which it flows, while at the same time a record is made of the volume of the fluid thus displaced.

The more important work going on in the laboratory at the time of my visit consisted of experiments in regard to respiration, with special reference to the functions of the glottis and epiglottis, and trials of disinfectants with a view to ascertaining the temperature necessary to kill germs. A series of experiments was also in progress for testing the porosity of various stones used in building.

The results of the original work performed here have been recently published, together with an account of the physical apparatus in use at the school. Accounts of the most important investigations carried on during the last year are contained in the following papers: "Growth as a Function of Cells: Preliminary Notice of Certain Laws of Histological Differentiation," by C. G. Minot; "Effects of the Respiratory Movements on the Pulmonary Circulation," by H. P. Bowditch, M. D., and G. M. Garland, M. D.; "Pharyngeal Respiration," by G. M. Garland, M. D.; "Functions of the Epiglottis in Deglutition and Phonation," by G. L. Walton. This paper shows that the removal of the epiglcttis does not seriously affect degluttion, and therefore it is not necessary for that process. The epiglottis, however, plays an important part in forming and modifying the voice, taking different positions during vocalization, changes of pitch, quality, and intensity.

In the chemical laboratory I found that Professor Wood had been examining the water-supply of Cambridge; and was then engaged in the investigation of the extent to which arsenic is being used in the manufacture or ornamentation of articles in general use, such as wall-paper, confectionery, playthings, etc. The results of this work will be published in the next report of the State Board of Health. Professor Wood is also writing the addition to "Ziemssen's Cyclopædia" on the subject of toxicology.

Dr. William B. Hills was engaged upon a special investigation in regard to the localization of arsenic in the animal economy.

The most important feature of original work at the school of late years has been Dr. Bigelow's introduction of the new operation of litholapaxy.

A number of interesting papers have been recently written by members of the faculty, some of which contain new discoveries of considerable scientific importance. I cite two: "Effects of Certain Drugs in increasing or diminishing Red Blood-Corpuscles," by Dr. Cutter; and "Alterations in Spinal Cord in Hydrophobia," by Dr. Fitz.

The School of Agriculture and Horticulture, called "The Bussey Institution," is located on the sunny slopes of Forest Hills, about five miles southwest from Boston. The labors of the professors connected with this institution have been even more in the line of original research than of instruction, though of late the lack of a sufficient endowment has interfered with the quality of work and the publication of the results.

A number of exceedingly interesting and valuable papers, however, have appeared in the "Bussey Bulletin," the titles of which give some indication of the character of the work. I give a few of the more important : "Hybridizaof Lilies," by Professor Parkman; "Diseases caused by Fungi "—Professor Farlow; Examinations of Fodders," "Trials of Fertilizers," "Prominence of Carbonate of Lime in Soil-Water," "Importance as Plant-Food of the Nitrogen in Vegetable Mold"—Professor F. H. Storer; "The Potato-Rot," and "The Black Knot" (of plum and cherrytrees)—Professor Farlow.—*Popular Science Monthly*.

ON THE EFFECTS PRODUCED BY MIXING WHITE WITH COLORED LIGHT.

It was noticed several years ago that when white light was mixed by the method of rotating discs with light of an ultramarine (artificial) hue, the result was not what one would naturally have expected, viz.: instead of obtaining a lighter or paler tint of violet-blue the color inclined decidedly toward violet, passing, when much white was added, into a pale violet hue. Two attempts have been made to account for this curious fact: Brücke supposes that the light which we call white is really to a considerable extent red, and that the mixture of this reddish white light with the blue causes it to change to violet. Aubert, on the other hand, following a suggestion of Helmholtz, reaches the conclusion that violet is really only a lighter shade of ultramarine-blue. He starts with the assumption that we obtain our idea of blue mixed with white from the sky, which, according to him, is of a greenish-blue color. We then apply, as he thinks, this idea to the case of a blue which is not greenish, namely, to ultramarine-blue, and are surprised to find that the result is different.

It will be shown in the present paper that these explanations are hardly correct, since they fail to account for the changes, which, according to my experiments, are produced in other colors by an admixture of white. I prepared a set of brilliantly colored circular discs which represented all the principal colors of the spectrum and also purple; these discs were then successively combined in various proportions with a white disc and the effects of rapid rotation noted, a smaller duplicate colored disc uncombined with white being used for comparison. Under these circumstances it was found that the addition of white produced the changes indicated in the following table:

> Vermilion became somewhat purplish. Orange became more red. Yellow became more orange. Greenish yellow was unchanged. Yellowish green became more green. Green became more blue-green. Cyan-blue became less greenish, more bluish. Cobalt-blue became more of a violet blue. Ultramarine (artificial) became more violet. Purple became less red, more violet.

Exactly these same effects can be produced by mixing violet with the above mentioned colors. These experiments serve to explain the singular circumstance that when complementary colors are produced by the aid of polarized light, it is difficult or impossible to obtain a red which is entirely free from a purplish hue, a quantity of white light being always necessarily mingled with the colored light. In the case of the red, orange, yellow, ultramarine, and purple discs, I succeeded in measuring the amount of violet light which different proportions of the white disc virtually added to the mixture, and found that it is not directly proportional to the amount of white light added, but increased in a slower ratio, which at present has not been accurately determined.

For the explanation of the above mentioned phenomena, Brücke's suggestion that white light contains a certain amount of un-neutralized red light is evidently inapplicable, since the effects are such as would be produced by adding a quantity not of red but of *violet* light, and for the present I am not disposed to assume that white light contains an excess of violet light. The explanation offered by Aubert does not undertake to account for the changes produced in colors other than ultramarine, and even in this case seems to me arbitrary; neither have I succeeded in framing any explanation in accordance with the theory of Young and Helmholtz which seems plausible.—PROF. O. N. ROOD, *American Journal of Science*

BERNARDINITE: ITS NATURE AND ORIGIN.

By J. M. Stillman.

In a previous number of this Journal¹ I published the results of a chemical investigation of a resinous substance from San Bernardino, sent to me by Hon. B. B. Redding, which was said to occur in the form of vein in detached masses, and the vein to be traceable for three miles. The finders (farmers or "ranchers" of that vicinity) sent at the same time pieces of rock as vein-stuff which contained this peculiar resinous substance in the crevices. Some months later

¹III, vol. xviii, p. 57.