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first known to Europeans, and doubtless for centu-
ries before that time, were in a social stage at least
as far advanced as that of our German ancestors in
the days of Tacitus. We know that these barbarians,
if we choose so to style them, had evolved a regular
system of government, combining very ingeniously
the methods of democracy and aristocracy, and com-
prising the germs of the English constitution. On
this point the often-cited passage of Montesquieu will
bear to be requoted and emphasized. ‘‘In perusing,”
writes the great legist, ‘‘the admirable treatise of
Tacitus ‘ On the customs of the Germans,” we find it
is from that nation the English have borrowed-the
idea of their political government. This beautiful
system was invented first in the woods.” Will any
one reply that the German barbarians, being of the
Aryan stock, must be supposed capable of intellectual
achievements which barbarians of the Indian race
could not be expected to compass ? I think the able
and liberal-minded reviewer will agree with me, that
reasoning of this ‘ high priori’ sort, which assumes
the very point in question, would be any thing but
logical or satisfactory.

The reviewer is kind enough to say that many of
the chapters in my volume ‘‘indicate immense re-
search, and are of great value both ethnologically
and philologically.”” I can assure him that equal
diligence was exercised in preparing the chapters on
the league and its founders, and I know of no reason
why they should be deemed less accurate or less valu-
able. In these, moreover, as well as for the other
portions of the work, I have been careful to indicate
the sources of my information. Nothing will be easier
than forany one who has doubts as to its correctness
to repeat my inquiries, and to satisfy himself on that
point. But I am happy to say that the communica-
tions which reach me from many quarters seem to
show that no such doubts are likely to be entertained ;
at least, by any well-informed persons. Writers of
the highest authority on American and Indian his-
tory receive the statements of the book as entirely
authentic, and speak of it in terms too flattering for
me to repeat.

Let me conclude by expressing the pleasure with
which I have learned from this review that the vala-
able work of the excellent and indefatigable mission-
ary-linguist, the late Father Marcoux, on the Iroquois
language, is about to be published by the Bureau of
ethnology. The idioms of the Huron-Iroquois group
stand, perhaps, at the head of the best-known Indian,
languages as subjects of philosophical study. It is
doubtful if even the Quichua or the Aztecequals them
in comprehensive force, or in subtlety of distinctions.
More than two centuries ago the learned missionary
Brebeuf was struck with the resemblance of the
Huron to the Greek; and in our own day Professor
Max Miiller, after a careful study of the Mohawk
tongue, has expressed the opinion that the people
who wrought out such a language ¢ were powerful
reasoners and accurate classifiers.’” The works of
M. Marcoux, in conjunction with those of his dis-
tinguished pupil and successor, M. Cuoq, will afford
ample means for the study of one, and perhaps the
finest, of this remarkable group of languages.

In connection with this subject, it is proper to refer
to the doubt expressed by the reviewer as to the
correctness of the linguistic works of the French
missionaries. It is suggested that they have made
mistakes in grammar, and in particular that they
have not been able to distinguish between the femi-
nine and the indeterminate inflections. Now, it must
be remembered that the intelligent and well-educated
missionaries, whose competency is thus questioned,
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have for many years spoken and written the Iroquois
language almost as familiarly as their native speech,
and have published many books in that language for
the use of their converts. Their predecessors, whose
experience they have inherited, had been engaged in
the same work for more than two hundred years. To
suppose them so grossly ignorant of the grammar of
the language as is now suggested is much the same
as supposing a professor of Latin in an English or
American college to be unable to distinguish betweemn
the genitive and the accusative cases in that language.
If the work of Marcoux is so erroneous, it is clearly
unfit to be published in a national series like that of
the Ethnological bureau. In justice both to the mis-
sionaries and the bureau, I am glad to be able to show,
by the best possible evidence, that the suspected
errors do not exist. The Iroquois must be supposed
to know their own language. The text of their Book
of rites, fortunately, presents a test which is conclu-
sive. In preparing the translation of this text, with
the aid of the best native interpreters, I had occa-
sion, as the appended glossary shows, to make con-
stant use of the publications of M. Cuoq on the
Iroquois tongue, and found them invariably correct.
In particular, I may mention, the indetérminate
form frequently occurs, employed precisely as indi-
cated by him. The bureau may therefore safely
add the work of M. Marcoux to the other valuable
publications which have done so much ecredit to the
scholarship of their authors and to the liberality of
the government. H. HALE.

THOMSON AND TAIT’S NATURAL
PHILOSOPHY. —1.

A treatise on natural philosophy. By Sir WILL1AM
Tromson LL.D., D.C.L., F.R.S., and P. G.
Tarr, M.A. Vol.i., partii., new edition. Cam-
bridge, University press, 1883. 254527 p. 8°.

Tae first edition of vol. i. (28+727 p.) . of
this work was published by the delegates of the
Clarendon press at Oxford, 1867. The authors
then intended, as appears from their preface,
to complete the work in four volumes. The
remaining three volumes have, however, never
appeared, much to the regret of all students of
mathematical physics; and the authors state
that the ‘¢ intention of proceeding with the
other volumes is now definitely abandoned.”’

In 1879 a new and enlarged edition was
published of a portion of vol. i., entitled part
i. (174508 p.), including that part of the
first edition contained in the first 336 pages ;
and now we have the remainder of vol. i., en-
titled part ii., which has been enlarged by im-
portant additions from 390 to 527 pages.

At p. 22 will be found a schedule of the
alterations and additions in part i., and, at
p- 24, those of part ii. = ¢¢ The most important
part of the labor of editing part ii. has been
borne by Mr. G. H. Darwin,”” whose remark-
able papers in the Philosophical transactions
upon the mathematical physics of the earth,
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past and present, have placed him in the front
rank of the cultivators of .that science. His
contributions to part ii. are duly accredited to
him in the above-mentioned schedule.

The original object of this treatise is stated
to be twofold ; viz., *‘ to give a tolerably com-
plete account of what is now known of natural
philosophy, in language adapted to the non-
mathematical 1e‘1de1, and to furnish to those
who have the privilege which high mathematical
acquirements confer, a connected outline of
the analytical processes by which the greater
part of that knowledge has been extended into
regions as yet unexplored by experiment.”’

From the nature of the case, the success of
the authors in the attainment of their first object
was small, compared with the second; for in
order to give an intelligible account, to one un-
accustomed to mathematical reasoning, of the
general tenor and results of such reasoning,
requires not only capacities such as few mathe-
maticians have had in our day, except Clifford,
but requires, also, an amount of space incom-
patible with the second and principal object
which the authors had in view. In order,
however, better to reach the non-mathematical
reader, the authors published a work entitled
‘ Elements of natural philosophy, part i.,’
which was only an abridgment of this ‘trea-
tise,” made by simply omitting all the advanced
mathematical developments.

The second and principal object, however,
of the authors, was one in which they, perhaps,
were better fitted to succeed than any who
could be selected. Their object was a large
one, and its attainment was undertaken in a
large way. It involved the presentation of the
general subject of kinematics, or the geometry
of motion considered apart from the forces
causing it, including the exposition and use of
gener allzed co-ordinates ; and the considera-
tion of harmonic motion, which ‘¢ naturally
leads to Fourier’s theorem, one of the most
important of all analytical results as regards
usefulness in physical science,”” and including,
also, the higher parts of the analytical discus-
sion of curves and surfaces in space, of three
dimensions. Next it required an extended
development of dynamical laws and principles
founded on Newton’s Principia, comprising the
dynamics of a particle and of a rigid body,
and the whole ot what is now termed kinetics
worked over and *¢ developed from the grand
basis of the conservation of energy.”” The

scope of the work demanded, also, the estab-
lishment of the principal formulae of spherical
harmonics, a branch of analysis whose charac-
ter we shall explain more at length hereafter.
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All these and other subjects, which are usu-
ally regarded as but distantly related to the
subject in hand, form a necessary part of a
work whose object is as wide as that proposed
by the authors. But it is hardly too much to
say, that every important theory treated has
received at their hands, not only elucidation,
but additions of importance.

In order to make this paper as useful as
may be, it has seemed best, in what follows, to
content ourselves with the attempt to give an
account to mathematical readers of the more
important developments contained in the work,
and not to engage in the task of trying to make
an elucidation of its contents suitable for the
general reader.

When we come -to consider in particular the
contents of part ii., it is found to be upon
the general subject of statics; though many
subjects, such as elasticity, the tides, etc , not
usually treated in works on that subject, are
here included. It consists of three chapters,
the first of which is but five pages in length,
and is merely introductory. It states and illus-
trates the utter impossibility of submitting the
exact conditibns of any physical question to
mathematical investigation by reason of our

.ignorance of the nature of matter and molecular

forces, but shows that approximate solutions
obtained by neglecting forces which do not af-
fect the conclusions sought to be established,
and by regarding bodies as rigid which are
nearly so, lead to practically the same results,
as to the equilibrium and motion of bodies, as
we should be led to by the solution of the infi-
nitely more transcendent problem which has
regard to all the forces acting.

In case, however, we consider the bending
or other deformations of bodies regarded as
elastic, we make a second approximation to
the exact treatment of physical questions ; and,
by introducing modifications of elasticity due
to changes of temperature, we should make a
third approximation, which might be carried
one step farther by taking account of conduc-
tion of heat, and farther still by considering
the modifications of ordinary conduction due
to thermo-clectric currents, ete. In view of all
this, the authors say, ¢¢ The object of the pres-
ent division of this volume (i.e., part ii.) is
to deal with the first and second of these ap-
proximations. In it we shall suppose all solids
either #igid (i.e., unchangeable in form and
volume) or elastic; but,in the latter case, we
shall assume the law connecting a compression
or a distortion with the force which causes it,
to have. a particular form deduced from ex-
periment. . We shall also suppose fluids,
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whether liguids or gases, to be either compres-
sible or incompressible, according to certain
known laws; and we shall omit considerations
of fluid friction, although we admit the consid-
eration of friction between solids.”’

The next chapter (v.) comprises pp. 6 to

100, and its especial object is set forth in the
introductory section (454), as follows: ¢ We
naturally divide statics into two parts, — the
equilibrium of a particle, and that of a rigid or
elastic body or system of particles, whether
solid or fluid. In a very few sections we shall
dispose of the first of these parts, and the rest
of this chapter will be devoted to a digression
on the important subject of attraction.”” In
other words, this chapter is devoted, with the
exception of a couple of pages, to an extended
treatment of attraction according to the law of
the inverse square of the distance as applied
to gravitation, electricity, and magnetism.
After a brief investigation of the usual for-
mulae for the attraction of the spherical shell,
circular disk, thin cylinder, circular are, ete.,
the main subject of the chapter is reached,
which is the modern mathematical theory of
potential ; which theory is the principal means
now employed in the discussion of questions
relating to the distribution of attracting matter,
and the forces caused by it. This theory, due
as it is to the analytical discoveries of Laplace,
Green, Gauss, and others, might, nevertheless,
have long remained comparatively barren of
fraitful results in physics, had it not been for
the genius of Faraday, who, though unskilled in
the use of analysis, had a most powerful grasp
of geometric and physical relations. In the
words of another,® ¢ Faraday, in his mind’s
eye, saw lines of force traversing all space,
where mathematicians saw centres of force at-
tracting at a distance ; Faraday saw a medium
where they saw nothing but a distance ; Fara-
day sought the seat of the phenomena in real
actions going on in the medium, they were sat-
isfied that they found it in a power of action at
a distance.”” He conceived of lines of gravi-
tational force as holding the planets in their
orbits. These lines radiated through all space
from the attracting body as a nucleus, regard-
less of the existence or non-existence of bodies
upon which the attraction could be exerted.
Furthermore, IFaraday thought of each attract-
ing body as surrounded at different distances
by successive level surfaces, — like that of the
ocean, for example, or the. upper limit of
the atmosphere ; which surfaces cut the lines
of force everywhere at right angles. This was
not only true of gravitating matter, but each
1 Preface of Maxweli’s Electricity and magnétism.
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electrified body also had its system of lines of
electrical force, and its corresponding system
of level surfaces; and each magnet had its
magnetic system as well. The geometry of
these lines and surfaces is the basis of Fara-
day’s reasoning in his ¢ Experimental re-
searches,” and is the geometric truth -hidden
in the analytic discoveries clustering around
Laplace’s, Poisson’s, and Green’s theorems,
That we may call these relations more clear-
ly before the mind, consider for a moment the
so-called ¢ equation of continuity > of an incom-
pressible fluid ; which equation is divined from
the geometric truth, that -the quantity of such
a fluid, which flows into any assumed closed
surface, taken entirely within it, is equal to that

flowing out, or that the total flow is nil, This
is precisely expressed. by the equation
SFd 8 =0, (1)

in which d 8 is the area of the element of the
assumed closed surface, F' is the normal flow
per square unit at that element, and the limits
of integration are so taken that it extends over
the entire surface. There is also another form
of the equation of continuity, expressing the
kinematic truth, that, in an incompressible
fluid, the variations of the component veloci-
ties in the directions @, ¥, #, balance ; i.e., their
algebraic sum is =il, which may be written
thus @ —

= =0, (2)

in which », v, w, are the component velocities
in the directions @, ¥, z, respectively.

Now, it is not difficult to picture to the mind
the motions occurring within the mass of an
incompressible fluid ; such as water, for exam-
ple. In whatever way it may be moving, we
can think of stream-lines along which the dif-
ferent parts of it flow. A number of these
lines, side by side, can be taken to form a
stream, and can be thought of as bounded by
a kind of tubular surface ; which surface might
be regarded as the boundary of the stream,
which isolates it from surrounding streams. If
the stream has the same velocity at every point
along the tube, then its cross-section must be
uniform ; but, where the velocity is less, the
cross-section is proportionately increased, and
vice verse. This follows from the fact that
the same quantity must pass each cross-section
per unit of time. A tube in which a unit of
volurne passes a given cross-section per unit
of time is called a unit-tube. Now, the forces
of attraction in free space, caused by any dis-
tribution of matter, electricity, or magnetism,
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follow precisely the same laws as the velocities
and flow of incompressible fluids ; for, consider
for the moment the lines of force starting from
the surface of some attracting body (a magnet,
for example). They gradually diverge as the
distance increases, and curve away into space.
Each one of these lines may be taken as the
representative of a definite amount of attraction,
whicl is the same at all points along it ; and if
a tubular surface be supposed to exist, includ-

ing everywhere certain of these lines which lie .

beside each other, and no others, the total
amount of force acting across every cross-sec-
tion of the tube is the same: hence equations
(1) and (2) apply as well to forces of attrac-
tion as to velocities of an incompressible fluid,
provided ¥, u, v, w, be taken to be the compo-
nent forces along the normal and along z, v, #,
respectively, and provided that none of the at-
tracting matter be contained within the closed
surface considered in equation (1), or at the
point considered in equation (2). In order to
the farther development of these equations, let
us compute the work which would be obtained
in carrying a unit of attracted material from
one given position to another. The work is
found from the usual expression

V= flude +vdy +wdz), (3)

in which u, v, w, being component forces, the
limits of the integration are the co-ordinates of
the two given points; but what path is taken
between these points is of no consequence,
because the amount of work depends alone
upon their difference of level:

—%’v:—%’w:— dZ’ (4)
in which the right-hand numbers are partial
differentiul coefficients. ¥ is evidently a func-
tion of the co-ordinates such that its value de-
pends upon position, and not upon the kind of
co-ordinates employed. The point which fixes
the lower limit of the integral in (3) is usually
taken at infinity ; and the value of V taken be-
tween it and the point fixing the upper limit
is called the potential of the latter point.

By help of (3), we may put equation (1) in
the form

. —

av
Jau as =0, (5)
in which du is the element of the normal to
the closed surface considered.
And by substituting in (2) the values given
in (4), we have, .
ey a2V a2V _
dx? dy? a2
which is Laplace’s equation, and is often

0, (6)
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written in the abbreviated form, V2 V = 0.
Poisson showed, that, when the point at which
the potential is to be computed is within the
mass of the attracting matter, the right-hand
member of (6) should no longer be nil, but

* 4mp instead, in which p is the density of the

matter at that point. Similarly, the right-hand
member of (5) becomes 4=m when an amount
of matter m is included within the closed sur-
face considered.

Equation (6) states that ¥ must be such a
function of the co-ordinates, that, if we take
its three partial second differential coefficients
and add them, their sum isnil. What possible
algebraic forms are there which fulfil this con-
dition? They are, of course, to be found by
attempting to solve the differential equation
(6). But it is to be seen beforehand, from
the manner in which that equation was es-
tablished, that it must have an infinite num-

" ber of solutions ; for ¥V must be such a function

as to be capable of expressing the work to be
obtained from a unit of attracted -matter when
brought from infinity into the presence of
attracting matter, whatever its distribution in
space. The function ¥ must therefore, in
general, be different for every different dis-
tribution of attracting matter.

The integration of equation (6), and the
discussion of its various solutions, constitute
the branch of mathematics called spherical
harmonic analysis ; and to it the authors have
devoted pp. 171 to 219, in part i. The for-
mulae there obtained are employed, whenever
required in the present chapter, to express
the potential, or the attraction of matter dis-
tributed according to laws not conveniently to
be treated by less elementary methods.

As the study of spherical harmonics has
been comparatively neglected in this country,
a short digression, explaining someé of their
properties, may be useful.

From the nature of attraction, it being to-
ward fixed centres, it appears ‘that polar co-
ordinates would be more suitable to express its
relations than rectangular co-ordinates; and,
in fact, equation (6) is usually transformed to
polar co-ordinates in space before integration,
which co-ordinates may be taken to be the
radius vector, the latitude, and the longitude
of the point at which the potential is com-
puted.

It may be shown that there are two general
forms of solution of this polar differential equa-
tion, — one in ascending powers of the radius
vector; and the otherin ascending powers of
its reciprocal, with coefficients depending upon
sines or cosines of the angular co-ordinates.
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As these series may be.broken off at any point
by the vanishing of the arbitrary numerical co-
efficients introduced during integration, thesc
solutions may be in terms of the radius vector
of any degree, positive or ncgqtlve.

It is then found that a most important and
simple class of solutions, called zonal harmonics,
is those which are independent of the longi-

tude, and consequently contain but two varia-"

bles, — the radius vector and the latitude.

If in any harmonic we assume some special
value of the radius vector for consideration,
we cvidently confine our attention to a spheri-

“cal surface ; and the expression is then spoken

of as a surface harmonic, in distinction from
that in which the radius vector is a variable,
in which case it is called a solid harmonic.

On the surface of a sphere of given radius,
it is possible to suppose the values of a surface-
harmonic to be laid off graphically along the
radii to each point, toward or away from the
centre, according to their sign. This will give
a picture to the mind of the distribution of the
surface-harmonic.

Now, in a zonal harmonic of the first posi-
tive degree (which varies as the sine of the
latitude) the surface-distribution is all positive
on one side of the equator, and all negative
on the other. A simple zonal harmonic of the
second degree has a’ distribution like that in-
cluded between a nearly spherical ellipsoid of
revolution about the polar axis and a sphere
when the two intersect along two parallels of
latitude. The ellipsoid may be prolate or ob-
late. The number of zones depends, in any
case, upon the degree of the zonal harmonic,
and is such that the number of parallels of lati-
tude at which the distribution changes sign is
the same as the degree; and they are symmet-
rically situated about the equator, so that in
the odd degrees the equator is itself such a
parallel.

There are other solutions, called sectorial
harmonics, in which the surface-distribution
changes sign at equidistant meridians, and
other solutions still, which are a combination of
these two, called tesseral harmoniecs, in which
the sign of -the distribution changes, checker-
board fashion, at parallels and meridians. The
sectorial harmonies are, however, in reality,
nothing more than the combination of a num-
ber of zonal harmonics of the same degree,
whose poles are situated at equal distances
along the equator; and the tesseral harmonics
arc combinations of the sectorial with the
zonal harmonics. Indeed, the most general
harmonic is one by means of which any sur-
face-distribution whatever may be expressed by
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properly determining the constant coefficients,
and is merely a combination of zonal harmon-
ics superposed one upon another, with poles
situated in some irregular manner upon the
surface of the sphere. This brings us to the
fundamental theorem stated in section 537,
upon which the special importance and useful-
ness of these functions rest, — ‘¢ A spherical
harmonic distribution of density (i.e., matter)
on a spherical surface produces a similar and
similarly placed spherical harmonic distribution
of potential over every concentric spherical
surface through space, external and internal;
and so, also, consequently, of radial component
force. . . . The potential is, of course, a solid
harmonic through space, both external and in-
ternal ; and is of positive degree in the internal,
and of negative degree in the external space,’
as is evidently necessary, if the series express-
ing the potential in these two cases are to con-
verge. When we come to treat in the same
equation the potentials of a given point due to
two different bodies, or systems of bodies, a
remarkable relation is found to exist between
them, called, from its discoverer, Green’s theo-
rem, which, though somewhat comnplicated when
expressed in rectangular co-ordinates, has been
put by Maxwell in a simple form, which may
be written

)

in which the subseripts refer to the first and
sccond systems respectively, and the integra-
tions are to be extended so as to include the
total masses m; and m, respectively of the
two systems. ILaplace’s and Poisson’s equa-
tions are, of course, particular cases of Green’s
thecorem. Thomson has effected an important
extension of Green’s theorem, given on pp.
167 to 171, part i. Constant references are
made to these theorems, not only as to their
direct application, as we have presented it, but
in their application to the inverse question of
determining what the distribution of matter
must be to produce a given distribution of
potential.

The most extended and important applica-
tion of the theories of attraction and potential
treated in this chapter is that of ellipsoids and
cllipsoidal shells, —a subject which is closely
connected with that of the figure of the earth,
and one which has engaged the prolonged at-
tention of many of the most powerful mathe-
matical intellects of the past. A full account
of the course of discovery in this field is found
in Todhunter’s History of the theories of at-
traction and figure of the earth, 2 vols.

Ten pages of new matter (pp. 40-50) have

S Vidm, =) V,dm,,
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been inserted in this edition, embracing modern
investigations of importance on this subjeet.

(70 be continued.)

OBLIGATIONS OF MATHEMATICS TO
PHILOSOPHY, AND TO QUESTIONS OF
COMMON LIFEY—1II.

I samp that I would speak to you, not of the utility
of tlie mathematics in any of the questions of com-
mon life or of physical science, but rather of the
obligations of mathematics to these different sub-
jects. The consideration which thus presents itself
is, in a great mcasure, that of the history of the de-
velopment of the different branches of mathematical
science in connection with the older physical sci-
ences, — astronomy and mechanics. The mathemati-
cal theory'is, in the first instance, suggested by some
question of common life or of physical science, is
pursued and studied quite independently thereof,
and perhaps, after a long interval, comes in contact
with it, or with quite a different question. Geometry
and algebra must, I think, be considered as cach of
them originating in connection with objects or ques-
tions of common life, — gcometry, notwithstanding
its name, hardly in the measurement of land, but
rather from the contemplation of such forms as the
straight line, the circle, the ball, the top (or sugar-
loaf). The Greek geometers appropriated for the geo-
metrical forms corresponding to the last two of these
the words opaipe and xavoz, our sphere and cone; and
they extended the word ‘ cone’ to mean the complete
figure obtained by producing the straight lines of the
surface both ways indefinitely. And so algebra would
seem to have arisen from the sort of casy puzzles in
regard to numbers which may be made, cither in the
picturesque forins of the Bija-Ganita, with its maiden
with the beautiful locks, and its swarins of bees
amid the fragant blossoms, and the one queen-bee
left humming around the lotus-flower; or in the more
prosaic form in which a student has presented to him
in a modern text-book a problem leading to a simple
equation,

The Greek geometry may be regarded as beginning
with Plato (13.C. 430-347). The notions of geometri-
cal analysis, loci, and the conic scetions, are attributed
to him; and there are in his ‘Dialogues’ many very
interesting allusions to mathematical ¢uestions, — in
particular the passage in the ¢ Theaetetus’ where he
affirms the incommensurability of the sides of certain
squares. But the earliest extant writings are those
of Euclid (B.C. 283). - There is hardly any thing in
mathematics more beautiful than his wondrous fifth
book; and he has also, in the seventh, eighth, ninth,
and tenth books, fully and ably developed the first
principles of the theory of numbers, including the
theory of incommensurables. We have next Apol-
lonius (about B.C. 247) und Archimedes (B.C. 287-
212), both geometers of the highest merit, and the
latter of them the founder of the science of statics

1 Address of Professor CAYLEY hefore the British association.
Concluded from No. 35.
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(including therein hydrostatics). Iis dictun about
the lever, his ¢ Eipzrae,’ and the story of the defence
of Syracuse, are well known. Following these we
have a worthy series of names, including the astrono-
mers Ilipparchus (B.C. 150) and Ptolemy (A.D. 125),
and ending, say, with Pappus (A.D. 400), but con-
tinued by their Arabian commentators, and the Ital-
ian and other European geometers of the sixteenth
century and later, who pursued the Greck geometry.

The Greek arithmetic was, from the want of a
proper notation, singularly cumbrous and difficult;
and it was, for astronomical purposes, superseded by
the sexagesimal arithmetie, attributed to Ptolemy,
but probably known before his time. The use of
the present so-called Arabic figures became general
among Arabian writers on arithmetic and astronomy
about the middle of the tenth century, but it was
not introduced into Europe until about two centuries
later. Algebra, among the Greeks, is represented
almost exclusively by the treatise of Diophantus
(A.D. 150), — in fact, a work on the theory of num-
bers, containing questions relating to square and
cube numbers, and other propertics of numbers, with
their solutions. This has no historical connection
with the later algebra introduced into Italy from the
east by Leonardi Bonacei of Pisa (A.D. 1202-1208),
and suceessfully cultivated in the fiftcenth and six-
teenth centuries by Lucas Paciolus, or de Durgo,
Tartaglia, Cavdan, and Ferrari. Later on, we have
Vieta (1540-1603), Harriot, already referred to, Wal-
lis, and others.

Astronomy is, of course, intimately connected with
geometry.  The most simple facts of observation of
the heavenly bodies can only be stated in geometri-
cal langnage; for instance, that the stars describe
circles about the Pole-star, or that the different posi-
tions of the sun among the fixed stars in the course
of the year form a circle.  For astronomical calcula-
tions it was found neccessary to determine the arc
of a cirele by means of its chord. The notion is as
old as Iipparchus, a work of whom is referred to as
consisting of twelve books on the chords of circular
arcs. We have (A.D. 125) Ptolemy’s ¢ Almagest,’
the first book of which contains a table of aves and
chords, with the method of construction; and among
other theorems on the subjeet, he gives there the
theorem, afterwards inserted in Euclid (book vi.
prop. D), relating to the rectangle contained by the
diagonals of a quadrilateral inscribed in a cirele. The
Arabians made the improvement of nsing, in place of
the chord of an are, the sine, or half chord of double
the are, and so brought the theory into the form in
which it is used in modern trigonometry, The before-
mentioned theorecm of Ptolemy, — or, rather, a par-
ticular case of it, —translated into the notation of
sines, gives the expression for the sine of the sum
of two arcs in terms of the sines and cosines of the
component arcs, and it is thus the fundamental
theorem on the subject. We have in the fifteenth
and sixteenth centuries a series of mathematicians,
who, with wonderful enthusiasm and perseverance,
calculated tables of the trigonometrical or circu-
lar functions, — Purbach, Miiller or Regiomontanus,
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