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THE EVOLUTION OF ALGEBRA.

IN considering the possible subjects for an address on this
‘occasion, it has seemed to me that a half-hour might be
agreeably spent in a brief survey of the progress, or evolu-
tion, of algebra from its earliest known beginnings to the
present time.

The realm of mathematics may be classified, in a general
way, into (1) Arithmetic, or the theory of numbers, (2)
Algebra, (3) Geometry, though sharp dividing lines cannot
always be drawn between these departments: the last two,
for instance, mutually interacting, geometry illustrating
algebra, while algebra is the efficient servant of geometry,
enabling it to conquer territory which it could scarcely have
entered upon unaided.

The history of the development of these different branches
of mathematics shows considerable diversities among them.
Thus geometry reached in a short time, among the ancient
Greeks, a high stage of advancement, and then became
practically stationary until quite recent times, while the
progress of algebra has been more in the nature of a gradual
and continuous evolution. Nesselmann has recognized three
stages in this development, which he designates as the

rhetorical, the syncopated, and the symbolical, to which I

may perhaps venture to add the ‘‘multiple,” in which a
plurality of fundamental units is recognized and treated.
‘We may regard the first three as somewhat analogous to the
stone, bronze, and iron ages in human history, overlapping
each other, as do these, at different times and places; while
the last may be compared to that age of aluminum which is
perhaps dawning upon the world.

Rhetorical algebra was a process for: determmmg the un-
known quantity in an equation by a course of logical reason-
ing expressed entirely in words, without the use of any
symbols whatever, similar to our present mental arithmetic.
In course of time abbreviations of those words which con-
stantly recurred were introduced, by the use of which the
statement of the reasoning could be much shortened, it being
even possible with the notation of Diophantos to approximate
to the conciseness of the modern, or symbolic, method. This,
however, was not done by Diophantos himself, who used his
abbreviations strictly as such, and reasoned out his results in
words combined with these. This method is what is desig-
nated by Nesselmann as the syncopated, and forms evidently
a stepping-stone toward the symbolic, in which perfectly
arbitrary symbols are employed to represent the various
quantities dealt with, and no words are written out except a
conjunction now and then.

The earliest traces of algebraic knowledge which have been
discovered are found in Kgypt, that wonderful land whose
records carry us back to such a remote antiquity. Ahmes,
in a papyrus manuscript, dating from about 1400 B.C., deals
with certain geometric and algebraic problems, and seems to
have had as good a conception of the symbolism of algebra
as his successors of a much later period. Thus he had signs
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for 4-, —, and ==, and used the cliaracter representing a
heap for the unknown quantity. He seems, therefore, to
have long anticipated Diophantos in the use of syncopated
notation. Our knowledge of Hgyptian mathematics subse-
quent to this time is very slight, and is gleaned from the
statements of various Greek and Latin authors.

We will pass, then, at once to the Greek contributions to
the development of our subject. So far ascan now be ascer-
tained, probably but little strictly algebraic work was done
before the third or fourth century of our era, though opinions
differ on this point. The wonderful accomplishments of
Archimedes were mainly geometrical and mechanical, though
he makes one remark which is equivalent to a statement re-
garding the roots of an equation of the third degree, which
is remarkable as being, with one exception, the only known
case of any consideration of such an equation until after the
lapse of more than a thousand years from his time.

Thymaridas in the second century of our era is the earliest
mathematician known to have enunciated an algebraic
theorem. This was, however, done entirely in words, no
symbol for any quantity or operation being used.

Practically the foundation of algebra was laid by Dio-
phantos of Alexandria. But little is known of this remarka-
ble man. Though we have his writings in Greek, he was
probably not himself a Greek. The period at which he lived
is in dispute, though probabilities favor the fourth century
of our era. Even the spelling of his name is uncertain, there
being a question as to whether the last syllable should be os
or es. But whatever may be known or unknown about the
man himself, his writings show a very wonderful power of
analytic reasoning, especially when we consider the awkward-
ness of the tools with which he was obliged to work.

What strikes us at once, from our present point of view,
as most hampering is the fact that he had only one symbol
for the unknown, so that, in dealing with a problem which
would now be solved by the aid of several such symbols, as
x, ¥, 2, ete., he was obliged to adopt some expedient, such
as to make mental]y such combinations and arrangements
as to get along with only one. It is easy to see how much
ingenuity must often have been required to accomplish this.
It is a curious and surprising fact that algebraic analysis was-
subjected to this same limitation down to a comparatively
recent period. In place of the exponents at present used to-
indicate the powers to which quantities are raised, Diophantos.
designated the square and cube of the unknown by the initial
letters of the corresponding words in Greek. Thus the un-
known is represented by the character ¢, standing for the
word @p10u0s (i.e., number), which is also frequently writ-
ten out in full; the square of the same by 7% a contraction
for S Ovauis (power); and the cube by 7% a contraction for
nv 305 (cube). Higher powers up to the sixth were indi-
cated by combination or repetition of these symbols. The
origin of the character for arithmos is uncertain; it may be
the final sigma of this word, or it may be a contraction of
ap, the first two letters of the same, or it may be derived
from an old Egpytian symbol for the unknown. When
oblique cases of these quantities are required, the words for
square and cube are written out in full, while the practice
varies with regard to arithmos, the word being sometimes
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written out, while at other times the case-termination is
written above to the right, thus v the symbol being also
generally doubled when the signification is plural.

Diophantos indicated addition merely by juxtaposition, hav-
ing no sign for plus; for minus, however, he used the sign q.
As a consequence, in order to avoid confusion, he was obliged
to do two things; first, to designate the absolute term as so
many pova 0&s, or units, abbreviated into 43, and second, to
write all the negative terms together after the positive. Thus
the quantity x3 — 522 | 8x — 1 would be written in Dio-
phautos’s notation.

Wassoan @ 698 o a.
This may be rendered more expressive if we change it by
substituting Arabic numerals, and putting U for units, N for
number or unknown, S for square, and C for cube: thus it
becomes C1 N8 — S5 U 1.

It is to be noted that Diophantos and his successors up to
comparatively recent times had no conception whatever of
an intrinsically negative quantity as possible. Whatever
sign may have been used for minus was counsidered as simply
indicating that one number was to be subtracted from an-
other, and if the subtrahend were larger than the minuend
no meaning was attached to the expression.

It is possible that Diophantos might have been able to
escape from the limitations of his system if the letters of the
Greek alphabet had not been already appropriated for the
representation of particular numbers, thus precluding their
use as symbols of quantity in general.

It may be of interest to give at this point specimens of the
purely rhetorical and of the syncopated methods of solution.
They are given by Nesselmann, and are verbatim transla-
tions from the original tongues. The first is a solution of a
quadratic equation by Mohammed ibn Musa, and the second
the solution of a problem by Diophantos.

A square and ten of its roots are equal to nine-and-thirty
units, that is, if you add ten roots to one square, the sum is
equal to nine-and-thirty. The solution is as follows: halve
the number of roots, that is, in this case, five; then multiply
this by itself, and the result is five-and-twenty. Add this to
the nine-and-thirty, which gives four-and-sixty; take the
square root, or eight, and subtract from it half the number
of roots, namely, five, and there remains three: this is the
root of the square which was required and the square itself
is nine.

(S == square, N = number, U= unit, as above.)

To divide the proposed square into two squares: Let it be
proposed, then, to divide 16 into two squares; and let the
first be supposed to be one square. Thus 16 minus one square
must be equal to a square. I form the square from any
number of N’s minus as many U’s as there are in the side
of 16 U’s. Suppose this to be 2 N’s minus 4 U’s. Thus the
square itself will be 4 squares 16 U’s minus 16 N's. These
are equal to 16 units minus 1 square. Add to each the nega-
tive term, and take equals from equals. Thus 5 squares are
equal to 16 numbers. One (square) will be 256 twenty-fifths,
and the other 144 twenty-fifths, and the suin of the two makes
up 400 twenty-fifths, or 16 units, and each is a square.

Compare these long-drawn-out statements with their equiv-
alents in modern notation:

First. Second.
2 - 1020 =39 16 —a? = 0 = (2 — 4)*
2% 10 2 25 = 64 = da? 16 — 162
. x-+5=38 L 160 =52

SCIENCE.
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The example from Diophantos evidently does not take full
advantage of his notation, for the symbol for minus is not
used, and in several cases the words are written out in full
where abbreviations might have been employed. Further,
no use is made of the symbol for equality, viz., 7, an abbre-
viation for ZGoz, which is elsewhere used by the author. . If
the fullest use of the syncopated notation had been made,
the solution would have been somewhat comparable for con-
ciseness and brevity with the modern method, only about
twice as many characters and marks being required. Solu-
tions in this abbreviated form appear on the margins of
Diophantos’s manuscripts, but they are believed to have been
added by some one else, and not to be due to the author him-
self.

The works of Diophantos, called by him ‘‘ Arithmetics,”
deal largely with indeterminate equations and the theory of
numbers. Quadratic equations are constantly solved, but
only real positive results are recognized or considered; and
even when there are two positive roots, only one is taken
account of. One very simple case of an equation of the third
degree is found.

We will turn next to the consideration of the ancient
algebra of India. There lived at Patna, in India, some time
in the sixth century of our era, a mathematician named
Arya-Bhatta, who wrote a work treating of arithmetic,
algebra, geometry, trigonometry, and astronomy. It consists
in the enunciation of rules and propositions in verse. The
author gives, of course in a purely rhetorical manner, the
sums of the first, second, and third powers of the first » natural
numbers, the general solution of a quadratic equation, and
the solution in integers of some indeterminate equations of
the first degree.

The only other ancient Indian mathematician of promi-
nence is Brahmagupta, who lived in the seventh century of
our era. His work is also written in verse, and is called
¢ Brahma-Sphuta-Siddhauta,” or the ‘‘ System of Brahma in
Astronomy.” Two chapters of this work deal with arith-
metic, algebra, and geometry. The treatment of algebra is
purely rhetorical, and includes a discussion of arithmetical
progressions, quadratic equations (ounly the positive roots
being considered), and indeterminate equations of the first
degree, together with one of the second degree.

These Indian writings are of special interest as being the
sources from which the Arabs derived their first knowledge
of algebra. They obtained from the Greeks before A.D. 900,
thorough translations of Euclid, Apollonius, Archimedes,
and others, a knowledge of geometry, mechanics, and astron-
omy, but had no translation of Diophantos till a hundred
and fifty years later, when they had themselves already
made considerable progress in algebraic analysis. From the
Arabians in turn western Europe obtained, not only the deci-
mal notation of arithmetic, but also its first knowledge of
other branches of mathematics.

The first great mathematician among the Arabs is gener-
ally known by the name of Alkarismi, though this is an in-
correct transliteration of only one of his names. From the
title of his work, ‘* Al-gebr we'l Mukabala,” we have the
name of that branch of mathematics under consideration,
al-gebr signifying that the same quantity may be added to
or subtracted from both sides of an equation.

Alkarismi treats the quadratic, giving geometric proofs of
rules for the solution of different cases, and recognizing the
existence of two roots, though he only considers such as are
real and positive. e treats only numerical equations, and
no distinction is made between arithmetic and algebra. This
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is true likewise of his Arabian successors, who, though they
‘advanced so far as to obtain the general solution of a cubic
equation, and to state such a proposition in integers of the
equation x3 -4 y3 =23 is feasible, yet always adhered to
the rhetorical method, and made scarcely any progress in
general algebraic science. TIndeed such progress was hardly
possible until the introduction of symbolic methods.

The first decided steps in the direction of symbolism since
the work of Diophantos were taken by a mathematician of
India named Bhaskara in the twelfth century. He used ab-
breviations and initials to denote the unknown, a dot for
minus, and juxtaposition to indicate addition. A product is
denoted by the first syllable of the word for multiplication
subjoined to the factors, division by the divisor being written
beneath the dividend without a line between as our custom
is now. The two sides of an equation are written one under
the other, and explanatory records are introduced whenever
it is necessary to prevent misunderstanding. Occasionally
symbols are used for given as well as unknown quantities.
Square, cube, and square root are denoted by the initial
letters of the corresponding words. Using the Arabie, or
decimal, notation, he has a character for zero, which enables
him to write all his equations with all the powers of the un-
known -arranged in regular order on each side of the equa-
tion, certain of them being multiplied by the factor zero.
This method of writing equations maintained itself till long
afterwards. We have in this author a distinct advance over
Diophantos and the Arabians in the introduction of various
symbols for the unknown, so that several might be used in
the same problem, as well as in the use of zero. '

‘We have now to consider a new phase of algebraic prog-
ress arising from the introduction into western Europe of
the works of the Arabian mathematicians.
through the Moors of Spain. The Greek and Arabic works
were studied at the Moorish ubniversities of Granada, Cor-
dova, and Seville, but all knowledge of them was jealously
kept from the outside world until the twelfth century, during
‘which copies came into the possession-of Christians. Up to
this time Christian Europe had been almost a mathematical
blank. The simple arithmetical operations they were able
to perform were accomplished by the aid of the abacus, and
they possessed some knowledge of astronomy and geometry,
but made no progress until they were able to avail them-
selves of the previous labors of Greek, Hindu, and Arab,
under the stimulus of which a career of advancement began
which has continued to the present time. This career, how-
ever, did not begin immediately; it took several centuries to
assimilate the material received from these sources, and thus
to lay the foundations on which subsequent progress should
rest.

During this period the rketorical method was used in all
algebraic processes, and it was not until the sixteenth cen-
tury that syncopated methods were introduced, preparing
the way for the symbolic methods that soon followed. Latin
being the language in use, the word res, or radix, was em-
ployed for the unknown quantity, the square being called
census, and the cube cubus. These words were at first writ-
ten out in full and afterwards represented by R or Rj, Z or
C, and C or K respectively.

The signs -} and — are first found in a mercantile arith-
metic by Johann Widmann, published in 1489, though they
did not come into general use by mathematicians till a hun-
dred years or more afterward. The most probable supposi-
tion as to their origin is that they were at first warehouse
marks indicating an excess or deficiency in the contents of a
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package which was supposed to contain a certain definite
amount. Widmann uses them purely as abbreviations, not
as symbols of operation.

The first mathematical work ever printed was by Pacioli,
upon arithmetic, algebra, and geometry, and marks the begin-
ning of the syncopated stage of development in western Europe.
This book appeared in 1494, just before the beginning of the
sixteenth century, during which this method was in vogue.
Pacioli uses initials as abbreviations for the unknown, its
square and cube, and for the words ¢ plus” and ‘‘ equal,”
also occasionally de for demptus, instead of minus.

The sign now used for equality was introduced by Recorde
in an arithmetic published in 1540. He uses also the present
signs + and — . At about the same time our present sym-
bol for square root was introduced by Stifel, and Nicholas
Tartaglia discovered the solution of the cubic equation
a* -+ px = q, which is generally attributed to Cardan, and
goes by his name. Cardan obtained the solution from Tar-
taglia under promise of strict secrecy, and then published it
in his work ‘‘ Ars Magna.” Considerable advance is made
in this work over anything done by his predecessors. Neg-
ative and even imaginary roots of equations are discussed,
and the latter are shown to always occur in pairs, though
no interpretation of them is attempted. Cardan shows that
when the roots of the cubic are all real, Tartaglia’s solution
appears in an imaginary form. This is the first notice we
find of imaginaries, and, with the exception of a similar
treatment by Bombelli a few years later, and a suggestion as
to their interpretation by Wallis in 1685, they were discussed.
by no subsequent mathematician until Euler investigated
them nearly two hundred years afterward. Cardan also
discovered the relations between the roots and coefficients of
an algebraic equation, and the underlying principle of Des-
cartes’ rule of signs. It is to be noted that his solutions
both of quadratics and cubics are geometrical.

In 1572 Bombelli published an algebra in which the same
subjects discussed by Cardan are treated in about the same
way, but in which a marked advance is made in notation,
viz., the employment for the unknown of the symbol 1,
while its powers are denoted by 2, 8, ete. Thus he would
write &’ -} B — 4 as 12 p. 5 1m. 4, p. and m. standing. for
plus and minus. Other writers of the same period would
have written the expression thus,

1Zp. BRm. 4, or 1Q 4 BN — 4.

Up to this time in the development of algebraic notation,
whatever may have been the forms on symbols used, they
were regarded simply as abbreviations for the words neces-
sary to express the idea to be conveyed. But now the con-
ception of pure symbolism begins to appear. Vieta, who
lived in the last half of the sixteenth century, denoted
known quantities by consonants and unknown by vowels,
while powers were indicated by initials or abbreviations of
the words quadratus and cubus. He was thus enabled to
deal with several unknowns in tbe same problem, together
with their powers. The following is a specimen of his nota-
tion. The equation 83BA’ — DA 4 A®= Z he writes as

B3in A quad. — D plano in A + A cubo equatur
Z solido. ’
(It may be noted that he makes his equations homogeneous,
and lays stress on the desirability of so doing.) This and
the other examples that have been given above illustrate the
great variety of notations in use during this period, no con-
ventional system having yet been adopted to be adhered to
in the main by all mathematical writers. This is, of course,
an inevitable accompaniment of the formative stage of any
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branch of science, when a few men are working here and
there in comparative isolation. This variety continued to a
ccensiderable extent throughout the seventeenth century,

In this century we arrive at a new era in mathematical
development. This was brought about by the application of
algebra to geometry by Descartes in the early part, and the
discovery of the differential calculus by Newton and Leib-
nitz independently in the latter part of the century. Alge-
bra had been used in connection with geometry before Des-
cartes, but to him was due the discovery of the fact, that, if
the position of a point be given by co-ordinates, then any
equationinvolving those co-ordinates will represent some locus
all of whose properties are contained implicitly in the equa-
tion, and may be deduced therefrocm by ordinary algebraic
operations.

Descartes initiated the custom, which has become fixed,
of using the first letters of the alphabet for known and the
last for unknown quantities. He also appears to have been
the first to perceive that one general proof is sufficient for
any proposition algebraically treated, the different cases
which might arise by different arrangements of the equations
being covered by the possibility of any letter representing a
negative as well as a positive quantity, i.e., he distinguished
the intrinsic sign of a quantity or symbol. Hitherto it had
been considered necessary to treat separately the forms of
the quadratic ax® 4 bx = ¢, ax’ = bx -} ¢, etc., which was
‘a natural result of the geometric method of arriving at the
solution.
powers, taking his exponents, however, only as positive and
integral.

Contemporaneously with Descartes, Cavalieri, in Italy,
applied the so-called ‘‘ method of indivisibles” to the com-
putation of areas, volumes, etc., a process which gave way
early in the eighteenth century to the integral calculus At
this time, also, the beginnings of the mathematical theory of
probabilities were made by Pascal and Fermat in the solu-
tion of a certain problem which had been proposed.

A tremendous impulse was given to all branches of math-
ematics in the latter part of the seventeenth century by the
genius of Newton. Besides his epoch-making discovery of
the ‘‘ theory of fluxions,” or differential calculus, he contrib-
uted to algebraic science the idea of the general exponent or
nth power (n being positive, negative, integral, or fractional),
the binomial theorem, and a considerable part of the theory
of equations. ¢

To Leibnitz we owe the present notation of the differentisl
calculus, the introduction of the terms ‘‘ co-érdinates” and
‘‘axes of co-ordinates,” and suggestions as to the use of in-
determinate coefficients and determinants, which, though
not developed by him, led, in the hands of others, to impor-
tant results.

. Jacob Bernoulli developed the fundamental principles of
the calculus of probabilities, and made the first systematic at-
tempts to construct an integral calculus. His brother John
developed the exponential calculus, and treated trigonometry
independently as a branch of analysis, it having been previ-
ously regarded as an adjunct of astronomy. The possibility
of a calculus of operations was first recognized by Brook
Taylor, after whom ‘ Taylor’s theorem” is named. De
Moivre contributed to the discussion of imaginaries the im-
portant theorem which bears his name. In 1748 MacLaurin
published an algebra which contained the results of some
earlier papers published by him, among others one on the
number of imaginary roots of an equation, and one on the
determination of equal roots by means of the first derivative.
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In the latter part of the eighteenth and beginning of the
nineteenth centuries mathematical advancement was rapid
under the powerful hands of Euler, Lagrange, Laplace, and
Legendre. To these great men we owe the calculus of vari-
ations, the initial discussion of the calculus of imaginaries
(which was afterwards systematized and developed by Gauss,
Cauchy, and others), the treatment of determinants, contri-
butions to the theory of equations, a large part of the inte-
gral calculus and differential equations, the development of
the theory of probabilities, the treatment of elliptic fune-
tions, the method of least squares, and the specially algebraic
treatment of the theory of nombers. In this list are
included only those things which are of an algebraic
nature.

We have now reached the beginning of our own century,
in which the advance has been so rapid in all directions as
to preclude more than a mere indication of some of the lines
along which this has taken place, without any attempt at an
enumeration of the illustrious names of those who have so
magnificently carried forward the work.

The theory of equations has been perfected by the full use
of the complex unit @ -+ bs, forming thus, in the words of
Cayley, a ‘‘ universe complete in itself, such that, starting
in it, we are never led out of it.” We have, in fact, a dou-
ble algebra as the instrument for the complete treatment of
all bigher analysis, except that in which one of higher mul-
tiolicity is used. The field of quantics has been brilliantly
cultivated by Cayley, Sylvester, and others. The theory of
matrices has been developed by Cayley, and it was shown
by Professor J. Willard Gibbs, in his vice-presidential ad-
dress before this section at the Buffalo meeting in 1886, that
the simple and natural expression of this theory is in the
language of multiple algebra. The ¢ of Hamilton is a
matrix of the third order, and the ¢ of Grassmann a matrix
of the nth order.

In the treatment of differential equations we have an al-
gebra of operations, due primarily to George Boole, carried
to a high degree of perfection, in which the symbol of differ-
entiation is treated precisely as if it were a real quantity.
In fact, we have come to regard scalar multiplication simply
as a particular case in the calcalus of operations which cov-
ers every possible case of the effect of one symbol upon an-
other in producing some change in it. A further extension
of this same idea we have in the algebra of logic, invented
by the same author, and cultivated and extended by others
since his time. :

In conclusion, I propose to sketch briefly the development
of the idea of a multiplicity of fundamental units, which is
pervading more and more the mathematical thought of the
day. This proceeded along two distinct lines, one arising
from the interpretation of the imaginary, 4— 1, and the
other entirely independent of this symbol or operation.

The first attempt to give a geometric meaning to the ex-
pression @ -+ b appears to be due to Wallis in 1685, who
proposed to construct the imaginary roots of a quadratic by
going out of the line on which they would have been laid
off if real. In 1804 the Abbé Buée devised the now accepted
representation by laying off the terms containing ¢ as a fac-
tor, at right angles to the others, and showed how to add
and subtract such expressions as ¢ -+ bi. Atabout the same
time Argand published independently the same idea, and
still further developed it. The concept of a directed quan-
tity as represented by an algebraic symbol was thus necessa-
rily arrived at. Gauss, Cauchy, and others have elaborated
the complex unit more especially in the theory of numbers,
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while Euler, Peacock, De Morgan, and others have devel-
oped it more as a double algebra.

Up to this point ¢ had been regarded as a scalar operator
merely, and the corresponding geometry only plane,
though attempts had been made without much success
to extend the treatment into three-dimensional space. It
remained for Hamilton to accomplish this by the sim-
ple device of msking ¢ a directed operator, or handle,
perpendicular to the plane of rotation, which opened
the way for any number of similar operators differing in
direction, but, as to their other properties, simply square
roots of minus one. In order to produce a convenient alge-
bra on this basis, Hamilton was obliged to take the further
step of giving to all vectors the properties of y/— 1, and thus
the calculus of quaternions was produced, a non-commuta-
tive quadruple algebra. These ideas have been generalized
still farther by Unverzagt in his ¢ Theorie der goniometris-
chen und der longimetrischen Quaternionen.” In this book
the author first develops a trigonometry based on a general

‘instead of a right-angled triangle, and then shows that the
A

operator j = ( —1)7 (in which A is the fundamental angle,

taking the place ofg) takes in this trigonometry the placs of
7 in De Moivre's theorem generalized. He then takes three
anits 7, o, 3, corresponding to Hamilton’s <, 7, %, and
forms a generalized quaternion, based on some angle A,

“which reduces to the ordinary system when A = % The

case particularly discussed is that in which A = 0.

The theory and laws of linear, associative algebras, which
includes quaternions as a particular case, have been thor-
oughly treated by Peirce in his work bearing that title.

We turn now to the other line along which multiple alge-
bras have been developed. In 1827 Mobius published his
‘“ Barycentrische Calciil,” in which points are the ultimate
units, to which any desired weights may be assigned. He
gave the laws of combination of these units so far as addi-
tion and subtraction are concerned, but did not proceed to
multiplication: in fact, he distinctly states that they can be
multiplied only by numbers. He then proceeds to treat
analytical geometry on this basis. His treatment of points,
so far as it goes, is on the same plan -afterwards indepen-
dently developed by Grassmann.

In 1844, one year after Hamilton's first announcement of
his discovery, Grassmann published his ‘‘Ausdehnungslehre,”
which contains a complete and logical exposition of his new
algebra for any number of independent units, and hence,
geometrically interpreted, for space of any dimensions.
This book was so abstract and general in form, and so un-

like the ordinary language of mathematics, that it attracted

hardly any notice, and the author was obliged to recast and
republish it in 1862. Grassman’s algebra is non-linear, and
only partially associative, so that it differs fundamentally
from all those discussed by Peirce. The 4/—1 plays no part
whatever in the theory, and Grassman’s vector is a vector
‘pure and simple, i.e., a quantity having direction and mag-
nitude, and not, as in quaternions, a versor-vector, combin-
ing the properties of a vector and of the 4/—1. The funda-
mental notion of Grassmann’s multiplication is extension or
generation; the product p, p, is the line generated by a
point moving straight from p, to p,, ete.

In this great invention of Grassman we have a multiple
algebra which is the natural language of geometry and
mechanics, dealing in a manner astonishingly simple, con-
cise, and expressive with these subjects, and certain, it ap-
pears to me, to gain constantly in the appreciation of math-
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ematicians as it is more generally understood and used.
The fact of its perfect adaptability to n-dimensional space is
an additional argument in its favor for those who are inter-
ested in that line of investigation.

We bave now traced the development of our subject
from its elementary beginnings through a long period in
which it was in the rhetorical stage, approaching at inter-
vals here and there to the syncopated; then, on the revival
of learning in Europe after the dark ages, we have seen its
comparatively rapid progress through the syncopated stage
to the purely symbolical, when it was at last in a shape
suitable for the astonishing progress of the last two hundred
years. Finally, in the present century, we have noted the
appearance, as in the fulness of time, of wmultiple algebras
from different and independent sources, whose realm is that
of the future.

NOTES AND NEWS."

THE astronomers sent to the Sandwich Islands recently on the
part of the International Geodetic Association of Europe and the
United States Coast and Geodetic Survey, in order to make a more
exhausfive study of the changes of latitude, have located their
observatories at Waikiki, near Honolulu. It is proposed to observe
during the year about sixty-five pairs of stars, chosen on account
of their well-determined proper motions, and to make in all not
far from twenty-five hundred observations of the latitude. The
results, compared with those made simultaneously in Europe and
America, will settle definitely the question whether there is a real
motion of the pole. At the suggestion of the American representa-
tive, the force of gravity will be measured every night that latitude
observations are made. This may throw light on one of the theo-
ries proposed to explain the changes of latitude, viz., that of large
transfers of matter beneath the earth’s surface. The new pendu-
lums made at the Coast and Geodetic Survey Office in Washington,
and which are similar to those taken to Alaska by Professor Men-
denhall last spring, will be employed at Waikiki. They are of
fine workmanship, and are capable of detecting changes that do
not exceed one hundred-thousandth part of the quantity measured.
Besides the observations at the regular station, a number of
magnetic determinations will be made at other points in the
Islands, — notably at Kealakeakua Bay, where Captain Cook ob-
served the declination more than a hundred years ago, and ab
Lahaina, where De Freycinet had an observatory for pendulum
and mugnetic work in 1819. The re-occupation of these points
will show the change of the needle during the past century, and
will be of great value in determining the secular variation. It is
intended also to seize the opportunity now presented to measure
the force of gravity on the summit of Mauna Kea (14 000 feet
elevation). Observations made at the top of Haleakala (10,000
feet) in 1887 showed conclusively that the mountain was solid.
This fact received additional support from the zenith observations
at the sea-level north and south of the mountain. The large
deviation of the plumb line (29”) brought to light in that work has
now been exceeded on Hawaii, where 126" has been discovered
at the south point of the island (Ka Lae). This fact, recently
communicated by Surveyor General Alexander, makes the ques-
tion of the force of grasvity at the sumwit of Mauna Kea one of
double interest, and it is desirable, both from a geological and
geodetic standpoint. that pendulum observations be made on top
of one of the mountains. Doctor Marcuse, who is from the Royal
Observatory at Berlin, observes for latitude on the part of the
European association, and Mr, Preston, who made the observations
at the summit of Haleakala four years ago, is from the United
States Coast and Geodetic Survey, and makes gravity and mag-
netic determinations. He also, as the representative of the United
States, observes for latitude 1n connection with Dr. Marcuse, in
the international geodetic work. The ob-ervers had the good
fortune to arrive at Honolulu on the day preceding the transit of
Mercury (9th of May), and made successful observations of the
phenomenon. The second contact was also observed by Mr. Lyons
of the government survey. The two interior contacis were noted
by local mean time (Waikiki 8” east of Honolulu) as follows: —

H. M. S. H. M. S.
Mr. Lyons.................. 1 206 382 —_ == —
Mr. Preston................ 26 53 6 10 50
Dr. Marcuse................ 21 38 11 22

The station was in latitude 21° 16’ 21”7 north, and in longitude 157°
49" 30” west. The mean observed times of contact are in both
cases about a minute less than the computed ones.



