
NEW YORK, OC'I'OBER 2, 1891. 

THE EVOLUTION OF ALGEBRA.' 

INconsidering the possible 3~tbjects for an address on this 
occasion, it has seemed to me tliat a half-hour migbt be 
agreeably spent in a brief survey of the progress, or evolu- 
tion, of algebl-a from its earliest known beginnings to the 
present time. 

The realm of mathemtitics may be classified, in a general 
way, into (I)  Arithmetic, or  the theory of numbers, (2) 
Algebra, (3) Geometry, though sharp dividing l ~ n e s  cannot 
always be drawn between these departments: the last two, 
for instance, mutually interacting. geometry illustrating 
algebra, while algebra is the efficient servant of geometry, 
enabling it to conquer territory which it could scarcely have 
entered upon unaided. 

The history of the development of these different branches 
of mathematics shows considerable diversities among them. 
Thus geometry reached in a short time, among the ancient 
Greeks, a high stage of advancement, and then becarne 
practically stationary until quite recent times, wl~ile the 
progress of algebra has been more in the nature of a gradual 
and continuous evolution. Nesseln~ann has recognized three 
stages in this development, which he des~gnates s s  the 
rhetorical. the syncopated, and the synlbolical, to wh~chI 
may perhaps venture to add the "multiple," in which a 
plurality of fundamental units is recogn~zed and treated. 
W e  may regard the first three as somewhat analogous to the 
stone, bronze, and iron ages in human history, overlapping 
each other, as do these, a t  different times and places; while 
the last rnay be compared to that age of aluminum which is 
perhaps dawning upon the world. 

Rhetorical algebra was a process for determining the un- 
known quantity in an equation by a eoursr of logical reason- 
ing expressed entirely in words, without the use of any 
symbols whatever, similar to our present mental arithmetic 
I n  course of time abbreviations of those words which con- 
stantly recurred were introduced, by the use of which the 
statement of the reasoning could be much shortened, it being 
even possible with the notation of Diophat~tos to approximate 
to the conciseness of the modern, or symbolic, metl~od. This, 
however, was not done by Dlophantos himself, who used his 
abbreviations strictly as such, and reasoned out h ~ s  results in 
words combined with these. This method is what is drsig- 
nated by Nesselmanr~ as the syncopated, and forms evidently 
a stepping-stone toward the symbolic, In which perfectly 
arbitrary symbols are employrcl to represent the various 
quantities dealt with, and no words are written out except a 
coujunction now and then. 

The earliest traces of algebraic knowledge which have been 
discovered are found in Eg,jpt, that n onderful laud whose 
records carry us back to such a reniote antiquity, hhn~es .  
in a papyrus manuscript, datlng from about 1400 B.G., deals 
with certain geometrtc ancl algebraic problems, and seems to 
lrave had as good a conception of the symbol~sm of algebra 
as his successors of a much later penod. Thus he had signs 
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for f, -, and =, and used the cl~aracter representing a 
heap for the unknown quantity. H e  seems, therefore, to 
have long anticiprtted Diophantos in the use of syncopated 
notation. Our knowledge of Egyptian mathematics subse- 
quent to this tune is very slight, arid is gleaned from the 
statements of various Greelr and Latin authoi-s. 

W e  will p a s ,  then, a t  once to the Greek cantributions t o  
the development of our subject. So far as can now be ascer- 
tained, probably but l ~ t t l e  str~ctly algebraic work was done 
before the third or fonrth century of our era, lhougl~ opinions 
difTer on this polnt. The wonderful accomplishments of 
Archimedes were mainly gLornetrical and mectianical, though 
he makes one remark mhich is equivalent to a statement re- 
garding the roots of an equation of the third degree, which 
is remarkable as being, with one exception, the only known 
case of any  consideration of s ~ ~ c l l  an  equation until after the 
lapse of more than a thousand years from his time. 

Thymaridas in the second century of our era is the earliest 
mathematician known to have enunciated an  algebpaic 
theorem. This was, however, done entirely in words, n o  
symbol for any  quantity or operation being used. 

Practically the foundation of algebra was laid by Dio- 
phantos of Alexandria. But little is known of this remarka- 
ble man. Though we have his writings in Greek, he was 
probably not himself a Greek. The period a t  which he lived 
is in dispute, though roba abilities favor the fourth century 
of our era. Even the spelling of his name is uncertain, there 
being a question as to whether the last syllable should be os 
or es, But whatever may be known or unknown about the 
man himself, his writings show a very wonderful power of 
analy t ~ c  reasoning, especially when we consider the awkward- 
ness of the tools with which he was obliged to work. 

Wha t  strikes us a t  once, from our present point of view, 
as most hampering is the fact that he had only one symbol 
for the unknown, so that, in dealing with a problem which 
would now be solved by the aid of several such symbols, as 
x, y, z, etc., lie was obliged to adopt some expedient, such 
as to make mentally such combinations and arrangements 
as to get along with only one. I t  is easy to see how much 
ingenuity must often have been required to accomplish this, 
I t  is a curious and surprising fact that algebraic analysis was 
subjected to this same limitation down to a comparatively 
recent period. I n  place of the exponents a t  present used to 
indicate the powers to which quantities are raised, Diopbantos 
designated the square and cube of the unknown by the initial 
letters of the corresponding words in Greek Thus the un- 
known, is reqresented by the cliaracter 5, standing for the 
word a p ~ t ) p 0 5(i.e., number), which is also frequently writ- 
ten out in full; the square of the same by &;, a contraction 
for bdv ru ,~ t z~  a contraction for (power); and the cube by ~ F J ,  

xd/jo; (cube). Higher powers up to Lhe sixth were indi-
cated by combination or repetition of these sytr~bols. The 
o r ip~n  of the charactcr for arith?rzosis uncertain; i t  may be 
the final sigma of this word, or  it may be a contraction of 
ap, the first two lcttcrs of the same, or it may be derived 
from an old Egp,vtian symbol for the unkuo~vn. When 
oblique cases of these quantities are requi~ed,  the words for 
square arlc] are c~;rittcn out in full ,  wllile tiie I,rnceiec. 
varies v;ilb regard to ul-ithnzos, the word being sonietimes 
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written out, while a t  other times the case-termination is 
written above to the right, thus 507, the symbol being also 
generally doubled when the signification is plural. 

Diophantos indicated addition merely by juxtaposition, hav- 
ing  no sign for plus; for minus, however, he used the sign 9. 
As a consequence, in order to avoid confusion, he was obliged 
to do two things; first, to designate the absolute term as so 
many ,uova'8&5, or units, abbreviated into p{ and sscond, to  
write all the negative terms together after the positive. Thus 
the quantity x3 - 5x2 f 8%- 1 would be written in Dio- 
phautos's notation. 

x6&gs;7j p 6 " p . , S & .  

This may be rendered more expressive if we change it by 
substituting Arabic numerals, and putting U for units, N for 
number or unknown, S for square, and C for cube: thus it 
becomes C 1 N 8 - S 5  U l .  

I t  is to be noted that Diophantos and his successors up to 
comparatively recent times had no conception whatever of 
a n  intrinsically negative quantity as possible. Whatever 
sign .may have been used for minus was considered as simply 
indicating that one number was to be subtracted from an- 
other, and if the subtrahend were larger than the minuend 
no meaning was attached to the expression. 

I t  is possible that Diophantos might have been able to 
escape from the limitations of his system if the letters of the 
Greek alphabet had not been already appropriated for the 
repnsentation of particular numbers, thus precluding thew 
use as symbols of quantity in  general. 

I t  may be of interest to give a t  this point specimens of the 
purely rhetorical and of the syncopated methods of solution. 
They are giveu by Nesselmann, and are verbatim transla- 
tions from the original tongues. The first is a solution of a 
quadratic equation by Mohammed ibn Musa, and the second 
the solution of a problem by Diophantos. 

A square and ten of its roots are equal to nine-and-thirty 
units, that is, if you add ten roots to one square, the sum is 
equal to nine-and-thirty. The solution is as follows: halve 
the  number of roots, that is, i n  this case, five; then multiply 
t h ~ sby itself, and the result is five-and-twenty. Add this to 
the nine-and-thirty, which gives four-and sixty; take the 
,square root, or eight, and subtract from it half the number 
of roots, namely, five, and there remains three: this is the 
soot of the square which was required and the squaye itself 
is nine. 

(S= square, N= number, U= unit, as above ) 
To divide the proposed square into two squares: Let it be 

proposed, then, to divide 16 into two squares; and let the 
first be supposed to be one square. Thus 16 minus one square 
must be equal to a square. I form the square from any 
number of N ' s  minus as many U's as there are in the side 
of 16 U's. Suppose this to be 2 N's minus 4 U's. Thus the 
square itself will be 4 squares 16 U's minus 16 N's. These 
are equal to 16 units minus 1 square. Add to each the nega- 
tive term, and take equals from equals. Thus 5 squares are 
equal to 16 numbers. One (square) will be 256 twenty fifths, 
and the other 144 twenty-fifths, and the sum of the two makes 
up 400 twenty-fifths, or 16 units, and each is a square. 

Compare these long-drawn out statements with their equiv- 
alents in modepa notation : 

First. Second. 

x" lox =39 1 6 - x G  n =(2x -4 ) "  
LC" $OX f 26 =64 =4x2 f I 6  -1Gx 

The example from Diophantos evidently does not take full 
advantage of his notation, for the symbol for minus is not 
used, and in several cases the words are written out in  full 
where abbreviations might have been employed. Further, 
no  use is made of the symbol for equality, viz., i, an abbre- 
viation for hoz ,  which is elsewhere used by the author. If 
the fullest use of the syncopated notation had been made, 
the solution would have been somewhat comsarable for con- 
ciseness and brevity with the modern method, only about 
twice as many characters and marks being required. Solu-
tions in this abbreviated form appear on the margins of 
Diophantos's manuscripts, but they are believed to have been 
added by some one else, and not to be due to the author him- 
self. 

The works of Diophantos, called by him "Arithmetics," 
deal largely with indeterminate equations and the theory of 
numbers. Quadratic equations are constantly solved, but 
only real positive results are recognized or considered; and 
even when there are two positive roots, only one is taken 
account of. One very simple case of an  equation of the third 
degree is found. 

W e  will turn next to the consideration of the ancient 
algebra of India. There lived at  Patna, i n  India, some time 
in the sixth century of our era, a mathematician named 
Arya-Bhatta, who wrote a work treating of arithmetic, 
algebra, geometry, trigonometry, and astronomy. I t  consists 
in the enunciation of rules and propositions in verse. The 
author gives, of course in a purely rhetorical manner, the 
sums of the first, second, ancl third powers of the first l z  natural 
numb~rs ,  the general solution of a quadratic equation, and 
the solution in integers of some indeterminate equations of 
the first degree. 

The only other ancient Indian mathematician of promi-
nence is Brahmagupta, who lived in the seventh century of 
our era. His work is also written in verse, and is called 
"Brahma-Sphuta-Sidclhauta," or the "System of Brahma in 
Astronomy." Two chapte~s of this work deal with arith- 
metic, algebra. ancl geometry. The treatment of algebra is 
purely rhetorical, ant1 iucludes a discussion of arithmetical 
progressions, quadratic equations (only the positive roots 
being considered), and indeterminate equations of the first 
degree, together with one of the second degree. 

These Indian writings are of special interest as being the 
sources from which the Arabs derived their first knowledge 
of algebra. They obtained from the Greeks before A.D. 900, 
thorough translations of Euclid, Apollonius, Archimedes, 
and others, a knowledge of geometry, mechanics, and astron- 
omy, but had no translation of Diophantos till a hundred 
and fifty years later, when they had themselves already 
made considerable progress in  algebraic analysis. From the 
Arabians in turn western Europe obtained. not only the deci- 
mal notation of arithmetic, but a l s ~  its first knowledge of 
other branches of rnatl~ematics. 

The first great mathenlatician among the Arabs is gener- 
ally known by the name of Alkarismi, though this is an  in- 
correct transliteration of only one of his names. From the 
title of his ~rorlr, " .$I-gebr we'l Mukabala," we have the 
name of that branch of mathematics under consideration, 
al-gebr signifying that the same quantity may be added to 
or subtracted from both sides of an  equation. 

Alkarismi treats the qusdcaatic, giving geometric proofs of 
mles for the solution of different cases, and recognizing the 
existence of two roots, though lie only considers such as are 
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is true likewise of his Arabian successors, who, thougl~ they 
advanced so far as to obtain the general solut~on of a cubic 
equation, and to state such a proposition in integers of tlie 
equation x3+y3 =2 3  is feasible, yet always adhered to 
the rhetorical method, and made scarcely any progress in 
general algebraic science. Indeed such progress was hardly 
possible until the introduction of symbolic methods. 

The first decided steps in the direction of syrr~bolism since 
the work of Diophantos were taken by a mathematician of 
India named Bhaskara in tlie twelfth century. He used ab- 
breviations and initials to denote the unknown, a dot for 
minus, and juxtaposition to indicate addition. A product is 
denoted by the first syllable of the word for multiplication 
subjoined to the factors, division by the divisor being written 
beneath the dividend without a line between as our custom 
is now. The two sides of an  equation are written one under 
the other, and explanatory records are introduced whenever 
it is necessary to prevent misunderstanding. Occasionally 
symbols are used for given as well as unknown quantities. 
Square, cube, and square root are denoted by the initial 
letters of the corresponding words. Using the Ardbic, or 
decimal, notation, he has a character for zero, which enables 
him to write all his equations with all the powers of the un- 
known arranged in regular order on each side of the equa- 
tion, certain of them being multiplied by the factor zero. 
This method of cwiting equations inaiutained itself till long 
afterwards. W e  have in this author a distinct advance over 
Diophantos and the Arabians in the introduction of various 
symbols for the unknown, so that several might be used in 
the same problem, as well as in the use of zero. 

W e  have now to consider a new phase of algebraic prog- 
ress arising from the introduction into western Europe of 
the works of the Arabian mathematicians. T h ~ s  took place 
through the Moors of Spain. The Oreelr and Arabic works 
were studied a t  the Moorish universities of Granada, Cor- 
dova, and Seville, but al l  lruowledge of them was jealously 
kept from the outside world until the twelfth century, during 
which copies came into the possession of Christians. Up to 
this time Christian Europe had been almost a mathematical 
blank. The simple arithmetical operations they were able 
to perforni were accomplished by the aid of the abacus, and 
they possessed some knowledge of astronomy and geometry, 
but made no progress until they were able to avail them- 
selves of the previous labors of Greek, Hindu, and Arab, 
under the stimulus of which a career of advancement began 
which has cont~nued to the present time. This career, how- 
ever, did not begin immediately; ; t  took several centuries to 
assimilate the mdterial received from these sources, and thus 
to lay the foundations on which subsequent progress should 
rest. 

During this period the rhetorical method was iised in all 
algebraic processes, and it was not until the sixteentl~ cen- 
tury that syncopated methods were introduced, preparing 
the way for the symbolic methods that soon followed. Latin 
being the language in use, the word res, or  radix,  was em- 
ployed for the anknown quantity, the square being called 
census, and the cube cubus. These words were a t  first writ- 
ten out ~u full and afterwards represented by R or Rj,  Z or 
C, and C or K respectively. 

The signs + and - are first found in a mercantile arith- 
metic by Johann Widmxnn, published in 1489, though they 
did not come into general use by mathematicians till a hun- 
dred years or  more afterward. The most probable supposi- 
tion as to their origin is that they were a t  first warehouse 
marks indicating an excess or deficiency in the contents O F  a 

package which was supposed to contain a certain definite 
amount. Widmann uses them purely as abbreviations, not 
as symbols of operation. 

The first mathematical work ever printed was by Pacioli, 
upon arithmetic, algebra, arid geometry, and marks the begin- 
ningof the syncopated stageof development in western Europe. 
This book appeared in 1494, just before the beginning of the 
sixteenth century, during which this method was in vogue. 
Pacioli uses initials as abbreviations for the unknown, its 
square and cube, and for the words "plus" and " equal," 
al,ro occasioi~ally de for demnptus, instead of minus. 

The sign now used for equality was introduced by Recorde 
in an arithmetic published in 1840. He uses also the present 
signs + and -- : At about the same time our present syrn 
bol for square root was introduced by Stifel, and Nicholas 
Tartaglia discovered the solution of the cubic equation 
r3+pr  = q, which is generally attributed to Cardan, and 
goes by his name. Carclan obtained the solution from Tar- 
taglia under promise of strict secrecy, and then published i t  
in his work " Ars Magna." Considerable advance is .made 
in this work over anything done by his predecessors. Neg-
ative and even imaginary roots of equations are discussed, 
and the latter are shown to always occur in pairs, though 
no interpr,etation of them is attempted. Cardan shows that  
when the roots of the cubic are all real, Tartaglia's solution 
appears in an imaginary form. This is the first notice we 
find of imaginaries, and, with the exception of a iimilai* 
treatment by Bonlbelli a few years later, and a suggestion as. 
to their interpretation by Wallis in 1665, they were discussed 
by no subsequent mathematician until Euler investigated 
them nearly two hundred years afterward. Cardan also 
discovered the relations between the roots and coefficients of 
an  algebraic equation, and the underlying principle of Des-
cartes' rule of signs. I t  is to be noted that his solutions 
both of quadratics and cubics are geometrical. 

I n  1572 Bombelli published an algebra in which the same 
subjects discussed by Cardan are treated in about the same 
way, but in which a marked aclvauce is made in notation, 
viz., the employment for the unknown of the symbol 1, 
while its powers are denoted by ?, 3, etc. Thus he would 
write x"1 bx - 4 as 1 ' 2 ~ .  5 Int. 4, p. and m. standing for 
plus and minus. Other writers of tlie same period would 
have written the expression thus, 

1 Z p .  5R m. 4, or 1 Q  -/- EN- 4. 
Up to this time in the development of algebraic notation, 

whatever may hare  been the forms on symbols used, they 
were regarded simply as abbreviations for the words neces-
sary to express the idea to be conveyed. But now the con-
ception of pure symbolism begins to appear. Vieta, who 
lived in the last half of the sixteenth century, denoted 
known quantities by consonants and unknown by vowels, 
while powers were indicated by initials or  abbreviatioi~s of 
the words quac l~a tus  and cubus. H e  was thus enabled to  
deal with several unknowns in the same problem, together 
with their powers. The following is a specimen of his nota- 
tion. The equation 3BA2-D A  +A3=Z he writes as  

B 3 i n  A quad.  -D plano i n  A +A cubo equatur 
Z solido. 

(I t  may be noted that be malres his equations homogeneous, 
and lays stress on the desirability of so doing.) This and 
the other examples that have beeu given above illustrate the 
great vayiety of notations in use during this period, no con- 
ventional system having yet been adopted to be adhered t o  
in the main by all mathematical wi*iters. Thisis, of course, 
ail inevitable accon~paniment of the formative stage of atlg 



branch of science, when a few men are working here and 
there in conlparative isolation. T11rs variety continued to a 
csnside~able extent throughout the seventeenth centu14y. 

Tn this century we arrive a t  a new era in ni~thenlatical 
deve1o~:inent. This was brought about by thc application of 
a l q e b ~ ato geometry by Descartes in the early part, and the 
discovery of the differential ca1cu:us by Newton and Leib-
nitz independently in tile latter part of the celltul y hlge-
bra had been used in connestion with geomctrj- before Des- 
cartes, b a t  to him was due the cliscovery of tile f:.rci,, that, if 
the positioa of a point be given by co trdiilntcp, then any 
equatioii involving thoseco ord~i1,i te~ will represeut somelocus 
al l  of whose properties are containccl implicitly in  the equn-
tion, and inzy be deduced tlieref~om by ordinary algebraic 
operations. 

Desca~tcs initiated the custom, nhich has become fixed, 
o f  using the first letters of the alphabet fat Irnon-11 and tlie 
last for  ~ ~ a l r n o w n  He also appears to have been quantities. 
the first to perceive that one general proof is suffificxieiit for 
any  proposition algebraically treated, the different cases 
which might arise by different arrangements of the equations 
being covered by the possibility of any letter representing a 
negative as well as a positive quantity, i.e.. he distiilguished 
the intrinsic sign of a quantity or symbol. Nitherto it had 
been considered necessary to treat separately the forms of 
She quadratic ax" bbm = c, ax" bx + c. etc., mhich was 
a natural ~ e s u l t  of the geometric method of arriving a t  the 
solution. Descartes also introduced our present notation for 
pon7ers, taking his exponents, however, only as posi~ive and 
integral. 

Conten~poraneously with Descartes, Cavalieri, in Italy, 
applied the so-called " method of indivisibles" to the com-
putation of areas, volnmes, etc., a process which gave way 
early in the eighteenth century to the integral calculus At 
this time, also, the beginnings of the mathematical theory of 
probabilities were made by Pascal and Fermat in the solu- 
t ion of a certain problem mhich had been proposed. 

A tremendous impulse was given to all branches of math- 
ematics in the latter part of the seventeenth century by the 
genius of Newton. Besides his epoch-making discovery of 
the " theory of fluxions," or differential calculus, he contrib- 
uted to algebraic science the idea of the general exponent or 
n t h  power (.n being positive, negative, integral, or fractional), 
the  binomial theorem, and a considerable part of the theory 

* of equations. 
To Leibnitz we owe the present notation of the differentid 

calculus, the introduction of the terms " co-6rdinstes " at12 
4 < axes of co-ordinates," atid suggestions as to the use of in-

determinate coefficients and determinants, which, though 
not developed by him, led, in the hancls of others, to impor- 
tant  results. 

Jacob Bernoulli developed the fundamental principles of 
the calculus of probabilities, aud made the first systematic at- 
tempts to construct an  integral calculus. His brother John 
developed the expanential citlculus, and treated trigonometry 
independently as a branch of analysis, it  having been previ- 
ously regarded as an  adjunct of astronomy. The possibility 
of a calculus of operations was first recognized by Brook 
Taylor, after whom "Taylor's theorem " is named. De 
Moivre contributed to the discussion of imaginaries the im- 
portant theorem which bears his name. I n  1748 MacLaurin 
published an  algebra which contained the results of some 
earlier papers published by him. among others one on the 
number of imaginary roots of an  equation, and one on the 
determination of equal roots by means of the first derivative. 

In the latter part of the einhteenth and beginning of the 
inneteentll centuries m~thematical  adrancement mas rapid 
under the powcrf il lisritls of Ealer, L ~ g r a n g e ,  L'rplace. and 
L~gendre .  To thesr. g.l3=t men :ve owe the calcu!us of vari-
at,ions, the ir~it.ial discussion of the calculus of iinaginaries 
(which v;as aftc.rr~;:rds systematized and developed by Gauss, 
Cauclry, and others), the treatment of determina~lts, contri- 
butions to the theory okqua t ious ,  a large ;?art of t l ~ c  iilt,e- 
p ~ t lcaieuluv arrd differential eqnatioas, the development of 
the tlleory oF probabilltie3, the t r~atmei i t  cf ~LIIIC-c l i~ l~ l i c  
t,iorrs, the rielh hod of 1e::st squares, auil the specially algebraic 
t~eat rnrnt  of the Ihc:org of numbers. I n  t,his list are 
inclu.dec1 only those things v ~ l ~ l c hare of ail algebraic 
nature. 

IVe have no,r reached the 'segiiluing of our ow11 ccotury, 
iil \vhich the advance has been so rapid in all directions as 
io  preclude illore tlrau a mere inilicatiot~ of some of tlre lines 
along uhich this has taken pince, without any attempt a t  a a  
enumeratiori of tlie illustrious narnes of those \illlo have so 
illagnificeutly cartied forward the work. 

The t,heory of equations has been perfected by the full uqe 
of the complex unit a f bi, forming thns, in the words of 
Cayley, a " complete in itself, such that, starting ~la i \~crse  
in it ,  we are never led out of it." W e  have, in fact, a dou- 
ble algebra as the instrument for the complete treatnierit of 
all higher analysis, except that in which one of higlier mul- 
tiplicity is used. The field of cjuantics has been brilliantly 
cultivated by Cajrlcy, Mylveste~, and others. The theory of 
matrices has been developed by Cayley, a i d  it was shown 
by Professor J .  Willard Gibbs, in his vice-presidential ad- 
dress before this section a t  the Buffalo meeting in  1886, that 
the siii~ple and natural expression of this theory is in the 
language of niultiple algebra. The qn of Nalnilton is a 
matrix of the third order, and the & of Grassmaan a matrix 
of the nth order. 

I11 the treatment of differential equations we have an  al-
gebra of operations, due primarily to George Boole, carried 
to a high degree of perfection, in whicli the symbol of differ- 
entiation is treated precisely as if it were a real quantlty 
I n  fact, we have come to regayd scalar multiplication sinlply 
as a particuiar case in the 60,lculas of operations which cov- 
ers every possible case of the effect of one symbol upon an -
other in producing some change in it. h further extension 
of this same idea we have iu the algebra, of logic, invented 
by the same author, and cultivated and extended by others 
since his time. 

I n  conclusion, I propose to sketch briefly the development 
of the idea of a multiplicity of fundamental units, whicb is 
pervading more and more the mathematical thought of the 
day. This proceeded along two distinct lines, one arisir~g 
from the interpretation of the imaginary, I/-- 1, and the 
other entirely independent of this symbol or operation. 

The first attempt to give a geonietric meaning to the ex-
pression a -/- bi appears to be due to Wallis in 1685, who 
proposed to constrr~ct the imaginary roots of a quadratic by 
going out of the line on which they would have been laid 
off if real. In  1804 the Abb6 Bu6e devised tlle now accepted 
representation by laying off the terms containing i as a fac- 
tor, a t  right angles to the others, and showed how to add 
and subtract such expressions as a f bi. At about the same 
time Argand p~lblished independently the same idea, and 
still further developed it. The concept of a directed quan- 
tity as represented by an  algebraic symbol was tllus necessa- 
rily arrived at. Gauss, Cauchy, and others have elaborated 
the complex unit more especially in the theory of nunlbers, 
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while Euier,  Peacock, De Morgan, and others have devel- 
oped ~t nicpre a s  a double algebr,~. 

U p  to thiq point i bad been regarded a s  a scalar operator 
merely, and the corresponding geometry only plnue, 
tliough attempts l ~ a d  been made without much success 
to extend the treatment ~ n t o  three-dimensional space. I t  
remained for Hamilton to accomplish this by  the s~ i i i -
ple device of rnbkrilq i a directed oprrator ,  o r  hlarldie, 
perpenclicular to the plane of r o t a t ~ o n ,  whic l~  opened 
the  may fot a n y  number ot sirnilzr opc?ators d~f fe l ing  i n  
d ~ r e c t ~ o n ,  as thew other properties, simply square but,  to 
roots of r n ~ n u s  one. I n  order to produce a c o n v e n ~ e n t  alpe 
bra  on  thi5 basis, Bamil ton was obliged to take Ihe fur ther  
step of givrng to all  vectors the properties of (/-I, artd thus  
the calcullis of yua te rn~ons  was procluced, a non-cornn~uta-
t ~ v equadruple algebra. These ideas have bee11 generalizecl 
still farther by U n v e r ~ a g t  i n  h ~ s  "Theoria der gon~onletris- 
chen u i ~ d  der long~metrisctren Qu:~ternionen." I n  t h ~ s  boolr 
t h e  author  first develops a trigonometry based on  a general 
instead of a, r ight  angled triangle, and then shoivs tha t  the  

A-
operator j = (--l)~ (in which X xs the  fundamental angle, 

taking the place of-;) takes i n  this trigonometry the place of 
i in De Moivre's theorem generalized. H e  then takes t h e e  
units j , ,  j Z ,  j , ,  corresponding to Hamilton's i, j, 7c, a n d  
forms a generalized quaternion, based on  some angle A, 
which reduces to the ordinary system when h = z. The 
case particularly discussed is that  i n  which h =0. 

The theory and  laws df linear, associative algebras, which 
includes q u a t e r n i o ~ s  as  a particular case, have been thor- 
oughly treated b y  Peirce i n  his worlr bearing that  title. 

W e  tu rn  now to the other line along wlrich multiple alge- 
bras have been developed. I n  1827 Mijbius published his 
"Barycentrische Calciil," i n  which points are  the ultimate 
units, to which a n y  desired weights may  be assigned. H e  
gave the laws of chrnbination of these units so far  as addi-
tion and subtraction are  concerned, but  did not proceed to 
multiplication: in fact, he  distinctly states tha t  they can  be 
multiplied only by numbers. H e  then proceeds to treat 
analytical geometrg o n  this basis. His  treatment of points, 
so  f a r  a s  it  goes, is on the sarne plan .afterwards indepen- 
dent ly developed by Grassma,nn. 

I n  1844, one year a f te r  Hamilton's first atlnouncelnent of 
his discovery, Grassmaun publislled his "Ausdelinungslel~re," 
which contains a complete and logical exposition of kiis nerv 
algebra for  a n y  number of independent units, and  hence, 
geometrically interpreted, for space of a n y  dimensiolis. 
Tbis book was so abstract and general i n  form, and  so un-
like the ordinary language of mathematics, tha t  i t  at,tracted 
hardly a n y  notice, and the a u t l ~ o r  mas obliged to recast and  
republish it  in 1862. Grassman's algebra is non-linear, and 
o n l y  partially associative, so that  i t  differs fundamentally 
from al l  tllose discussed by Peirce. Ttne d-1 plays n o  part 
whatever i n  the theory, and  Grassman's vector is a vector 
pure and  simple, i.e., a quantity having direction and  mag-
nitude, and  not, as  in  quaternions, a versor-vector, combin- 
ing the properties of a vector and of the A/-1. The funda-  
mental notion o f  Grassmann's multiplication is extension or  
generation; the product p, p, is the line generated by a 
point rrloving straight from p, to  p,, etc. 

I n  this great invention of Grassman we have a multiple 
algebra which is the natural  language of geometry and 
mechanics, dealing in a manner  astonishingly simple, con- 
cise, and  expressive with these subjects, and certain, it ap- 
pears to me, t o  gain constantly in the appreciation of matil-

elnaticians as it is inore generally understood and used. 
The fact of its perfect ad3ptability to  n-dimensional space is 
a n  additional argument  in  its favor for those who a r e  inter-
ested i n  that  line of investigation. 

W e  have now traced the development of our  subject 
f rom its elementary beginl?inys through a long  period i n  
which it \Tau i n  the rhetorical stage, approaching a t  inter-
vals lipre and  there to the syncopated; then, on the  r e v ~ v a l  
of Icalnlng in Eiirope after the clarlr ages, we have seen its 
conlparativelp rapid pi ogress through the syncopated stage 
to tlle purely symbolical. ~vlheu i t  was a t  last i n  a shape 
suittchle for t h e  aslonishing progress o f  the last two huncired 
years. Final ly,  i n  the present century, we h:ive noted the 
appearance, as  i n  the  fulrless of time, of multiple algebras 
from diEerent and  indepeiiclent soaroes, whose rralm is that  
of the fulure. 

XOTES AND NEWS. 
THE astronomers sent to tile Ssnil.r\.ic?l Islands recently on the 

art of the International Geodetic Association oF Europe and the 
Unitecl States Coasl and Geodetic Survep, in order to make a more 
exhausfive study of the chanqes of lalitude, have located their 
observatories a t  Wailiilri, near Honolull~. I t  is proposecl to  observe 
during the year about sixty five pairs of stars, chosen on account 
of their well-determined proper motions, and to make in all not 
far from twenty-five hundred observations of the latitude. The 
results, compared with those made simultaneously in Europe and 
America, will settle definitely the question whetlier tlrere is a real 
motion of the pole. At the suggestion of the American representa- 
tice. the forceof gravity mill be measured every niqht that latitude 
observations are macle. This may tllrow light on one of the theo- 
ries proposed to explain the changes of latitude, viz., that of large 
transfers of matter heneath the earth's surface. The new pendu- 
l~irnsmade at  the Coast and Geodetic Surrey Office in Washington, 
and which are similar to those taken to Alaska by Professor Men- 
cl~nlrall last spring, will be employed a t  TVailtilri. They are of 
fine n-orkmanship, arld are capablz of detecting changes that do 
not exceecl one bunclred-thousandttr ])art of the quantity measured. 
Besides the obeervations at  the regular station, a number of 
rnngnetic detrrminations will be nlade a t  other points in the 
Islands, -notably a t  Kealalreakua Bay, where Captain Cook ob-\ 
served the cleclina.tion more than a hundred years ago, and a t  
Lalnaina, where De Freycinet tiad an observatory for pendul~jm 
and magnetic xork in 1819. The re-occupation of these points 
will show the change of the needle during the past century, and 
will be of great value in determining the secular variation. I t  is 
intended a.lso to seize the opportunity now presented to measure 
the force of gravity on the summit of Mama Kea ( 1 1  000 feet 
elevation). Observations made at tlre top of H-alcakala (10,000 
feet) in 1887 showed conclusively that the mountain mas solid. 
This fact received additional s~lpport from the zenith observations 
at  the sea-level nortll and so:ltll of the mountain. The large 
deviatiou of the plumb line (29") brought to light in that work has 
now been exceeded on Hawaii, where 1' 26" has been discovered 
at the so:~th point of the island (Ka Lae). This. fact, recently 
coi~lln~~r~icaterlby Surveyor General .Llexander, makes the yues- 
t ~ o aof the force uf grnrity a t  the stim~nit of JIauna ICea orre of 
double interest, and i t  is desirable, both frorn a geological and 
geodetic standpoint. that pmdrtlu~n observations he made on top 
of one of the moontaios. Doctor Mal.cnse, who is from the Royal 
Observatory at  Berlin, ot~serves for latitude on the part of the 
European association, and 3lr. Preston, who made the observations 
at  the summit of Haleakala four years ago, is from the United 
States Coast and Geodetic Survey, and rnakes gravily and mag- 
netic determinations. He also, as therepresentative of the United 
States, (~bserve~  for latitude 111 connection with Dr. hIarcuse, in 
the international geodetic work. The ob-ervers had t h ~ :  good 
fortune to arrive a t  tIonolulu on the day preceding the transit of 
Mercury (9th of May), and made successful observa~ions of the 
ptienorrienon. The second c o ~ ~ t a c t  was also obserred by Mr. Lyons 
of the government survey. The two interior contacts were noted 
by local mean time (Waikiki 8" east of Honolulu) as follows: -

H. hl.  S. H. %I. S. 
IMr. Lyons.. . . . . . . . . . . . . . . . .  1 26 32 - - -
Mr. Preston. . . . . . . . . . . . . . . .  26 53 6 10 50 
Dr. Marcuse.. . . . . . . . . . . . . . .  27 3 11 22 

The station was in latitude ? I 0  16' 21'' north, and in longitude 157O 
49' 30" w e ~ t .  The mean ohserved times of contact are in both 
cases about a minute less tlian the coruputrd ones. 


