SCIENCE:

A WEEKLY NEWSPAPER OF ALL THE ARTS AND SCIENCES.

PUBLISHED BY

N. D. C. HODGES,

47 LAFAYETTE PLACE, NEW YORK.

Communications will be welcomed from any quarter. Abstracts of scientific papers are solicited, and one hundred copies of the issue containing such will be mailed the author on request in advance. Rejected manuscripts will be returned to the authors only when the requisite amount of postage accompanies the manuscript. Whatever is intended for insertion must be authenticated by the name and address of the writer; not necessarily for publication, but as a guaranty of good faith. We do not hold ourselves responsible for any view or opinions expressed in the communications of our correspondents.

Attention is called to the "Wants" column. All are invited to use it in soliciting information or seeking new positions. The name and address of applicants should be given in full, so that answers will go direct to them. The "Exchange" column is likewise open.

CELESTIAL PHYSICS.1

(Continued from p. 215.)

THE spectra of the stars are almost infinitely diversified, yet they can be arranged, with some exceptions, in a series in which the adjacent spectra, especially in the photographic region, are scarcely distinguishable, passing from the bluishwhite stars like Sirius, through stars more or less solar in character, to stars with banded spectra, which divide themselves into two apparently independent groups, according as the stronger edge of the bands is towards the red or the blue. In such an arrangement the sun's place is towards the middle of the series.

At present a difference of opinion exists as to the direction in the series in which evolution is proceeding, whether by further condensation white stars pass into the orange and red stages, or whether these more colored stars are younger and will become white by increasing age. The latter view was suggested by Johnstone Stoney in 1867.

About ten years ago Ritter, in a series of papers, discussed the behavior of gaseous masses during condensation, and the probable resulting constitution of the heavenly bodies. According to him, a star passes through the orange and red stages twice; first during a comparatively short period of increasing temperature, which culminates in the white stage, and a second time during a more prolonged stage of gradual cooling. He suggested that the two groups of banded stars may correspond to these different periods, the young stars being those in which the stronger edge of the dark band is towards the blue, the other banded stars, which are relatively less luminous and few in number, being those which are approaching extinction through age.

Recently a similar evolutional order has been suggested, which is based upon the hypothesis that the nebulæ and stars consist of colliding meteoric stones in different stages of condensation.

More recently the view has been put forward that the diversified spectra of the stars do not represent the stages of an evolutional progress, but are due for the most part to differences of original constitution.

The few minutes which can be given to this part of the address are insufficient for a discussion of these different views. I purpose, therefore, to state briefly, and with reserve, as the subject is obscure, some of the considerations from the characters of their spectra which appeared to me to be in favor of the evolutional order in which I arranged the stars from their photographic spectra in 1879. This order is essentially the same as Vogel had previously proposed in his classification of the stars in 1874, in which the white stars. which are most numerous, represent the early adult and most persistent stage of stellar life, the solar condition that of full maturity and of commencing age, while in the orange and red stars with banded spectra we see the setting in and advance of old age. But this statement must be taken broadly, and not as asserting that all stars, however different in mass and possibly to some small extent in original constitution, exhibit one invariable succession of spectra.

In the spectra of the white stars the dark metallic lines are relatively inconspicuous, and occasionally absent, at the same time that the dark lines of hydrogen are usually strong, and more or less broad, upon a continuous spectrum, which is remarkable for its brilliancy at the blue end. In some of these stars the hydrogen and some other lines are bright, and sometimes variable.

As the greater or less prominence of the hydrogen lines, dark or bright, is characteristic of the white stars as a class, and diminishes gradually with the incoming and increase in strength of the other lines, we are probably justified in regarding it as due to some conditions which occur naturally during the progress of stellar life, and not to a peculiarity of original constitution.

To produce a strong absorption-spectrum a substance must be at the particular temperature at which it is notably absorptive; and, further, this temperature must be sufficiently below that of the region behind from which the light comes for the gas to appear, so far as its special rays are concerned, as darkness upon it. Considering the high temperature to which hydrogen must be raised before it can show its characteristic emission and absorption, we shall probably be right in attributing the relative feebleness or absence of the other lines, not to the paucity of the metallic vapors, but rather to their being so hot relatively to the substances behind them as to show feebly, if at all, by reversion. Such a state of things would more probably be found, it seems to me, in conditions anterior to the solar stage. A considerable cooling of the sun would probably give rise to banded spectra due to compounds, or to more complex molecules, which might form near the condensing points of the vapors.

The sun and stars are generally regarded as consisting of glowing vapors surrounded by a photosphere where condensation is taking place, the temperature of the photospheric layer from which the greater part of the radiation comes being constantly renewed from the hotter matter within.

At the surface the convection currents would be strong, producing a considerable commotion, by which the different gases would be mixed and not allowed to retain the inequality of proportions at different levels due to their vapor densities

Now the conditions of the radiating photosphere and those of the gases above it, on which the character of the spectrum of a star depends, will be determined, not alone by tempera-

¹ Inaugural address at the meeting of the British Association for the Advancement of Science, at Cardiff, August, 1891, by William Huggins, president of the association (Nature, Aug. 20).