temperature being favorable — that some multiply in twenty minutes, others in thirty minutes, and others in forty minutes. Staphylococcus aureus, which in its growth produces a peculiar golden-colored filament, grows with great rapidity when sown in a medium like faintly alkaline broth at a temperature of 37° C. Into a sterile broth tube a definite number of organisms are put, say eight cocci per cubic centimetre. If placed in an incubator for twenty-four hours at 37° C., and then counted, it is found that 1 cubic centimetre contains 640,000; that is to say, one organism has multiplied eighty thousand-fold in the first twenty-four hours. It would not be expected that the same rate would obtain in the second twenty-four hours, because the material had been used up. After forty-eight hours' growth the counting yielded 248,000,000 per cubic centimetre; that is, only four hundred-fold. In seventytwo hours it was found that there were 1,184,000,000 per cubic centimetre; that is to say, during the last day each had multiplied only five-fold. As the material is used up the rate of multiplication decreases. Another instance of the rapidity of growth was given. A rabbit was inoculated subcutaneously with 20,000 bacilli of fowl cholera, and died in twenty-four hours. It was found that 15,150,000 microbes were contained in one cubic centimetre of the blood of the animal. The whole of the blood contained twelve hundred millions, showing that each bacillus in twenty-four hours had multiplied sixty thousand times. Those organisms which have their habitat in ordinary temperatures grow very rapidly. Professor Ferdinand Cohn was the first to study the rate of multiplication on the hay bacillus. He calculated that in two days the number of these would be so great that the whole Atlantic Ocean would be densely peopled by them if there was sufficient nutriment, which, fortunately, there is not, and therefore many of them had to go to the wall. By the motility of bacteria is understood active locomotion. They spin round, they dart to and fro, and pass rapidly over the field of the microscope, and that is on account of their possessing one, two, three, or even a multitude of fine hairs. The organism of typhoid fever possesses several of these flapellæ. It has been shown that for retaining this motility a plentiful supply of oxygen is required. If, in a chamber, at one end oxygen is supplied, and at the other nitrogen or hydrogen gas, the organisms will all move towards the end where the oxygen is. If the oxygen is replaced by nitrogen or hydrogen the movement gradually ceases. If water is covered with a scum, it is most probably a motile bacillus which grows in the fluid, and is driven to the surface, where it can derive the best supply of oxygen. In many cases the motility of the organisms is interfered with by their own chemical products Within certain of these organisms, but not in all, are formed peculiar corpuscles, which bear the same relation to the organisms as the seed does to the plant. This spore formation is almost entirely limited to the order of bacilli, and in this group there are very many species which do not possess this power. In a number of different species of bacilli, some of which are capable of forming spores and others not, those which have this power may look on very quietly, while those that do not will exhaust all the nutritive material present, growth and multiplication will then cease, and they will gradually die away. Those which form spores have a much better chance of bringing forth new generations than the others. When organisms do not find suitable materials for their growth, certain changes are brought about called "involution changes." When the bacillus ceases to possess that high degree of vitality that the normal typical bacillus possesses, it gradually undergoes changes which lead to its death. Illustrations were given of what had been described as involution changes, but which were not so. For instance, tubercle bacilli grown under not very favorable conditions may be swollen, and others may appear branched. Some observers took these changes to indicate the death of the organism, but the lecturer was not quite sure that such were "involution changes." In all these considerations, particularly in reference to the formation of spores, there were a number of facts of very considerable practical importance. The germination of those organisms which form spores takes place on the same principles as the germination of the spores in the higher fungi. The envelope is broken, the protoplasm contained within it shoots out in the shape of a rod, which when it is fully formed elongates, divides, and by repeated multiplication, forms a new crop. When these have reached a certain phase of development they again form spores, which go to start a new generation. These spores have a much greater power of resistance than is possessed by the non-sporebearing organisms, and can withstand high temperature, dryness, and the influence of light, so much so that it has become almost a recognized method of determining whether a particular species of bacilli forms spores, by subjecting the suspected organism to a temperature of 95° C. or 100° C. If they survive this exposure, and if they survive drying, it may be taken as established that the growth is spore-forming. ## HEALTH MATTERS. ## The Transmissibility of Hydrophobia from Man to Man. THE fact that no instance is on record of hydrophobia having been transmitted from man to man has given rise to a doubt as to whether the saliva of human beings suffering from the disease possesses the same virulent properties as that of the dog similarly affected. In not more than five or six of the ten thousand patients treated at the Pasteur Institute was the lesion due to bites inflicted by human beings, and it is evident that statistics bearing on so small a number of cases are of no value one way or the other. It has, however, been proved experimentally, says the Medical Press, that the saliva of human beings having succumbed to hydrophobia produces the disease in animals by inoculation, though the incubation period is somewhat prolonged. It may, therefore, be taken as proved that the disease may be transmitted in this way from man to man. It is hardly possible as yet to affirm categorically the possibility of curing hydrophobia after the characteristic symptoms have made their appearance, but recent observations throw a doubt on the incurability of the disease even under these circumstances. ## LETTERS TO THE EDITOR. *** Correspondents are requested to be as brief as possible. The writer's name is in all cases required as proof of good faith. On request, twenty copies of the number containing his communication will be furnished free to any correspondent. The editor will be glad to publish any queries consonant with the character of the journal. ## The Glacial Grooves on Kelley's Island to be Preserved. The world of science will rejoice that at last the most remarkable of the glacial grooves on Kelley's Island is to be preserved as an object-lesson to future generations forever. Many of the citizens of Cleveland will remember that when, in 1888, the American Association for the Advancement of Science met in their city, an excursion was made to Put-in-Bay on the steamer "City of Cleveland," and that, on the way, the boat stopped at the dock of the Kelley's Island Lime and Transport Company, on the north-east corner of the island, to give the men of science an opportunity to see what there was left of the wonderful glacial grooves that have made that locality famous the world over. A few minutes after the palatial steamer touched the dock at the lime-kilns, the hundreds of expectant excursionists might have been seen swarming around and over the great natural wonder they had come to see, and inspecting it from every point of view. They had come, they had seen, and they were conquered. The expressions of astonishment and delight from the eminent scientific men in the company (among whom were numbered Professors Alexander and N. H. Winchell, Professor Cook of New Jersey, Professor Morse of Boston, Major Powell of Washington, Professor Spencer of Canada), as well as from the great number of intelligent amateurs and others present, were of the most extravagant character; and ardent desire was expressed on every hand that measures might be taken for the preservation of the renowned glacial phenomenon, concerning which all felt that the half had