastic as do these of my fore. runner to me? In either case his personal pride is checked. Further, there is written clearly on each page of the history of science, in characters which cannot be overlooked. the lesson that no scientific truth is born anew, coming by itself and of itself. Each new truth is always the offspring of something which has gone before, becoming in turn the parent of something coming after. In this aspect the man of science is unlike, or seems to be unlike, the poet and the artist. The poet is born, not made; he rises up, no man knowing his beginnings; when he goes away, though men after him may sing his songs for centuries, he himself goes away wholly, having taken with him his mantle, for this he can give to none The man of science is not thus other. creative; he is created. His work, however great it be, is not wholly his own; it is in part the outcome of the work of men who have gone before. Again and again a conception which has made a name great has come not so much by the man's own effort as out of the fullness of time. Again

and again we may read in the words of some man of old the outlines of an idea which in later days has shone forth as a great acknowledged truth. From the mouth of the man of old the idea dropped barren, fruitless; the world was not ready for it, and heeded it not; the concomitant and abutting truths which could give it power to work were wanting. Coming back again in later days, the same idea found the world awaiting it; things were in travail preparing for it: and someone, seizing the right moment to put it forth again, leapt into fame. It is not so much the men of science who make science, as some spirit which, born of the truths already won, drives the man of science onward and uses him to win new truths in turn.

It is because each man of science is not his own master, but one of many obedient servants of an impulse which was at work long before him, and will work long after him, that in science there is no falling back. In respect to other things there may be times of darkness and times of light, there may be risings, decadences and revivals. In science there is only progress. The path may not be always a straight line, there may be swerving to this side and to that, ideas may seem to return again and again to the same point of the intellectual compass; but it will always be found that they have reached a higher level-they have moved, not in a circle, but in a spiral. Moreover, science is not fashioned as is a house, by putting brick to brick, that which is once put remaining as it was put to the end. The growth of science is that of a living being. As in the embryo phase follows phase, and each member or body puts on in succession different appearances, though all the while the same member, so a scientific conception of one age seems to differ from that of a following age, though it is the same one in the process of being made ; and as the dim out-

lines of the early embryo become, as the being grows more distinct and sharp, like a picture on a screen brought more and more into focus, so the dim gropings and searchings of the men of science of old are by repeated approximations wrought into the clear and exact conclusions of later times.

The story of natural knowledge, of science, in the nineteenth century, as, indeed, in preceding centuries, is, I repeat, a story of continued progress. There is in it not so much as a hint of falling back, not even of standing still. What is gained by scientific inquiry is gained forever; it may be added to, it may seem to be covered up, but it can never be taken away. Confident that the progress will go on, we cannot help peer. ing into the years to come and straining our eyes to foresee what science will become and what it will do as they roll on. While we do so, the thought must come to us, Will all the increasing knowledge of Nature avail only to change the ways of man-will it have no effect on man himself?

The material good which mankind has gained and is gaining through the advance of science is so imposing as to be obvious to everyone, and the praises of this aspect of science are to be found in the mouths of all. Beyond all doubt science has greatly lessened and has markedly. narrowed hardship and suffering; beyond all doubt science has largely increased and has widely diffused ease and comfort. The appliances of science have, as it were, covered with a soft cushion the rough places of life, and that not for the rich only, but also for the poor. So abundant and so prominent are the material benefits of science that in the eyes of many these seem to be the only benefits which she brings. She is often spoken of as if she were useful and nothing more, as if her work were only to administer to the material wants of man.

Is this so?

We may begin to doubt it when we reflect that the triumphs of science which bring these material advantages are in their very nature intellectual triumphs. The increasing benefits brought by science are the results of man's increasing mastery over Nature, and that mastery is increasingly a mastery of mind; it is an increasing power to use the forces of what we call inanimate nature in place of the force of his own or other creatures' bodies; it is an increasing use of mind in place of muscle.

Is it to be thought that that which has brought the mind so greatly into play has had no effect on the mind itself? Is that part of the mind which works out scientific truths a mere slavish machine producing results it knows not how, having no part in the good which in its working it brings forth?

What are the qualities, the features of that scientific mind which has wrought, and is working, such great changes in man's relation to Nature? In seeking an answer to this question we have not to inquire into the attributes of genius. Though much of the progress of science seems to take on the form of a series of great steps, each made by some great man, the distinction in science between the great discoverer and the humble worker is one of degree only, not of kind. As I was urging just now, the greatness of many great names in science is often, in large part, the greatness of occasion, not of absolute power. The qualities which guide one man to a small truth silently taking its place among its fellows, as these go to make up progress, are at bottom the same as those by which another man is led to something of which the whole world rings.

The features of the fruitful scientific mind are in the main three.

In the first place, above all other things, his nature must be one which vibrates in unison with that of which he is in search: the seeker after truth must himself be truthful, truthful with the truthfulness of Nature. For the truthfulness of Nature is not wholly the same as that which man sometimes calls truthfulness. It is far more imperious, far more exacting. Man, unscientific man, is often content with ' the nearly' and 'the almost.' Nature never is. It is not her way to call the same two things which differ, though the difference may be measured by less than a thousandth of a milligram or of a millimeter, or by any other like standard of minuteness. And the man who, carrying the ways of the world into the domain of science, thinks that he may treat Nature's differences in any other way than she treats them herself, will find that she resents his conduct; if he in carelessness or in disdain overlooks the minute difference which she holds out to him as a signet to guide him in his search, the projecting tip, as it were, of some buried treasure, he is bound to go astray, and the more strenuously he struggles on, the farther will he find himself from his true goal.

In the second place, he must be alert of mind. Nature is ever making signs to us, she is ever whispering to us the beginnings of her secrets; the scientific man must be ever on the watch, ready at once to lay hold of Nature's hint, however small, to listen to her whisper however low.

In the third place, scientific inquiry, though it be preëminently an intellectual effort, has need of the moral quality or courage—not so much the courage which helps a man to face a sudden difficulty as the courage of steadfast endurance. Almost every inquiry, certainly every prolonged inquiry, sooner or later goes wrong. The path, at first so straight and clear, grows crooked and gets blocked; the hope and enthusiasm, or even the jaunty ease, with which the inquirer set out, leave him and he falls into a slough of despond. That is the critical moment calling for courage. Struggling through the slough he will find on the other side of the wicket gate opening up the real path; losing heart he will turn back and add one more stone to the great cairn of the unaccomplished.

But, I hear someone say, these qualities are not the peculiar attributes of the man of science, they may be recognized as belonging to almost everyone who has commanded or deserved success, whatever may have been his walk of life. That is so. That is exactly what I would desire to insist, that the men of science have no peculiar virtues, no special powers. They are ordinary men, their characters are common, even commonplace. Science, as Huxley said, is organized common sense, and men of science are common men, drilled in the ways of common sense.

For their life has this feature. Though in themselves they are no stronger, no better than other men, they possess a strength which, as I just now urged, is not their own but is that of the science whose servants they are. Even in his apprenticeship, the scientific inquirer, while learning what has been done before his time, if he learns it aright, so learns it that what is known may serve him not only as a vantage ground whence to push off into the unknown, but also as a compass to guide him in his And when fitted for his work he course. enters on inquiry itself, what a zealous anxious guide, what a strict and, because strict, helpful school-mistress does Nature make herself to him! Under her care every inquiry, whether it bring the inquirer to a happy issue or seem to end in nought, trains him for the next effort. She so orders her ways that each act of obedience to her makes the next act easier for him, and step by step she leads him on towards that perfect obedience which is complete mastery.

Indeed, when we reflect on the potency of the discipline of scientific inquiry we cease to wonder at the progress of scientific The results actually gained knowledge. seem to fall so far short of what under such guidance might have been expected to have been gathered in that we are fain to conclude that science has called to follow her. for the most part, the poor in intellect and the wayward in spirit. Had she called to her service the many acute minds who have wasted their strength struggling in vain to solve hopeless problems, or who have turned their energies to things other than the increase of knowledge; had she called to her service the many just men who have walked straight without the need of a rod to guide them, how much greater than it has been would have been the progress of science, and how many false teachings would the world have been spared! To men of science themselves, when they consider their favored lot, the achievements of the past should serve not as a boast but as a reproach.

If there be any truth in what I have been urging, that the pursuit of scientific inquiry is itself a training of special potency, giving strength to the feeble and keeping in the path those who are inclined to stray, it is obvious that the material gains of science, great as they may be, do not make up all the good which science brings or may bring to man. We especially, perhaps, in these later days, through the rapid development of the physical sciences, are too apt to dwell on the material gains alone. As a child in its infancy looks upon its mother only as a giver of good things, and does not learn till in after days how she was also showing her love by carefully training it in the way it should go, so we, too, have thought too much of the gifts of science, overlooking her power to guide.

Man does not live by bread alone, and science brings him more than bread. It is

a great thing to make two blades of grass grow where before one alone grew; but it is no less great a thing to help a man to come to a just conclusion on the questions with which he has to deal. We may claim for science that while she is doing the one she may be so used as to do the other also. The dictum just quoted, that science is organized common sense, may be read as meaning that the common problems of life which common people have to solve are to be solved by the same methods by which the man of science solves his special problems. It follows that the training which does so much for him may be looked to as promising to do much for them. Such aid can come from science on two conditions only. In the first place, this her influence must be acknowledged; she must be duly recognized as a teacher no less than as a hewer of wood and a drawer of water. And the pursuit of science must be followed not by the professional few only, but, at least in such measure as will ensure the influence of example, by the many. But this latter point I need not urge before this great Association, whose chief object during more than half a century has been to bring within the fold of science all who would answer to the call. In the second place, it must be understood that the training to be looked for from science is the outcome not of the accumulation of scientific knowledge, but of the practice of scientific inquiry. Man may have at his fingers' ends all the accomplished results and all the current opinions of any one or of all the branches of science, and yet remain wholly unscientific in mind; but no one can have carried out even the humblest research without the spirit of science in some measure resting upon him. And that spirit may in part be caught even without entering upon an actual investigation in search of a new The learner may be led to old truth. truths, even the oldest, in more ways than

one. He may be brought abruptly to a truth in its finished form, coming straight to it like a thief climbing over the wall; and the hurry and press of modern life tempt many to adopt this quicker way. Or he may be more slowly guided along the path by which the truth was reached by him who first laid hold of it. It is by this latter way of learning the truth, and by this alone, that the learner may hope to catch something at least of the spirit of the scientific inquirer.

This is not the place, nor have I the wish, to plunge into the turmoil of controversy; but, if there be any truth in what I have been urging, then they are wrong who think that in the schooling of the young, science can be used with profit only to train those for whom science will be the means of earning their bread. It may be that from the point of view of pedagogic art the experience of generations has fashioned out of the older studies of literature an instrument of discipline of unusual power, and that the teaching of science is as yet but a rough tool in unpracticed hands. That, however, is not an adequate reason why scope should not be given for science to show the value which we claim for it as an intellectual training fitted for all sorts and conditions of men. Nor need the studies of humanity and literature fear her presence in the schools, for if her friends maintain that the teaching is one-sided, and therefore misleading, which deals with the doings of man only, and is silent about the works of Nature, in the sight of which he and his doings shrink almost to nothing, she herself would be the first to admit that that teaching is equally wrong which deals only with the works of Nature and says nothing about the doings of man, who is, to us at least, Nature's center.

There is yet another general aspect of science on which I would crave leave to say a word. In that broad field of human life which we call politics, in the struggle not of man with man, but of race with race, science works for good. If we look only on the surface it may at first sight seem otherwise. In no branch of science has there during these later years been greater activity and more rapid progress than in that which furnishes the means by which man brings death, suffering and disaster on his fellow-men. If the healer can look with pride on the increased power which science has given him to alleviate human suffering and ward off the miseries of disease, the destroyer can look with still greater pride on the power which science has given him to sweep away lives and to work desolation and ruin: while the one has slowly been learning to save units, the other has quickly learnt to slay thousands. But, happily. the very greatness of the modern power of destruction is already becoming a bar to its use, and bids fair-may we hope before long ?---wholly to put an end to it; in the words of Tacitus, though in another sense, the very preparations for war, through the character which science gives them, make for peace.

Moreover, not in one branch of science only, but in all, there is a deep undercurrent of influence sapping the very foundations of all war. As I have already urged, no feature of scientific inquiry is more marked than the dependence of each step forward on other steps which have been made before. The man of science cannot sit by himself in his own cave weaving out results by his own efforts, unaided by others, heedless of what others have done and are doing. He is but a bit of a great system, a joint in a great machine, and he can only work aright when he is in due touch with his fellow-workers. If his labor is to be what it ought to be, and is to have the weight which it ought to have, he must know what is being done, not by himself,

but by others, and by others not of his own land and speaking his tongue only, but also of other lands and of other speech. Hence it comes about that to the man of science the barriers of manners and of speech which pen men into nations become more and more unreal and indistinct. He recognizes his fellow-worker, wherever he may live, and whatever tongue he may speak, as one who is pushing forward shoulder to shoulder with him towards a common goal, as one whom he is helping and who is helping him. The touch of science makes the whole world kin.

The history of the past gives us many examples of this brotherhood of science. In the revival of learning throughout the sixteenth and seventeenth centuries, and some way on into the eighteenth century, the common use of the Latin tongue made intercourse easy. In some respects in those earlier days science was more cosmopolitan than it afterwards became. In spite of the difficulties and hardships of travel, the men of science of different lands again and again. met each other face to face, heard with their ears, and saw with their eyes what their brethren had to say or show. The Englishman took the long journey to Italy to study there; the Italian, the Frenchman and the German wandered from one seat of learning to another; and many a man held a chair in a country not his There was help, too, as well as inown. tercourse. The Royal Society of London took upon itself the task of publishing nearly all the works of the great Italian Malpighi, and the brilliant Lavoisier, two years before his own countrymen in their blind fury slew him, received from the same body the highest token which it could give of its esteem.

In these closing years of the nineteenth century this great need of mutual knowledge and of common action felt by men of science of different lands is being manifested in a special way. Though nowadays what is done anywhere is soon known everywhere, the news of a discovery being often flashed over the globe by telegraph, there is an increasing activity in the direction of organization to promote international meetings and international coöper-In almost every science inquirers ation. from many lands now gather together at stated intervals in international congresses to discuss matters which thev have, in common at heart, and go away each one feeling strengthened by having met his brother. The desire that in the struggle to lay bare the secrets of Nature the least waste of human energy should be incurred is leading more and more to the concerted action of nations combining to attack problems the solution of which is difficult and costly. The determination of standards of measurement, magnetic surveys, the solution of great geodetic problems, the mapping of the heavens and of the earth-all these are being carried on by international organizations.

In this and in other countries men's minds have this long while past been greatly moved by the desire to make fresh efforts to pierce the dark secrets of the forbidding Antarctic regions. Belgium has just made a brave single-handed attempt; a private enterprise sailing from these shores is struggling there now, lost for the present to our view; and this year we in England and our brethren in Germany are, thanks to the promised aid of the respective Governments, and no less to private liberality, in which this Association takes its share, able to begin the preparation of carefully organized expeditions. That international amity of which I am speaking is illustrated by the fact that in this country and in that there is not only a great desire, but a firm purpose, to secure the fullest coöperation between the expeditions which will leave the two shores. If in this momentous attempt any rivalry be shown between the two nations, it will be for each a rivalry, not in forestalling, but in assisting the other. May I add that if the story of the past may seem to give our nation some claim to the seas as more peculiarly our own, that claim bespeaks a duty likewise peculiarly our own to leave no effort untried by which we may plumb the seas' yet unknown depths and trace their yet unknown shores? That claim, if it means anything, means that when nations are joining hands in the dangerous work of exploring the unknown South, the larger burden of the task should fall to Britain's share; it means that we in this country should see to it, and see to it at once, that the concerted Antarctic expedition which in some two years or so will leave the shores of Germany, of England, and, perhaps, of other lands, should, so far as we are concerned, be so equipped and so sustained that the risk of failure and disaster may be made as small, and the hope of being able not merely to snatch a hurried glimpse of lands not yet seen, but to gather in with full hands a rich harvest of the facts which men not of one science only. but of many, long to know, as great as possible.

Another international scientific effort demands a word of notice. The need which every inquirer in science feels to know, and to know quickly, what his fellow-worker, wherever on the globe he may be carrying on his work or making known his results, has done or is doing, led some four years back to a proposal for carrying out by international coöperation a complete current index, issued promptly, of the scientific literature of the world. Though much labor in many lands has been spent upon the undertaking, the project is not yet an accomplished fact. Nor can this, perhaps, be wondered at, when the difficulties of the task are weighed. Difficulties of language, difficulties of driving in one team all the

several sciences which, like young horses, wish each to have its head free with leave to go its own way, difficulties mechanical and financial of press and post, difficulties raised by existing interests-these and yet other difficulties are obstacles not easy to be overcome. The most striking and the most encouraging features of the deliberations which have now been going on for three years have been the repeated expressions, coming not from this or that quarter only, but from almost all quarters, of an earnest desire that the effort should succeed, of a sincere belief in the good of international coöperation, and of a willingness to sink as far as possible individual interests for the sake of the common cause. In the face of such a spirit we may surely hope that the many difficulties will ultimately pass out of sight.

Perhaps, however, not the least notable fact of international coöperation in science is the proposal which has been made within the last two years that the leading academies of the world should, by representatives, meet at intervals to discuss questions in which the learned of all lands are interested. A month hence a preliminary meeting of this kind will be held at Wiesbaden; and it is at least probable that the closing year of that nineteenth century in which science has played so great a part may at Paris during the great World's Fair-which every friend, not of science only, but of humanity, trusts may not be put aside or even injured through any untoward event, and which promises to be an occasion not of pleasurable sight-seeing only, but also, by its many international congresses, of international communing in the search for truth -witness the first select Witenagemote of the science of the world.

I make no apology for having thus touched on international coöperation. I should have been wanting, had I not done so, on the memorable occasion of this meeting. A hundred years ago two great nations were grappling with each other in a fierce struggle, which had lasted, with pauses, for many years, and was to last for many years to come; war was on every lip and in almost every heart. To-day this meeting has, by a common wish, been so arranged that those two nations should in the persons of their men of science draw as near together as they can, with nothing but the narrow streak of the Channel between them, in order that they may take counsel together on matters in which they have one interest and a common hope. May we not look upon this brotherly meeting as one of many signs that science, though she works in a silent manner and in ways unseen by many, is steadily making for peace?

Looking back, then, in this last year of the eighteen hundreds, on the century which is drawing to a close, while we may see in the history of scientific inquiry much which, telling the man of science of his shortcomings and his weakness, bids him be humble, we also see much, perhaps more, Hope is indeed one which gives him hope. of the watchwords of science. In the latterday writings of some who know not science, much may be read which shows that the writer is losing or has lost hope in the future of mankind. There are not a few of these; their repeated utterances make a sign of the Seeing in matters lying outside times. science few marks of progress and many tokens of decline or decay, recognizing in science its material benefits only, such men have thoughts of despair when they look forward to the times to come. But if there be any truth in what I have attempted to urge to-night, if the intellectual, if the moral influences of science are no less marked than her material benefits, if, moreover, that which she has done is but the earnest of that which she shall do, such men may pluck up courage and gather strength by laying hold of her garment.

We men of science at least need not share their views or their fears. Our feet are set, not on the shifting sands of the opinions and of the fancies of the day, but on a solid foundation of verified truth, which by the labors of each succeeding age is made broader and more firm. To us the past is a thing to look back upon, not with regret, not as something which has been lost never to be regained, but with content, as something whose influence is with us still, helping us on our further way. With us, indeed, the past points not to itself, but to the future; the golden age is in front of us, not behind us; that which we do know is a lamp whose brightest beams are shed into the unknown before us, showing us how much there is in front and lighting up the We are confident in the way to reach it. advance because, as each one of us feels that any step forward which he may make is not ordered by himself alone and is not the result of his own sole efforts in the present, but, is, and that in large measure, the outcome of the labors of others in the past, so each one of us has the sure and certain hope that as the past has helped him, so his efforts, be they great or be they small, will be a help to those to come.

MICHAEL FOSTER.

INTERNATIONAL CATALOGUE OF SCIEN-TIFIC LITERATURE.

REPORT OF THE PROVISIONAL INTERNATIONAL COMMITTEE.

At the Second International Conference held in October, 1898, Professors Armstrong, Descamps and M. Foster, Dr. S. P. Langley, Professors Poincaré, Rücker, Waldeyer and Weiss were appointed to act as a Provisional International Committee, power being given to them to appoint substitutes, if any of those named were unable to serve, and also to co-opt two new members. The delegates attending the Conference were requested to take steps in their respective countries to organize local committees charged with the study of all questions relating to the International Catalogue of Scientific Literature, and to report within six months to the Provisional International Committee. The delegates were also requested to obtain information and to report at an early date to the Provisional International Committee as to what assistance, by subscription or otherwise, towards the support of the Central Bureau may be expected from their respective countries.

The Provisional International Committee was instructed to frame a report, not later than July 31, 1899, which was to be issued by the Royal Society, and incorporated in the decisions of the Conference.

The Committee decided to co-opt an Italian and a Russian member. The Russian Government accepted the invitation, and, on the nomination of the Imperial Academy of Sciences, Mons. Th. P. Köppen, Librarian of the Imperial Public Library, St. Petersburg, became a member of the Committee.

The Committee received unofficial information that the Italian government proposed to nominate a delegate, but that he could not attend the present meeting of the Committee.

Professor Waldeyer being unable to serve, the German government appointed Professor Schwalbe in his place, but requested that he might be accompanied by Professor Klein their two delegates to have but one vote.

The Committee met in London at the Rooms of the Royal Society on August 1-5, 1899.

The following attended: Professor H. E. Armstrong, Sir M. Foster, Professor F. Klein, Mons. Th. P. Köppen, Professor H. Poincaré, Professor A. W. Rücker, Professor B. Schwalbe, Professor E. Weiss.