the observer ten feet or more from the screen there is no inferiority in the sensation he receives. In the case of ordinary stereoscopic views the reality is lessened by the small size; an ordinary view looks like a view into a model, but a view in life-size is a real matter. Curiously enough, a view larger than life-size is singularly impressive and fascinating.

The advantage is surely very great in getting a whole museum of statues or of natural history specimens, in keeping the collection in a single case, and in being able to show them at any moment by merely turning on the switches or stop-cocks of a double lantern.

E. W. SCRIPTURE. PSYCHOLOGICAL LABORATORY, YALE UNIVERSITY, NEW HAVEN, CONN.

POT-HOLE VS. REMOLINO.

To THE EDITOR OF SCIENCE: Something more than formal advocacy of a word is usually necessary for its adoption; it must survive by its own fitness. In so far, however, as individual recommendations may have weight I may say that I am in favor of Mr. O. H. Hershey's suggestion that the word remolino be used in place of pot-hole.

The objections to the use of the word remolino raised by Mr. F. F. Hilder in SCIENCE of July 21st do not seem to me to be well founded. Is it true that "the term pot-hole expresses the object to which it is applied more correctly than the Spanish word?" While the term may have been applied on account of the shape of the holes, it is more likely that it gained its use from a common belief that the holes were excavated by the Indians for cooking purposes. If this be the case the word pot-hole is more misleading than remolino, for the latter, at least, gives a correct suggestion as to the way in which the holes have been formed.

Again, in which sense can it be said that the word remolino is incorrectly used by the people of Colombia? Are such words as villain, charity and many others incorrectly used by us because we do not employ them in their original significance? Had the compiler of the Spanish dictionary in which Mr. Hilder sought the definition of the word remolino known of its use by the people of Colombia as a name for a rounded rock cavity made by an eddying current of water he would probably and very properly have given that in his list. Would the critic of nomenclature have then thought it incorrectly used?

OLIVER C. FARRINGTON. FIELD COLUMBIAN MUSEUM, CHICAGO.

NOTES ON INORGANIC CHEMISTRY.

An interesting paper on the cause of color in minerals by L. Wöhler and K. v. Kraatz-Koschlau has appeared in *Tschermak's Mitteilungen*. While many minerals are colored by organic substances, the quantity is too small for identification. In several cases, as in zircon and smoky quartz, the presence of nitrogen was proved, and from bases in celestine from Gembeck three different double platinum salts were obtained. Contrary to the view of Nabl, the coloration of amethyst is not due to ferric thiocyanate, as no sulfur is present.

The difficulty of identifying the inorganic coloring materials of minerals is no less than that of organic; indeed, it was found necessary to use synthetic processes exclusively. Chromium is the cause of color in many minerals. In the case of chrome garnets, chrome spinel, chrome diopside this is apparent, but is no less true in red and violet spinel, ruby, sapphire, oriental amethyst, green zircon and topaz from Villarica. It was not found possible to detect the chromium in ruby and sapphire, but on fusing alumina and barium fluorid with onefifth per cent. of potassium bichromate the crystals of alumina obtained were chiefly colorless, but red, blue, yellow and green crystals were also found. From the color differences it is probable that the chromium is present in different oxydation stages. It was not found possible to color alumina by iron, even at very high temperature. In the Villarica topaz no trace of manganese was present. Wulfenite and vanadinite are also probably colored with chromium, though organic matter is also present. While titanic acid, and hence pure rutile, is colorless, the sesqui-oxid gives a dark brown color; hence the color of ordinary rutile is due to partial reduction of the titanic acid, a red tint being in part due to the presence of iron. The color of chrysoprase is due to the presence