
The author in other publications has 
claimed that this must have been the law, 
and explained the phenomena as parallel 
with that which takes place a t  the begin- 
ning of every series arising in the Paleozoic 
and Mesozoic, and also according to Minot's 
law of growth and other phenomena of the 
earlier stages in the ontogeny of every 
animal 

All inferences with reference to'the length 
of time that life has existed upon the earth 
are consequently defective, since, as  far as  
known to the author, they do not take into 
consideration the differing rates of evolu- 
tion at different times in the history of or- 
ganisms. 

ALPHEUSHYATT. 

THE BLACKBOARD TREATMENT OF PHYS-
lCAL VECTORS. 

THE tedious part of geometrical reading 
is the need of searching for the letters which 
designate the lines. Frequently this is the 
chief difficulty in the demonstration. I n  a 
measure, the same is also true when a ge- 
ometrical proof is to be written down, par- 
ticularly where special vector symbols (e. g., 
the [AB] of Mcebius) are employed. There 
is, perhaps, no remedy for this in printed 
work; but in the classroom, with a black- 
board available, coplanar vectors may be 
drawn in great variety a t  pleasure. I will 
therefore describe the following method of 
elementary treatment which, though i t  con- 
tains no essential novelty, is new, I think, 
from a pedagogic point of view, and for 
this reason not without value. 

Of the four specifications which charac- 
terize a vector-position, quantity, direc- 
tion, sign-the first three usually come 
within the range of indulgence of the aver- 
age student ; but with the sign he will have 
nothing to do. Thus i t  becomes necessary 
to the author to be simply a mode of expressing a gen- 
eral fact, or series of facts, that occur everywhere, and 
in all series more or less through the action of the 
law of tachygenesis. 

to especially emphasize the latter, and this 
is done by putting an arrowhead on the 
proper end of it. A physical vector is thus 
fully given by an  arrow of definite length, 
originating in a definite point and pointing 
in a definite direction. With this laid down 
insistently, the principle of vector summa- 
tion is next developed* in the usual way. 
Here, again, the sign quality needs to be 
accentuated. The origin of the first arrow 
is the given point of application. The 
origin of every other arrow is the point of 
the preceding, beginning with the first 
arrow already placed. If two vector sys- 
tems are equivalent, this implies that if 
the free tail of each begins a t  a common 
point, then the free tip of each system must -
terminate in the same final point. 

I t  is simpler to begin with the first kine- 
matic vector, velocity, rather than with dis- 
placement. The inherent importance of the 
space relations is easily pointed out in the 
course of the development. 

With these customary introductions i t  is 
my plan to write down vector equations on 
the blackboard just like algebraic equations, 
using for my terms definitely specified ar- 
rows. Thus I obtain consecutively : 

Sum: The equation reads, for instance, 

9 It--/ 


To change the direction of an arrow is to 
change the sign of the term. Hence (1) is 
identical with (2). 

Difference : 

o t - e = = / 3 1  
or by transposing, 

s I = - + /  
which may be tested by construction. 
Again from (3)  

-La -+/f 
*By supposing one of the vectors to be forming on 

a blackboard moving as specified by the other veator. 
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and by transposing 

which is the triangle of rest. 
Change of velocity: I f  in the following 

equation (5) the second term of the first 
member is given as having changed into the 
first, then the change of velocity is 

Polygon of velocity: I f  any number of ve- 
locities are given to be added, 

which is the polygon of velocities, and all 
possible constructions are equivalent to a 
mere change in the order of the terms. I f  
we change the sign and direction of the 
arrow in the second member of (6) and 
then transpose the term to the first mem- 
ber 

a c+-+T-t -+ l-ci 9 

which is the polygon of rest. 
Acceleration : That accelerations may be 

compounded like velocities students assert 
readily enough, but few really understand 
the assertion. Defining acceleration in the 
usual way, the product of a time factor and 
a vector is here encountered. But the time 
factor is scalar and can be fully given by 
a n  ordinary number. Let t be a sufficiently 
small interval of time. Then, for the case 
of linear acceleration, the equation reads 

where the quantity in parenthesis is the ob- 
served change of velocity in the time t. 
The result merely calls for an increase in 
the length of the reduced vector, l / t  times. 
The more general case corresponding to (5) 
may be taken a t  once, whence, 

Two accelerations of the general kind 

may be compounded (using a common time 
t for brevity), as follows : 

@I$(i-+)+ +(I- +=g+ --++It+-)=a\). 
The quantities really compounded are 

thus the velocities (ultimately displace-
ments) and the effect of the scalar factor is 
a mere change of the length of the arrow 
produced. 

The case of a finite acceleration and van- 
ishing t is particularly remarkable. 

momentum: I f  m denote mass, we again' 
have the product of a scalar and a vector, in 
which, therefore, m is fully given by a num- 
ber. To compound 

we virtually reproduce (1). If the mo--
menta are referred to different masses, as  in 

i t  will be necessary to change the length of 
each arrow before compounding. The 
proposition may be extended to the polygon, 
of moments, etc., as  already shown. 

Force: If the interval t is sufficiently 
small, force is defined, in a general way, by 

where in the first member the second term, 
(vector) is changed to the first term in the 
time t for each particle of the mass m. The 
quantity compounded is again the product 
of a vector (velocity) and a scaler m / t. 
To compound forces we thus virtually com- 
pound velocities and increase the length 
of the arrow resulting m / t times. If two 
forces actuate m we have in the most gen- 
eral case 

0 ,m(l-->t?(1---,=y(\'. 

These forces might have been rated in terms 
of different masses, m and m', and times, t 
and t'. I n  such cases the first resultant 
would be multiplied m / t times and the. 
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second m' / t' times and the new vectors 
then compounded. 

Center of Mass: To complete the subject 
of translational motion for an  extended 
body the customary reference is made to 
the center of mass. 

ROTATION. 

The case of rotation is treated throughout 
in complete analogy with the foregoing. 
What  was linear velocity constant through- 
out the body in the above is now angular 
velocity also constant throughout the body ; 
what was mass m has become moment of 
inertia n, and what was force F has become 
torque T-formally speaking, of course. 
The results are reached in the usual ele- 
mentary way. 

The first proposition to be laid down is 
La,grange's well-known elementary proof 
for the composition and resolution of angu- 
lar velocities. This must be most carefully 
done; for if students growl a t  the sign of a 
translational velocity they break out in 
open mutiny a t  the sign of an  angular 
velocity. Obviously the arrow is again 
necessary for the complete specification, and 
I am in the habit of using the sign of Mars 
( 8 ) for angular velocities, measuring the 
arrow from the center of the circle. As a 
rule, only one of a group of velocities need 
be so marked. If right-handed relations be 
postulated (the reverse is the rule in dynam- 
ics) then an eye looking in the direction 
of the arrow sees clockwise rotation around 
it as an axis, with a speed given by the 
length of the arrow. 

Thus one obtains in succession : 

Angular velocity : 

reproducing all the propositions (1) to (6) 
above. Stress must be laid on proposition 

( 5 ) .  
Angular acceleration : Essentially like (8) 

and (9) above. 

Angular momentum, moment of momentum : 
I f  n and n' be the moments of inertia the 
quantities to be compounded are, for in- 
stance, 

@ N[,+nlb) 

reproducing (10) and (11') above. 
Torque, couple, moment of rotation: I f  t 

be sufficiently small, torque is defined in 
in the most general way by 

where in the first member of the equation 
the second vectorial term (angular veloc- 
ity) changes into the first term in the time 
t for every particle of the mass implied in 
n. Thus the propositions (12) and (13) 
are formally reproducer1 for rotations. I n  
other words, torques, couples, moments are 
compounded just like forces, and the con- 
vention involved is the convention made 
in representing angular velocities. 

I will conclude by giving a few examples, 
the first of which, Po~ccault's Pendulum, is 
cited merely as  a concrete case of (1'). 

Let w be the earth's angular velocity. 
Let cp be the latitude of the place of obser- 
vation. Resolve w as shown in figure. 

Then w" rotates the plane of the pendulum 
around a line in this plane, horizontal for 
the place. Hence w" produces no deviation. 
Obviously w',  the deviating component is 
w sin cp. 

I n  physical meteorology the same result 
enters fundamentally into the theory of 
cyclones. For if 2 m V w be the deviating 
component of the earth's rotation for a 
circumpolar body of mass m and velocity V, 
then the corresponding component for any 
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latitude 9 is 2 IYL P w  sin 9, quite independ- 
ent of the azimuth of V. 

Again, if in figure (15) w and w ,  be re- 
placed by linear velocities, one easily ob- 
tains by (8) the expression for accleration 
towards a center, etc. 

Precession : I n  instruments like tops, gyro- 
scopes, etc., the mechanism (supposed fric- 
tionless) is such as to exclude all interference 
from without, with the magnitude of the 
angular velocity w of the top around its 
axis. This constructive condition is essen- 
tial. Hence, if the axis changes position, and 

if for brevity we suppose the tail of the ar- 
row w to remain frictionlessly a t  C, then the 
locus of the point of the arrow must be the 
surface of a sphere of radius w .  Let w change 
in position to w, ,  let the axis to which the 
change of angular velocity w' (in figure 15) 
corresponds, pass through C and necessarily 
rotate around i t  in a horizontal plane. This 
is clearly the case with the axis of gravita- 
tional torque in the precessional motion of 
a top or gyroscope. Then must w' also lie 
in a horizontal plane, and the locus of w is 
the surface of a circular cone with its axis 
vertical and its vertex a t  C. If w' is im- 
parted in unit of time w' is the mean an-
gular acceleration due to the gravitational 
torque and therefore equal to T/n by (12'). 
Rut the inclination of w to the horizontal 
has just been shown to be constant (cone), 
wherefore gravitational torque is constant 
and w' is constant. Hence the precessional 
motion is uniform rotation around the ver- 
tical axis of the fixed cone; for from one 
point of view w' is the total change of an- 
gular velocity due to gravitational torque, 
and from another point of view, w l / w ,  con-
stant for the reasons specified, is propor- 
tional to the uniform angular velocity of 

precession (see figure). If gravitational 
torque is withdrawn, as in a balanced gyro- 
scope, wl/w=O and precession ceases. If 
w gradually decreases (friction), w' will 
subtend a relatively greater angle, or pre- 
cessional motion will be accelerated, even 
when the axis of w is not lowered. I n  the 
latter case the result is :iccentuated, for 
gravitational torque is increased. 

Again, suppose gimbals of a gyroscope 
forcibly rotated around a vertical axis. I n  
Figure 16 let the angular velocity w be thus 

imparted in unit of time. Let w ,  and w ,  

be the positions of the top axis and its an- 
gular velocities before and after the inter- 
ference. Resolve w into components w' and 
w" respectively a t  right angles and parallel 
to  w,. Then w" would rotate the top axis 
if i t  were not frictionlessly mounted. It 
actually rotates the gimbals only. There-
fore w ,  = w, in length, as is otherwise evi- 
dent. Thus w' is the total effective change 
of angular velocity, and in virtue of this w ,  

passes to w, and the extremity of the top 
axis rises, describing a circle in a vertical 
plane. If w is imparted in a contrary di- 
rection the motion of w ,  will be reversed. 
The top rolling on a blunt point belongs 
here. 

Finally, if the top axis is forcibly rotated 
back and forth over a small angle around 
the horizontal axis of gravitational torque, 
similar considerations will lead to a better 
explanation of the curves drawn by a top 
on an  inclined plane than I gave in a pre- 
ceding article. The periodic changes of 
torque correspond to the rolling of the top 
up and down the inclined plane. 

I have been tempted to enter somewhat 
a t  length into this most important subject, 
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because I failed to find an adequate account 
in such standard elementary text-books as  
came to my hands. Thus the explanation 
given in Daniell's physics is empiric and 
about within the limits of Perry's little 
book on tops. Ganot and Deschanel, Bar- 
ker and Carhart, avoid the matter alto- 
gether. Kelvin and Taitls 'elementary' 
treatise has a single paragraph, intelligible 
at once, no doubt, to the authors. Peddie 
puts a slight expansion of this paragraph 
into his book. Even Violle's large new 
work says nothing about tops. I n  the Ger- 
man books, like Miiller-Pouillet, Wiillner 
and the excellent treatise of Mousson, the 
phenomena are interpreted by aid of a sug- 
gestion of Poggendorffls, the very object of 
which is to dodge the principles of rotation 
involved under cover of a reference (' nur 
durch hiihere Rechnung ') to Euler. Yet 
gyrostats of diverse forms usually abound in 
physical cabinets. Supposing an instructor 
is not on the outlook for special entertain- 
ment for his children, of what use is such 
apparatus, I ask, if i t  be not to furnish the 
most striking tests imaginable of the truth 
of the above fundamental doctrines of rota- 
tion. 

C. BARUS. 
BROWNUNIVERSITY, 
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ZOOLOGICAL NOTES. 

NANSEN'S DISCOVERY OF THE BREEDING 

GROUNDS OF THE ROSY GULL. 

OF the result of Nansen's Expedition thus 
far announced one of the most interesting, 
at least to ornithologists, is the reported 
discovery of the breeding grounds of Ross1 
Gull, also known as the Wedge-tailed or. 
Rosy Gull (Rhodostetl~ia rosea). I n  a letter 
published in the London Daily Chronicle last 
November, Dr. Nansen stated that he found 
flocks of Rosy Gulls on August 6th, in lati- 
tude 81' 38', east longitude 63'. The birds 
were seen near four small islands called 

' Hirtenland ' by Nansen, a little northeast 
of Franz Josef Land. While Nansen did 
not actually find nests, he_ found the birds 
abundant, and concluded that their nests 
were probably near by. Every item of in- 
formation regarding this rare bird is of 
interest, and in the December number of 
the Ornithologische Monatsberichte (pp. 193-
196), Dr. Herman Schalow calls attention 
to the importance of Nansen's announce-
ment and takes occasion to review briefly 
the history of the species. 

There seems to be no reason to question 
the correctness of Nansen's determination 
of the birds or his surmise that they were 
breeding not far away. The wedge-shaped 
tail and the rosy tinge of the plumage 
(both noted by Nansen) are unmis'bkable 
characters of the species, and the presence 
of the gulls in such numbers in that high 
latitude renders i t  very probable that  they 
were breeding. The Rosy Gull has long 
remained one of the rarest gulls. I t  was 
described from a specimen collected by Sir 
James Clark Ross in 1823,on Melville Penin- 
sula, but in the next half century only a 
few individuals were taken and these in 
widely separated localities. I n  the autumn of 
1881 Murdoch observed large numbers a t  
Point Barrow, Alaska, apparently migra- 
ting from the west to the northeast. Al-
though he secured a good series of speci- 
mens, he could add little to the life history 
of the species, and no other naturalist in 
Alaska has had the good fortune to meet 
with it in such numbers. This gull has 
also been taken in North America a t  St. 
Michael's, Alaska, and Disco Bay, Green- 
land, but i t  was not seen by the Lady Frank- 
lin Bay expedition. I t  was met with off the 
Siberian coast by the Jeannette Expedition, 
and was recorded by Payer between Nova 
Zembla and Franz Josef Land, only a few 
degrees to the south of the islands where 
Nansen found it. 

The Rosy Gull is a typical arctic circum- 


