horse-power engines will soon be erected, and will drive two Ferranti dynamos, each capable of supplying current for 25,000 lamps. These are the largest electric generators in the world, and we can get some idea of the increasing size of dynamos when we remember that four years ago the largest practical machines were Edison's 'Jumbo' dynamos of 1,200 lights capacity. In the second engine room will be placed two sets of engines and dynamos. These are combined in such a manner that the armatures of the dynamos are driven directly by the engines and act as their fly-wheels. The speed is but sixty revolutions per minute. There will be four dynamos, and they will finally have each a pair of 10,000 horse-power engines. At present they are to have but 5,000 horse-power each. All future extensions of plant will be in these units. The dynamos will weigh 500 tons, and the armatures will be 45 feet in diameter.

The distribution will be on the alternating current system. The current leaves the station at the enormous potential of 10,000 volts, and is taken to a number of distributing stations where a first conversion takes place, lowering the potential to one or two thousand volts; then it is taken to the points of consumption, where a second conversion takes place and the voltage is lowered to that necessary for the lamps.

The main cable, $2\frac{8}{5}$ inches in external diameter, is formed of two concentric tubes of copper. An insulating compound separates the two tubes, the central portion of the cable being hollow: the sectional area of each tube is .5 of a square inch.

The first two dynamos of 1.500 horse-power each are nearly completed, and will soon be erected; two of the 10,000 horse-power dynamos will probably be finished in about five months. The space now covered with buildings will accommodate 40,000 horse-power, and the rest of the space available can accommodate 80,000 horse-power more, a total capacity of 120,000 horse-power.

This station, in capacity and the enormous potential used (the maximum electromotive force is about 15,000 volts), far surpasses any thing that has been attempted in this country or anywhere else. It is hardly to be hoped that the scheme will succeed without great trouble and discouragement at first, since many of the conditions are new; but whether it finally fails or succeeds, the experience it will give will be of great benefit to electricians.

ELECTRO-DEPOSITED COPPER. — Messrs. Elmore, in England, have introduced a process for the production of pure copper tubes, wire, etc., by which very satisfactory results have been obtained. The general method of producing a tube is to immerse a revolving mandrel, nearly surrounded by bars of Chili copper, in a bath of copper sulphate, and send a current of electricity between the bars and the mandrel. The ordinary result would be the deposition of crystalline copper, with little adhesiveness and strength. The essential feature of the process is a burnisher pressing lightly on the surface of the copper, travelling on a leading screw from one end of the mandrel to the other, its motion being automatically reversed when it reaches either end. The result is a tube of great density and strength, and without lines of weakness as in ordinary tubes.

When it is desired to make wires, tubes of any desired length and thickness are cut spirally into square wires, and these are afterwards drawn to the required size and shape. The conductivity is greater than that usually obtained in commercial wire, and is even greater than that of the samples determined by Dr. Matthiessen, who used the greatest care in obtaining his specimens of copper. Tests made on annealed and hard-drawn wires give respectively IO2.4 and IO4.44 per cent of the conductivity obtained by Dr. Matthiessen for pure copper.

BOOK-REVIEWS.

Researches on Diamagnetism and Magne-Crystallic Action. By JOHN TYNDALL. New York, Appleton. 12°. \$1.50.

WHEN Tyndall undertook the first of the researches contained in this volume, the attention of physicists had been drawn to the remarkable phenomena exhibited by certain substances, metals, and other matter, and by crystals when placed in a magnetic field. It was found that various substances, notably bismuth, were repelled by magnetic poles instead of being attracted; and it was stated that crystals in a magnetic field tended to take up a definite

position, but were neither attracted nor repelled. With respect to the first of these phenomena, the questions which arose were, 'What is the nature of this diamagnetic force?' 'Does it correspond to magnetic force but with an opposite direction?' Faraday first thought that the phenomena might be explained by assuming in diamagnetic bodies a polarity the reverse of that in magnetic bodies; but he soon abandoned this view, and held that the apparent diamagnetism of bodies was caused by their being less magnetic than the medium in which they were placed. A diamagnetic body was with him a body less magnetic than air.

Tyndall, in these memoirs on the subject, has with great ingenuity, and with apparatus at once powerful and delicate, compared the deportment of diamagnetic with magnetic bodies; and "the antithesis between them, when acted on by all possible combinations of electro-magnets and electric currents, was proved to be absolute and complete. . . No reasonable doubt, therefore, could rest upon the mind that the diamagnetic force possessed precisely the same claim to the title of polar force as the magnetic."

This work of Tyndall's was done over thirty years ago. The attention of physical scientists was called to other electrical and magnetic phenomena, and no really important experiments on magnetization were tried until 1872, when Stolltow and Rowland published their well-known researches. But in the last few years interest has again centred in magnetic phenomena, and it is well that attention should be called to earlier experiments.

The present edition of 'Diamagnetism and Magne-Crystallic Action' differs from the original in the omission of some parts that are of little interest now. As a clear description of difficult, ingenious, and successful experiment, it should form part of the library of every physicist.

Tales of the Birds. By W. WARDE FOWLER. London and New York, Macmillan. 12°. \$2.50.

THIS book is hard to classify, being a series of eight fancy sketches, consisting of imaginary bird-talk, with little obvious point, and containing little that can be seriously called ornithological. It is designed, perhaps, to illustrate certain incidents of birdlife, as the hard struggle for existence of English field-fares in winter, the dangers and mishaps befalling birds during migration, etc. The birds are supposed to tell their own tales. The slight web of fact is heavily padded with light fancies, designed doubtless to interest especially juvenile readers, who may find the book somewhat attractive. The book is English in its scenes and subjects. The writer is obviously familiar with bird-ways, and might write well in a more serious vein. The eight full-page illustrations are quite in keeping with the general character of the text. The title of the book is about all that would suggest its classification as a natural-history publication.

A Manual of the Vertebrate Animals of the Northern United States. By DAVID STARR JORDAN. 5th ed. Chicago, A. C. McClurg & Co. 12°. \$2.50.

THE present edition of President Jordan's well-known 'Manual' is much enlarged in scope, and so completely rewritten and rearranged as to be in many respects not only greatly improved, but practically a new work. The geograpical area is extended westward from the Mississippi River to the Missouri River, and the marine forms (excluding the deep-sea species and those of merely accidental occurrence) are for the first time included, the coast region thus covered extending from Nova Scotia to Cape Hatteras. The artificial keys of the former editions have in great part given place to analytical keys based on differential characters. While this change may render slightly more difficult the quick recognition of species by the inexperienced student, it has the advantage of making known more clearly the actual basis of classification. The order of succession of groups is also reversed, the lowest or more generalized standing first; the 'Manual' beginning with the fishes, and ending with the mammals. By the omission of synonymes and references, except in special cases, the use of smaller type and a larger type-bed, the amount of matter has been much increased, while the number of pages is lessened and the typographical appearance of the book greatly improved. In classification and nomenclature the work is fully abreast of the latest discoveries and conclusions in respect to