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tion, as indicated by the arrows, would set in from
D to 8, one from Cto D, one from 8 to some possibly
South American Cambrian locality, and one, bringing
a Permian or some later-day fauna, from an unknown
locality towards C. Were this order of migration to
continue here, or at other portions of the earth’s sur-
face, in this or in a similarly consecutive manner, the
results obtained would be in perfect consonance with
the facts presented by geology. But is there any
reason whatever for the continuance of this order of
migration? Surely no facts that have as yet been
brought to light argue in favor of a continued migra-
tion in one direction. Why, then, it might justly
be asked, could not just as well a migration take place
from S to D, and impose with it a Silurian fauna
upon a Devonian ? What would there be to hinder

-

a migration from 8§ to C, placing the American
Silurian fauna upon the carboniferous of Africa ?
Why, as I have asked, has it just so happened that a
fauna characteristic of a given period has invariably
succeeded one which, when the two are in superpo-
sition all over the world (as far as we are aware),
indicates precedence in creation or origination, and
never one that can be shown to be of a later birth ?
Surely these peculiar circumstances cannot be ac-
counted for on the doctrine of a fortuitous migration.
And it certainly cannot be claimed that through a
process of transmutation or development, depend-
ing upon the evolutionary forces, a fauna with a Silu-
rian facies will, in the course of a possible migration
toward a carboniferous locality, have assumed a car-
boniferous or Permian character. )

The facts of geology and paleontology are, it appears
to me, decidedly antagonistic to any such broad con-
temporaneity or non-contemporaneity as has been
assumed by Professor Huxley; and their careful con-
sideration will probably cause geologists to demur to
the statement that “all competent authorities will
probably assent to the proposition that physical geol-
ogy does not enable us in any way to reply to this
question: Were the British cretaceous rocks deposited
at the same time as those of India, or are they a mil-
lion of years younger or a million of years older ? *»’

ANGELO HEILPRIN.

Academy of natural sciences,
Philadelphia, Dec. 8.

THOMSON AND TAIT’S NATURAL
PHILOSOPHY > —1I.

Berore proceeding to an account of the rest
of the work, we shall add a few more words of
! Concluded from No, 36.
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explanation upon the harmonic solutions of the
differential equation (6), expressed in polar
co-ordinates. On attempting to integrate this
equation, it is found that there is an infinite
number of particular solutions, as was before
stated must necessarily be the fact; and each
of these solutions is the product of three fac-
tors. One factor is an arbitrary constant;
another factor is the radius vector raised to
any integral power, positive or negative; and
the remaining factor is a function of the angular
co-ordinates, dependent for its form upon the
exponent of that power of the radius vector by
which it is multiplied. It is this last factor, or
coefficient, which gives the name of ¢spherical
harmonics’ to the solution : indeed, these func-
tions of the angular co-ordinates are them-
selves surface-harmonics.

If we restrict ourselves, as is usually done,
to real integral powers of the radius vector 7,
positive and negative, then, from the well-known
principle that a general solution is obtained by
taking the sum of particular solutions, we should
have the most general possible solution by tak-
ing the sum of a series of particular solutions,
such as have just been described, in which the
powers of r have all integral values between
+ o and —o . But since it is found, upon
computing the functions of the angular co-ordi-
nates which constitute their coeflicients, that
the coefficients of 7 and »— ¢ are identical,
it will be more convenient to write the gen-
eral solution in the form —

V = aofo (0,9) + (arr + byr—2) 11 (0, 9)
+ (a7 + ber—) fol0,0) + ...
+ (asrt + bir— D) £ (0,0) + ... (8)

In applying this to any given case, either all
the arbitrary constants a vanish, or all the con-
stants b; thus giving rise to the two general
forms of solution before mentioned, in which
there is a series of terms, either in ascending
integral powers of r, or of descending integral
powers of r.

A value of .V consisting of several terms is
a compound spherical harmonic of the degree
(positive or negative) of its numerically high-
est power of 7. A value of V consisting of
a single term is a simple harmonic.

Returning, now, to the consideration of chap-
ter vii. p. 98, entitled ¢ Statics of solids and flu-
ids,” the subject of rigid solids is disposed of in
the course of thirty pages, nearly half of which
is occupied with inextensible strings in the form
of catenaries of various kinds.

The authors hasten on to the more intricate
matter of elastic solids. As is well known to
students of this subject. the general problem
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of finding the displacements in all parts of an
elastic solid of any figure subjected to the action
of known forces applied to its exterior surfaces,
even when the solid is uniform in texture in all
directions (i.e., isotropic) , transcends at present
the powers of analysis, though considerable
progress has been made toward a ‘complete
theory. An important contribution to this
theory by Sir William Thomson is found on
pp. 461 to 468 in Appendix C, entitled ¢ Equa-
tions of equilibrium of an elastic solid deduced
from the principle, energy.’ '

By reason of the incompleteness of the gen-
eral theory, those simple cases are first treated
which are most completely amenable to analy-
sis. The forty pages succeeding p. 130 treat
the special case of the elastic wire, whose
fundamental equations were first thoroughly
investigated by Kirchhoff in 1859. This treat-
ment, which is of interest both to the mathe-
matician and engineer, investigates not only the
spirals which elastic wires of circular and of
rectangular cross-section assume under the
action of direct forces, and of couples produ-
cing bending and twisting, but also goes into
several important side-issues, one of which is
the so-called kinetic analogy. A simple case
of this, which is discussed at length, exists
betweerr the plane curves assumed by a thin
flat spring, and the vibrations of a simple pen-
dulum which it graphically represents. An-
other important side-issue is found in the
discussion of the common spiral spring, in
which the force resisting elongation is mostly
due to torsion of the wire. Very curiously, the
theorem of three moments of a straight beam
is omitted, although the principles to be em-
ployed in establishing it are fully given.

Another important elastic solid which is fully
amenable to analysis is the thin elastic plate.
The treatment of the thin plate, which occupies
thirty pages, discusses the flexure of a plane
plate under all combinations of forces tending
to produce either a state of synclastic stress
(i.e., a state in which the curvature at every
point is convex) or a state of anti-clastic stress
(i.e., one which tends to cause the surface to
become saddle-shaped). Kirchhoff’s boundary
conditions for a plate are also demonstrated at
length. These are of importance in most prac-
tical cases, — as, for example, that of the flat
steam-boiler head; for evidently any plate
must have some kind of support or fastening at
its boundary.

The general subject of elasticsolids is reached
at p. 204, and occupies a hundred pages, in
which, after the general equations of equilib-
rium between the applied stresses and the result-
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ing strains are established, several special cases
are treated at length. The first of these is the
celebrated torsion problem published by St.
Venant in 1855 ; in which the distribution of
the stresses and strains throughout a right
prism of any cross-section whatever, under the
action of forces applied to its ends, is com-
pletely determined. This is perhaps the most
complicated problem which has been entirely
worked out in the subject of elastic solids, and
twenty-four pages are devoted to it. The flex-
ure of beams having rectangular cross-sections
is discussed, especially with reference to the
distortions which are suffered by these cross-
sections. The distortions can be easily exhib-
ited by bending a thick rectangular piece of
rubber, when the upper and lower surfaces will
become saddle-shaped.

The general problem is then further treated
by investigating the case of an infinite elastic
solid under various suppositions as to the force
applied through limited and through unlimited
portions of it. The spherical and cylindrical
shells are then treated by the help of harmonic
analysis.

The concluding hundred and sixty pages of
the work, beginning at p. 300, are devoted
ostensibly to hydrostatics ; but the first twenty-
five pages finish those parts of the subject in-
cluded under that title in ordinary treatises,
and the remainder relates to the physics of the
earth as dependent upon its fluid condition,
past or present. The first great problem in this
department of inquiry is to determine what fig-
ure will be assumed by a rotating liquid mass
under the influence of centrifugal force and of
the mutual gravitation of its parts. That an
oblate spheroid is a figure of equilibrium for
such a mass is commonly known, having been
shown to be such by Newton ; but that an ellip-
soid with three unequal axes is also such a fig-
ure is not so commonly known, though this was.
discovered to be the fact by Jacobi in 1834.
There are other possible figures, stable and
unstable; but which of all these is the one
which will actually be assumed in any given
case ? In reply to this question, the authors
state, that ‘¢ during the fifteen years which have
passed since the publication of the first edition
we have never abandoned the problem of the
equilibrium of a finite mass of rotating incom-
pressible fluid. Year after year, questions of
the multiplicity of possible figures of equilib-
rium have been almost incessantly before us;
and yet it is only now, under the compulsion
of finishing this second edition of the second
part of our first volume, with the hope for a
second volume abandoned, that we have suc-



DECEMBER 21, 1883.]

ceeded in finding any thing approaching full
light on the subject”” (p. 882). Then follows
an enumeration of the possible forms of equi-
librium, including the single and multiple rings
into which an ellipsoid would be changed when
rapidly rotated, and the detached portions,
nearly spherical, into which an elongated ellip-
soid must separate when rapidly rotated about
its shorter diameter.

Now, on the supposition that the figure of
the earth is approximately an oblate spheroid,
the next matter of importance is to show how
to compute the alterations in figure due to
local inequalities in its density, and irregulari-
ties in the distribution of the material com-
posing it. This at once raises the question
as to what we are to consider as the surface of
the earth at any point which forms part of its
figure. The true figure of the earth may be
taken to be the water-surface when undisturbed
by tides. Whenever it is desired to find such
surface on land, a canal could be supposed to
be cut from the ocean to the place under con-
sideration. Of course, a plumb-line is every-
where perpendicular to such a surface, whose
outline is evidently affected by all .existing in-
equalities of density and distribution of the
substance of the earth. For example: it is
computed that a set of several broad parallel
mountain chains and valleys, which are twenty
miles from crest to crest, and seventy-two hun-
dred feet above the bottom of the valleys, would
cause a corresponding undulation of the water-
surface whose crests would be five feet above
the bottoms of the hollows. This statement is
equivalent to saying, that the plumb-line is de-
viated from its mean direction by the attraction
of the mountain chains. Deviations of nearly
30” have been actually observed near the Alps
and near the Caucasus Mountains. The com-
paratively small deflections observed near the
vast mass of the Himalayas in India — which,
according to Pratt’s calculations in his treatise
on attractions, etc., should be vastly greater
than any thing actually observed — indicate
that extensive portions of the globe under those
mountains are less than the average density.
Localities have been found in flat countries
also, notably in England and Russia, where
the deflection of the plumb-line exceeds 157,
which is, of course, due to underlying material
of great density. From this it appears, that
the true figure of the earth is nearly as diver-
sified as the contours of its hills and valleys,
and does not correspond to any known geo-
metrical figure; although, to be sure, these
undulations are of small amount. Now, as
a first rude approximation, the figure of the
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earth can be taken as a sphere, having the
same volume as the actual carth. The earth
at-the equatorial regions will then project be-
yond the figure, and at the poles lie within it.

A second and better approximation can be
made by taking the figure to be that of an
oblate spheroid; and this is the basis upon
which our present geodetic and astronomical
measurements are based. Of course, it is pos-
sible to find an ellipsoid having three unequal
axes which will coincide still more nearly with
the results of observations upon the true figure
of the earth; and this will furnish a third still
closer approximation. This is what has been
done by Capt. Clarke in his various publica-.
tions. A summary of his results is given upon
pp- 867 and 368.

It is evident, when the astronomical latitude
is determined at any point of the earth’s sur-
face by measuring the elevation of the north
pole above the horizon, as given by the spirit-
level, that that determination will be in error by
the entire amount of the local deviation of the
plumb-line, which error may be as much as
30”7, or more than half a mile, although the
observations are made with all possible precis-
ion; and the outcome of geodetic triangula-
tion may show that any such station whose
position was supposed to have been determined
astronomically to single feet really occupies a
position, when referred to the spheroid, which
at present furnishes the basis of all our astro-
nomical and geodetic work, which is a consid-
erable fraction of a mile from its position as
so determined.

The last grand subject treated in the work
is that of the tides on the corrected equilibrium
theory, and matters closely connected with it.
To explain what is meant by this, we shall
briefly sketch the rise and progress of the
theory of the tides.

Sir Isaac Newton, whose Principia appeared
in 1687, showed that universal gravitation
would not only account for the motions of the
heavenly bodies in their orbits, but would also
account for the tides, —phenomena whose cause
had not, before his day, been traced to any
simple law of nature. He showed that there
would be a tide due to the attraction of the
sun, and another to that of the moon, the latter
being in general the larger; and that the
actual tide would depend upon the relative
position of those bodies, so that the highest or
spring tides would be due to their combined
effect, and the lowest or neap tides would occur
when the tide due to the sun partially neutral-
ized that of the moon. He showed how other
known variations in the tide could be account-
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ed for by the declinations of the sun and
moon, and their greater or less distance from
the earth.

The cause of the tide may be roughly stated,
according to the equilibrium theory, thus: the
sun or the moon attracts the water on the side
of the earth nearer to it more than it does the
earth itself, and attracts the earth itself more
than the water on the farther side; the con-
sequence being that water is heaped up on the
sides of earth away from and toward the at-
tracting body. Or, more exactly, we may im-
agine .

““The rise and fall of the water at any point of the
earth’s surface to be produced by making two disturb-
ing bodies (moon and anti-moon, as we may call them
for brevity) revolve around the earth’s axis once in
the lunar twenty-four hours, with the line joining
them always inclined to the earth’s equator at an
angle equal to the moon’s declination. 1f we assume
that at each moment the condition of hydrostatic
equilibrium is fulfilled, — that is, that the free liquid
surface is perpendicular to the résultant force, — we
have what is called ‘the equilibrium theory of the
tides’”” (art. 805).

Newton made a modification of this theofy,
which was intended to take into account the
rotation of the earth, by supposing that the
full effect of the attraction was not exerted
immediately under the attracting body, but
that the tide was of the nature of a wave, and
by its inertia lagged behind the place where
it should have been found in case the earth
was not rotating. This retardation he thought
might be more than a whole day in some cases.
He was not able to submit the whole theory
to rigorous computation for lack of sufficient
data as to the mass of the moon and the height
of the tides; but, from the tidal observations
then available, he computed the mass of the
moon necessary to produce them according to
his theory, and obtained a result which we
know to-day to be about twice too large.

In 1738 the French academy proposed the
problem of the tides as the subject of a prize-
essay, and elicited important essays on the sub-
ject from Bernouilli, Maclaurin, and Euler, to
each of which was awarded a prize, and in each
something of importance was added to New-
ton’s theory ; but the foundations of an exact
and complete theory were first made in the
¢ Mécanique céleste’ by Laplace, in five vol-
umes, 1799-1825.

The science of mathematical analysis had
not been greatly developed at the time New-
ton wrought upon this subject. IHis work is
expressed in geometrical forms in which his
genius is unapproachable. But the new meth-
ods of analysis founded upon the calculus, the
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principles of which were discovered equally by
Newton and by Leibnitz, received a rapid and
wonderful development during the seventeenth
century at the hands of Lagrange and the con-
tinental mathematicians. It was to the then
existing state of advancement in this particu-
lar that the great success of Laplace was due,
which enabled him to unravel to so remarkable
a degree the intricate interactions of the bodies
of the solar system, and give for the first time
the fundamental equations of the tides on cor-
rect principles. But it must be admitted that
Laplace, in integrating his differential equa-
tions, seems to have become involved in intri-
cate formulae whose full significance he has
not correctly interpreted.

At about the same time, Dr. Thomas Young
made an important investigation of the action
of the tides, which was published in the Ency-
clopaedia Britannica, where it has been repub-
lished in succeeding editions to the present
day. The special point of importance in his
investigation was the discussion of the effect
of friction upon the tides, which he showed to
be such as to explain many difficulties, and that
its magnitude might be such as to completely
change the character of the tide at certain
places so as to make low water take the place
of high water, and vice versa, — a result hith-
erto unsuspected, and of prime importance.

The next great step in the theory of the
tides was due to Airy, in his article on * Tides
and waves’ inthe Encyclopaedia metropolitana.
He gave in new and concise form a most use-
ful résumé of Laplace’s theory, and made an
original investigation of the effects of friction.
He also made valuable additions to the theory
as applied to shallow seas and rivers, a sub-
ject hitherto untouched.

The labors of Lubbock and of Dr. Whewell
have added much to our knowledge of the re-
lations of the theory to the observed tides; but
the two foremost cultivators of this-branch of
science now living are Thomson and Ferrel.
The former, who is chairman of the committee
appointed by the British association for the ad-
vancement of science, for the purpose of the
extension, improvement, and harmonic analysis
of tidal observations, has done much, by his
improved methods of observing tides and dis-
cussing them, to separate their components from
each other, and render the exact comparison of
theory and observed facts possible. Laplace
assumed that the fortnightly and semi-annual
tides due to the movement of the moon and sun
in declination move so slowly that the equilib-
rium theory applies to them with exactness.
But even if that be admitted, it can be shown
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that the theory needs correction to take account
of the relative amount of land and water, as
well as the contour of the continents. These
have a controlling influence upon the tides, and
this discovery is Thomson’s great improvement
and correction of the equilibrium theory.

The diurnal tide has been usually explained,
in accordance with the equilibrium theory, as a
wave existing under nearly static conditions,
and following the moon and sun around the
earth, but interfered with by friction, and
changed in direction by the contour of the
land. Though this was the view of Newton,
Young, and others, and is incorporated in our
ordinary text-books, it is quite inadequate;
and the kinetic theory of Laplace must be put
in its place, which treats the water as a moving
fluid body, subject to the disturbing influence
not only of the sun and moon, but of itself
also.

The kinetic theory of the tides was to have
been developed at length in vol. ii.; and that
intended development is more than once re-
ferred to by the authors, — as, for instance, on
p. 382, where an incidental comparison is made
of the results of the two theories.

This part of the theory has been treated by
Ferrel in his ¢ Tidal researches,” published as
one of the appendices to the U. S. coast-survey
report for 1874, in which work he has put in
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practical shape all the theoretical work hereto-
fore accomplished, and also deduced therefrom
important consequences. Until the publication
of this work, it was not possible to apply the
correct theory to the discussion and prediction
of tides by reason of the unmanageable formu-
lae employed by Laplace ; and the discussions
were, perforce, made by some modification of
the equilibrium theory. Indeed, Laplace him-
self resorted to that method in his famous dis-
cussion of the tidal observations in the harbor
of Brest. But, thanks to Ferrel’s labors, this
most intricate branch of computation has been
systematized, and applied to an extensive series
of tidal observations in Boston harbor.

The concluding pages, from 422 to 460, treat
the question of the rigidity and solidity of the
earth as a whole, especially as related to the
tides. The final sentence (p. 460) is, ¢“On
the whole, we may fairly conclude, that, whilst
there is some evidence of a tidal yielding of
the earth’s mass, that yielding is certainly
small, and that the effective rigidity is at least
as great as that of steel.”’

Four important papers on subjects related
to those just mentioned arve added to the work
as appendices. The titles of these papers are,
¢ Cooling of the earth,” ¢ Age of the sun’s
heat,” ¢ Size of atoms,’ ¢ Tidal friction.” The
last three of these were not in the first edition.
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MATHEMATICS.

Fuchsian functions.— A previous paper by M.
Poincaré on this subject has already been noticed in
these pages (i. 535).. In the present most important
memoir, M. Poincaré assumes the results arrived at
in the former memoir, and proceeds to more fully
develop them and the consequences flowing from
them. In the previous paper the author showed that
it was possible to form discontinuous groups by sub-
stitutions of the form :

by choosing the coefficients s, Bi, vi, di, in such a way
that the different substitutions of the group should
not alter throughout the interior of a certain circle
called the fundamental circle. In the present paper
the author assumes that the fundamental circle has
its centre at the origin, and its radius unity; so that
its equation can be written as mod. z = 1.

He then considers one of these discontinuous
groups, which he calls Fuchsian groups, and which
he denotes by G. To this group corresponds a de-
composition of the fundamental circle into an infinite
number of normal polygons, R, all congruent among

themselves. The author then demonstrates that there
always exists a system of uniform functions of z,
which remain unaltered by the different substitutions
of the group G, and which he calls Fuchsian func-
tions. M. Poincaré’s memoir is too long to be re-
viewed here as it deserves. It is certainly a most
important addition to the modern theory of functions,
and is rendered particularly valuable by the historical
note at the end, in which the author gives a brief
account of the labors of Hermite, Fuchs, Klein,
Schwarz, and others in this field. The two memoirs,
with very little amplification, would constitute a
really valuable treatise on this subject, —a subject
of great importance, and on which there exists abso-
lutely no text-book or treatise of any kind.— (Acta
math.,i.) T. C. [506

ENGINEERING.

Steam-whistles. —Lloyd and Symes give a state-
ment of experiments with a locomotive whistle hav-
ing a bell 41% inches diameter, 3% inches long inside,
and over an annular steam opening i of an inch
wide. The bell was of cast brass of medium charac-
ter; and the lip was chamfered to a thin edge, and set
exactly over the steam-opening. Sixty pounds press-



