Estimation of Average Years of Schooling by Levels of Education for Japan and the United States, 1890-1990

Yoshihisa Godo Meiji Gakuin University

Abstract

This is a follow-up paper to Godo and Hayami (1999) in which long-term human capital estimates for Japan and the United States are constructed. Using their estimates of *average schooling* (average number of years of schooling per person for the working-age population) as a starting point, this paper provides new estimates of *average schooling* for primary, secondary and tertiary education over the period 1888-1995 for Japan and over the period 1890-1990 for the United States. By drawing simple graphs with these new estimates, this paper also finds several impressive features regarding the process of Japan's educational catching-up with the United States. In addition, new estimates of macro-economic conventional inputs, GDP, and candidates of instrumental variables are also prepared. I hope the data in this paper will be recognized as "public goods" among various researchers concerned with empirical analysis on human capital accumulation.

1. Introduction

This is a follow-up paper to Godo and Hayami (1999) in which long-term human capital estimates for Japan and the United States are constructed. In that paper, "average number of years of schooling per person for the working-age population" (henceforth abbreviated as *average schooling*) is employed as a measurement of human capital created from investments in education.¹ Godo and Hayami (1999) goes on to estimate *average schooling* for 1888-1995 (except for 1941-46) for Japan and for 1890-1990 for the United States not only for the entire working-age population but also for several groups segregated by age and gender, in order to facilitate an assessment of the nature and process of long-term developments in education. While their estimates of *average schooling* should be recognized as a long-awaited database for empirical analyses on human capital, there of course remains room for improvement.

As an improvement and elaboration on Godo and Hayami's study, this paper divides their *average schooling* into three levels of education: primary, secondary and tertiary education. As is well known, there has been fierce controversy concerning how to

¹The working-age population is defined as persons between the ages of 15 and 64 inclusive

allocate the government's educational investment among the levels of education.² The sheer paucity of statistics has stymied the comprehensive analysis of this controversy, and so the estimates in this paper should be regarded as the very objectives desired.³

Following this introduction, Section 2 provides a brief review of Godo and Hayami (1999). How to divide their *average schooling* into three levels of education are advanced in Section 3. Section 4 presents the estimation results of *average schooling* by levels of education.

This paper also contains three appendices. Data treatment for US enrollment statistics is so complex that Appendix A is prepared in order to describe the details. Estimates of conventional macro-economic inputs and GDP for Japan and the United States in Godo and Hayami (1999) are also revised in Appendix B.⁴ Additionally, for the

² For example, see Meier and Rauch (2000), Task Force on Higher Education and Society (2000), Psacharopoulos and Maureen (1985).

³ Precisely speaking, Godo and Hayami (1999) also succeeds in estimating *average schooling* by three levels of education for Japan. However, this paper newly estimates *average schooling* by levels of education for Japan as well as for the United States because classification of levels of education in this paper is different from that in Godo and Hayami (1999).

⁴ As for physical capital for the United States, the estimation methodology in this paper is the same as Godo and Hayami (1999). Yet, since there were some miscalculations in Godo and Hayami (1999), the estimation results in this paper differ from those in Godo and Hayami (1999).

convenience of econometric analysis with my new estimates, some candidates of instrumental variables are discussed in Appendix B. Finally, the complete set of *average schooling* by levels of education, revised conventional inputs, GDP, and instrumental variables are shown in tables in Appendix C.

2. Review of average schooling estimates in Godo and Hayami (1999)

This section briefly reviews the estimation methodology of *average schooling* (all levels of education inclusive) in Godo and Hayami (1999) as a starting point. By definition, *average schooling* can be calculated by accumulating the total enrollment of corresponding years and ages after adjusting for changes in the population due to immigration and mortality. For reasons of simplicity, Godo and Hayami (1999) assumes that there are no differences in educational level between immigrants and domestic citizens and no correlation between school carrier and mortality. In this case, *average schooling* can be expressed by the following equations.

(1)
$$AS_{t} = \frac{\sum_{u=15}^{64} \sum_{w=6}^{u} \left(\frac{G_{u,t}}{G_{w,t+w-u}}\right) N_{w,t+w-u}}{\sum_{u=15}^{64} G_{u,t}}$$

(1')
$$= \frac{\sum_{u=15w=6}^{2} \left(\prod_{x=1}^{10} IM_{u-x,t-x}\right) IV_{w,t+w-u}}{\sum_{x=1}^{64} G_{u,t}}$$

u=15

(1")
$$= \frac{\sum_{u=15}^{64} \sum_{w=6}^{u} G_{u,t} R_{w,t+w-u}}{\sum_{u=15}^{64} G_{u,t}}$$

Where,

AS_t= *Average schooling* in year t;

 $N_{w,t}$ = Total enrollment of persons of age w years in year t⁵;

 $G_{v,t}$ = Total number of persons of age v years in year t;

 $M_{v,t}$ = Annual fluctuation rate of each cohort's total population (= $G_{v+1,t+1}/G_{v,t}$); and

 $R_{\rm w,t}$ = Enrollment ratio for persons of age w years in year t (= $N_{\rm w,t}/G_{\rm v,t}).$

While equations (1), (1'), and (1") are equivalent mathematically, the data requirement for each differs. More precisely, the data from 'total enrollment for each age group,' 'total working-age population,' and 'annual fluctuation rate of each cohort's total

⁵ Godo and Hayami (1999) assumes that schooling is provided for persons of age 6-34 years in the United

population' is required in equation (1'). On the other hand, the data from 'enrollment ratio for each age group' and 'total population by single years of age' is required for equation (1"). Because of differing data availability, Godo and Hayami (1999) uses equation (1') for Japan and equation (1") for the United States.

For postwar Japan, total enrollment by grade is available in *Fundamental School Survey*, an annual reference book published by the Ministry of Education. Assuming that people enter primary school at age 6 and continue on to upper grades without repeating, Godo and Hayami (1999) transforms "total enrollment by grade" to "total enrollment by single years of age." Because repeating is not so common in Japan, at least till recent years, this assumption should be acceptable. For the prewar period, where only "total enrollment by type of school and by type of course" data is available from Ministry of Education (1967)⁶, Godo and Hayami (1999) estimates "total enrollment by single years of age" by setting a typical pattern of starting and ending ages for each type of school and

States and 6-24 years in Japan. So, N_{w,t} actually becomes zero for persons out of these ages.

⁶ Exactly speaking, as for pre-1873 years when no formal education was established, Godo and Hayami (1999) estimates the total enrollment of *Terakoya* (private school for ordinary citizens) based on Ministry of Education (1889?) Umihara (1988) and Ishikawa (1929). In this paper, just like Godo and Hayami (1999), *Terakoya* is assumed as primary education after making adjustments for the difference in quality of schooling between *Terakoya* and modern schools.

course.

For the United States, Godo and Hayami (1999) at first estimates the enrollment ratio by single years of age from age 6 to 34 for census years (every tenth year from 1830 through 1990) mainly based on censuses' enrollment data and, then, takes linearinterpolation for inter-census years.⁷

3. Estimation methodology for average schooling by levels of education

By dividing N_{w,t} in Equation (1) into primary, secondary, and tertiary levels of education, "*average schooling* by levels of education" can be estimated. More precisely, let;

 $P_{w,t}$ = Total primary school enrollment of persons of age w years in year t;

 $S_{w,t}$ = Total secondary school enrollment of persons of age w years in year t;

 $T_{w,t}$ = Total tertiary school enrollment of persons of age w years in year t;

 $PR_{w,t}$ = Primary school enrollment ratio for persons of age w years in year t (= $P_{w,t}/G_{v,t}$);

 $SR_{w,t}$ = Secondary school enrollment ratio for persons of age w years in year t (= $S_{w,t}/G_{v,t}$);

 $TR_{w,t}$ = Tertiary school enrollment ratio for persons of age w years in year t (= $T_{w,t}/G_{v,t}$);

⁷ US Bureau of the Census (1913, 1922, 1933, 1943, 1961, 1973, 1984, 1994), US Census Office (1853, 1866, 1873, 1883, 1897, 1902) and Cremin (1980).

 ASP_t = *Average schooling* of primary education in year t;

 ASS_t = Average schooling of secondary education in year t; and

 AST_t = Average schooling of tertiary education in year t.

(2)
$$ASP_{t} = \frac{\sum_{u=15}^{64} \sum_{w=6}^{u} \left(\frac{G_{u,t}}{G_{w,t+w-u}}\right) P_{w,t+w-u}}{\sum_{u=15}^{64} G_{u,t}}$$
(2')
$$= \frac{\sum_{u=15}^{64} \sum_{w=6}^{u} \left(\prod_{x=1}^{u-w} M_{u-x,t-x}\right) P_{w,t+w-u}}{\sum_{u=15}^{64} G_{u,t}}$$

$$\sum_{u=15}^{64} \sum_{u=15}^{u} G_{u,t} PR_{w,t+w-u}$$

(2")
$$= \frac{\sum_{u=15w=6}^{5} G_{u,t} P R_{w,t+w-u}}{\sum_{i=15w=6}^{64} G_{u,t}}$$

(3)
$$ASS_{t} = \frac{\sum_{u=15}^{4} \sum_{w=6}^{u} \left(\frac{G_{u,t}}{G_{w,t+w-u}}\right) S_{w,t+w-u}}{\sum_{u=15}^{64} G_{u,t}}$$

(3')
$$= \frac{\sum_{u=15}^{64} \sum_{w=6}^{u} \left(\prod_{x=1}^{u-w} M_{u-x,t-x}\right) S_{w,t+w-u}}{\sum_{u=15}^{64} G_{u,t}}$$

(3")
$$= \frac{\sum_{u=15}^{64} \sum_{w=6}^{u} G_{u,t} SR_{w,t+w-u}}{\sum_{u=15}^{64} G_{u,t}}$$

Then,

$$(4) \qquad AST_{t} = \frac{\sum_{u=15}^{64} \sum_{w=6}^{u} \left(\frac{G_{u,t}}{G_{w,t+w-u}}\right) T_{w,t+w-u}}{\sum_{u=15}^{64} G_{u,t}}$$

$$(4') \qquad = \frac{\sum_{u=15w=6}^{64} \sum_{w=6}^{u} \left(\prod_{x=1}^{u-w} M_{u-x,t-x}\right) T_{w,t+w-u}}{\sum_{u=15}^{64} G_{u,t}}$$

$$(4'') \qquad = \frac{\sum_{u=15w=6}^{64} \sum_{w=15}^{u} G_{u,t} TR_{w,t+w-u}}{\sum_{u=15}^{64} G_{u,t}}$$

Note that, by definition, $N_{u,t}=E_{u,t}+S_{u,t}+T_{u,t}$ and $R_{u,t}=ER_{u,t}+SR_{u,t}+TR_{u,t}$. As is the case in Godo and Hayami (1999), this paper uses equations (2'), (3') and (4') for Japan and (2"), (3") and (4") for the United States in estimating *average schooling* by levels of education.

A problem here is that there is no universal agreement among researchers about how to classify the levels of education. In this paper, following the classification of the school statistics from the US Office of Education, grades 1-8, grades 9-12, beyond grade 12 are assumed as primary, secondary, and tertiary level respectively.

For Japan, all the enrollment of ages 6-13 is assumed as primary level. Likewise, that of ages 14-17 is assumed as secondary level and that of age 18 and over is assumed as tertiary level. Note that Godo and Hayami (1999) also assumes that people in Japan enter primary school at age 6 and continue on to upper grades without repeating (see the previous section). In that sense, this paper is consistent with Godo and Hayami (1999) in the treatment of Japanese enrollment data.

For the United States, where repeating and readmission are not so rare, the breakdown of total enrollment by level is not as straightforward as in the case of Japan. Various statistics from the US Office of Education as well as censuses are used in order to break NR in Equation (1) into PR, SR, TR in equations (2"), (3") and (4").⁸ Details of data processing are given in Appendix A.

4. Estimation results

Estimates of *average schooling* by levels of education are shown in Figures 1 and 2. In both countries, *average schooling* of primary education and that of secondary education are almost saturated at the level of 8.0 and 4.0 respectively as of 1990. Looking more closely, it can be seen that for the United States (Figure 2), *average schooling* of primary education

⁸ Regarding the details of statistics from the US Office of Education, see US Bureau of the Census (1975), pp. 360-367.

has exceeded 8 since the 1930s, though it is gradually decreasing these three decades. This reflects the fact that repeating and returning to school are relatively in the United States. In 1990, tertiary education accounts for nearly 14 percent of total *average schooling* (all the levels inclusive) in the United States, which is twice as high as Japan's case.

The Japan-US ratio of a*verage schooling* by levels of education is shown in Figure 3. As can be seen, the speed of catching up is the fastest in primary level and slowest in tertiary level. An interesting feature is the uniqueness of the catching-up pattern of *average schooling* of tertiary education; while the US-Japan ratio of *average schooling* of primary education and that of secondary education have been approaching 1.0 very smoothly, that of tertiary education draws a clumsy curve.

For example, the Japan-US gap in *average schooling* of tertiary education did not close significantly till the mid-1920s, which reflects the Japanese government's concentration on lower level education in the early stage of catching-up to the West.

In contrast, from the mid-1920s to the 1930s, the Japan-US ratio of *average schooling* of tertiary education rose drastically. This is mainly attributed to Japan's educational

policy reform. In 1918, the Japanese government enacted *Daigaku-rei* (University Order). This is epoch-making in Japan's tertiary education in the sense that various kinds of public and private universities were admitted by the Ministry of Education for the first time (before 1918, only Imperial Universities were admitted by the Ministry of Education).

It is quite impressive that the enactment of *Daigaku-rei* and the consequent expansion of tertiary education coincided with prewar Japan's hurried heavy industrialization and invasion into the Asian continent. Historically speaking, the expansion of tertiary education in this period corresponds to the rapid increase of demand for engineers, technocrats and bureaucrats. It is well-known that prewar Japan's heavy industrialization and military expansion were too hasty and rough-and-ready. The constrained jump in the Japan/US ratio of *average schooling* of tertiary education from the mid-1920s to 1930s in Figure 3 may also shed light on another side of prewar Japan's failure.

On the contrary, *average schooling* of tertiary education remained almost constant from the 1950s to 1980s. It makes a sharp contrast with the gaps in *average schooling* in primary and secondary education, which kept closing steadily. This period corresponds with the era of Japan's rapid heavy industrialization by which the Japanese economy succeeded in catching up with their Western counterparts. Because Japan was a borrower of the European and North American countries' advanced manufacturing technology in those years, secondary schooling to mass youth might have been more profitable than development of tertiary education. In other words, what the Japanese economy then needed as human resource was not a small number of revolutionary geniuses but a large number of disciplined, industrial workers.⁹ In that sense, Japanese education seems to have responded to companies' demand for human resources appropriately in the postwar period.

Another notable point is that the Japan-US gap of *average schooling* of secondary education kept closing rapidly even in the Pacific War period (1941-45). It is the authoritative direction of the General Headquaters of Allied Occupation Forces (GHQ) in 1947 that extended compulsory education from 6 years to 9 years. Yet, these estimates imply that this extension of compulsory education suited Japan's social circumstances of those days.

⁹ In addition, in fear of the quality of tertiary education, the Ministry of Education restrained its expansion.

5. Conclusion

This paper estimates *average schooling* by levels of education for 1888-1995 for Japan and for 1890-1990 for the United States as a follow-up to Godo and Hayami (1999). Even with very simple figures drawn in this paper, several intriguing features are found about the development of education in the two countries. I hope that these estimates of *"average schooling* by levels of education" in this paper are recognized as an attractive database for various uses in development studies.

References

- Cremin, Lawrence A. 1980. *American Education: The National Experience, 1783-1876,* New York, N.Y.: Harper & Row Publishers.
- Cubberley, Ellwood P. 1934. *Public Education in the United States,* Cambridge, Mass.: The Riverside Press.

Emi, Koichi. 1971. Capital Formation, Tokyo: Toyo Keizai Shimposha.

- Folger, John K. and Charles B. Nam. 1967. *Education of the American Population,* Washington D.C. U.S. Government Printing Office.
- Godo, Yoshihisa and Yujiro Hayami. 1999. "Accumulation of Education in Modern Economic Growth; Comparison of Japan with the United States," ADBI Working Paper No. 4, Tokyo: Asian Development Bank Institute.
- Ishikawa, Ken. 1929. *Nippon Shomin Kyoiku Shi* (The History of Japanese Popular Education), Tokyo: To-e Shoin.
- Japan Economic Planning Agency. 1965. *National Accounts ---1930~1963---*, (published in Economic Planning Agency, White Paper on National Income, 1965 fiscal year version), Tokyo: the Printing Bureau of Japan Ministry of Finance.
- Japan Economic Planning Agency. 1991. *Report on Revised National Accounts from 1955 to 89,* Tokyo: the Printing Bureau of Japan Ministry of Finance.
- Japan Economic Planning Agency. 1996. Economic Planning Agency, *Report on revised National Accounts on the basis of 1990,* the Printing Bureau of Japan Ministry of Finance.

Japan Economic Planning Agency. 1998a. Gross Capital Stock of Private Enterprises (At

Market Prices in Calendar Year of 1990) ---1955~1996---, Tokyo: the Printing Bureau of Japan Ministry of Finance.

- Japan Economic Planning Agency. 1998b. *Nihon no Shakai Shihon* (Social Capital in Japan), Tokyo: Toyo Keizai Shimpo Sha.
- Japan Economic Planning Agency. 1999. *Annual Report on National Accounts of 1999,* the Printing Bureau of Japan Ministry of Finance.
- Japan Economic Planning Agency. 2000. *Gross Capital Stock of Private Enterprises (At Market Prices in Calendar Year of 1990) ---1983~1998---*. Tokyo: the Printing Bureau of Japan Ministry of Finance.
- Japan Ministry of Education. 1889?. *Nihon-Kyoikushi-Shiryo* (Statistics of Japanese Educational History).
- Japan Ministry of Education. 1967. *Wagakuni Kyoiku no Ayumi* (History of Japanese Educational Development), Tokyo: Meiji Tosho Shuppan.
- Japan Statistical Association. 1987. *Historical Statistics of Japan*, Vol. 1, Tokyo: Japan Statistical Association.
- Kendrick, John W. 1965. *Productivity Trends in the United States,* Princeton, N.J.: Princeton University Press (for NBER).
- Kim, Jong-Il and Lawrence J. Lau. 1994. "The Sources of Economic Growth of the East Asian Newly Industrialized Countries," *Journal of the Japanese and International Economies*, 8:3 (September), 235-271.
- Maddison, Angus. 1994. *Mornitoring the World Economy 1820-1992*, Paris: Development Centre of Organization for Economic Co-operation.

Meier, Gerald M. and James E. Rauch. 2000. Leading Issues in Economic Development,

New York: Oxford University Press.

- OECD (Organisation for Economic Co-operation and Development). 1999. National Accounts: Main Aggregates 1960-97, Paris: OECD.
- Ohkawa, Kazushi and Henry Rosovsky. 1973. *Japanese Economic Growth; Trend Accretion in the Twentieth Century,* California: Stanford University Press.
- Psacharopoulos, George and Maureen Woodhall. 1985. *Education for Development*. New York: Oxford University Press.
- Taskforce on Higher Education and Society. 2000. *Higher Education in Developing Countries: Peril and Promise,* Washington, D.C.: World Bank.
- Umemura, Mataji, Keiko Akasaka, Ryoshin Minami, Nobukiyo Takamatsu, Kuroayake Arai, and Shigeru Itoh. 1988. *Manpower*, (*Estimates of Long-term Economic Statistics*, vol.2), Tokyo: Toyo Keizai Shinposha.
- Umihara, Toru. 1988. *Kinsei no Gakko to Kyoiku* (Education and Schools in the Japanese Modern Times), Kyoto, Japan: Shibunkaku Shuppan.
- U.S. Bureau of Economic Analysis. 1993. *Fixed Reproducible Tangible Wealth in the United States, 1925-89,* Washington, D.C.:U.S. Government Printing Office.
- U.S. Bureau of the Census. 1913. *General Report and Analysis* (Thirteenth Census of the United States: 1910, Volume 1), Washington, D.C.:U.S. Government Printing Office.
- U.S. Bureau of the Census. 1922. *General Report and Analytical Tables* (Fourteenth Census of the United States: 1920, Volume 2), Washington, D.C.:U.S. Government Printing Office.
- U.S. Bureau of the Census. 1933. *General Report Statistics* (Fifteenth Census of the United States: 1930, Volume 2), Washington, D.C.:U.S. Government Printing Office.

- U.S. Bureau of Census.1943. *Characteristics by Age ; United States Summary* (Sixteenth Census of the United States: 1940, Volume 4, Part 1), Washington, D.C.:U.S. Government Printing Office.
- U.S. Bureau of the Census. 1953. *Characteristics of the Population ; United States Summary* (Census of Population: 1950, Volume 1, Part 1), Washington, D.C.:U.S. Government Printing Office.
- U.S. Bureau of the Census. 1961. *Characteristics of the Population ; United States Summary* (Census of Population: 1960, Volume 1, Part 1), Washington, D.C.:U.S. Government Printing Office.
- U.S. Bureau of the Census. 1973. *Characteristics of Population ; United States Summary* (1970 Census of Population, Volume 1, Part 1, Section 2), Washington, D.C.:U.S. Government Printing Office.
- U.S. Bureau of the Census. 1975. *Historical Statistics of the United States: Colonial Times to 1970,* Washington, D.C.: U.S. Government Printing Office.
- U.S. Bureau of the Census.1984. *Detailed Population Characteristics ; United States Summary* (1980 Census of Population, PC80-1-D1-A), Washington, D.C.:U.S. Government Printing Office.
- U.S. Bureau of the Census.1994. *Education in the United States* (1990 Census of Population, 1990 CP-3-4), Washington, D.C.:U.S. Government Printing Office.
- U.S. Census Office.1853. Report of the Superintendent of the Census for December 1, 1951 (Seventh Census of the United States: 1850, An Appendix), Washington, D.C.: Robert Armstrong, Public Printer.
- U.S. Census Office.1866. *Statistics of the United States* (Eighth Census of the United States: 1860), Washington, D.C.:. U.S. Government Printing Office.

- U.S. Census Office.1873. *The Statistics of the Population of the United States* (Ninth Census of the United States: 1870, Volume 1), Washington, D.C.:U.S. Government Printing Office.
- U.S. Census Office.1883. *Statistics of the Population of the United States at the Tenth Census (June 1, 1980)* (Tenth Census of the United States: 1880), Washington, D.C.:U.S. Government Printing Office.
- U.S. Census Office.1897. *Report on Population of the United States ; Part* (Eleventh Census of the United States: 1890, Volume 2), Washington, D.C.:U.S. Government Printing Office.
- U.S. Census Office.1902. *Population; Part* (Twelfth Census of the United States: 1900, Volume 2), Washington, D.C.:U.S. Government Printing Office.

Appendix A: Data Treatment for US Enrollment Statistics

This appendix describes how to estimate enrollment ratio by levels of education by single years of age from 6 to 34 for census years for the United States (i.e., *PR, SR, TR* in equations (2"), (3"), and (4") in the main text).

1990

In the 1990 census, the total enrollment was reported by age group and by educational level. Age group is classified into: every single years of age from 3 to 24; every 5-year group of age from 25 to 84; and age 85 and over. Educational level is classified into: preprimary school; 1st to 5th grade; 6th to 9th grade; 10th grade; 11th grade; 12th grade; undergraduate of college; and graduate of college.

A problem here is the data treatment of "6th to 9th grade": since grades 1-8 are assumed as primary education in this paper, the enrollment of grades 6-9 must be divided into that of grades 6-8 and that of grade 9. Fortunately, the US Office of Education provides data of the total enrollment by single years of school (grades) (all ages inclusive; however unfortunately, the US Office of Education's data does not provide enough information about age-structure of enrollment). According to the US Office of Education, the ratio between the total enrollment of grade 9 and that of grades 6-9 is 0.257. Applying this ratio to the census's data of the total enrollment of grades 6-9 in the 1990 census (13,619,119 persons), the total enrollment of grade 9 in census base (all ages inclusive) is estimated as 3,501,743. Likewise, the total enrollment of grades 6-8 based on the census (all ages inclusive) is estimated as 10,117,376. The next problem is how to assume the age-structure of these enrollments. It would be plausible to assume that no person of age less-than-14 years is enrolled in grade 9. Then, dividing 3,501,743 by the census's total enrollment of grades 6-9 for persons of age 14 years and over (i.e., 4,550,020), the ratio of 0.770 (3501743/4550020 = 0.7696...) is obtained. Multiplying 0.770 with the census's data of the total enrollment of grades 6-9 by age (except age less-than-14 years), the total enrollment of grade 9 by age is estimated. Likewise, the total enrollment of grades 6-8 by age is also estimated.

For persons of age 25-34 years, for which enrollment data is available not by single years of age but by groups of 5 years, it is assumed that each education level shares the same percentage in the total enrollment of each single years of age. For example, let:

 PR_w = Enrollment ratio of primary education for persons of age w years (w =25, ..., 29);

 P_{25-29} = Total enrollment of primary education of persons of age 25-29 years; and

 R_w = Enrollment ratio of persons of age w years (w =25,...,29).

 E_{25-29} = Total enrollment of persons of age 25-29;

Then,

$$(A-1) RP_w = \frac{P_{25-29}R_w}{E_{25-29}}$$

In this way, *average schooling* by levels of education and by single years of age is derived.

1950, 60, 70, 80

Total enrollment ratio by age group and by single years of school (grades) is available in the four censuses of 1950, 1960, 1970, and 1980. As in the case of the 1990 census, for some ages, censuses cite enrollment ratio by 5-year age groups instead of by single years of age. In that case, enrollment ratio by single years of age is derived in the same way as Equation (A-1).

Another problem is that enrollment data in the 1950 census is limited to persons

of age less-than-30 years. Assuming composition rates of the three levels of education in the total enrollment are constant for all age groups between 29 and 34, enrollment ratio by single years of age from 30 to 34 are derived by the following equations. Let:

 PR_w = Enrollment ratio of primary education for persons of age w years (w =30,...,34);

 E_{29} = Total enrollment of persons of age 29 years;

 P_{29} = Total enrollment of primary education of persons of age 29 years; and

 R_w = Enrollment ratio of persons of age w years (w = 30,...,34).

Then,

$$(A-2)$$
 $RP_{w} = \frac{P_{29}R_{w}}{E_{29}}$

1940

In the 1940 census, respondents were not asked "the grade (year of school) in which they are enrolled" but asked "highest grade of school completed". Thus, total enrollment is cited not "by single years of school (i.e. grades) enrolled" but "by single years of school (i.e. grades) completed". However, a considerable number of respondents were supposed to have answered their current enrollment level by mistake. According to Folger and Nam (1967), one-third of the people answered their current grade by mistake. So, in this paper, enrollment data in the 1940 census is adjusted by the following equation.

$$(A-3)$$
 $E_n = \frac{2G_n + G_{n+1}}{3}$

Enrollment data in the 1940 census is limited for persons of age less-than-25 years. Using the data for persons of age 24 as a benchmark (i.e., replacing E_{29} and P_{29} in equation (A-3) with E_{24} and P_{24}), enrollment by levels of education and by single years of age from 25 to 34 is estimated.

Before 1940

Basic Idea

Because there had been no systematic individual survey conducted on educational level before the 1940 census, data availability is very limited. Before discussing the details of estimation procedure, it would be helpful to outline the basic idea.

First, I estimate the total enrollment of primary, secondary, and tertiary (all ages inclusive) (They are denoted by *NP*, *NS*, and *NT* respectively hereafter). Then, I solve *i*, *j*, *x*, and *y* that satisfy the following simultaneous equations (A-4), (A-5), (A-6) and (A-7) (v

and w are national numbers; x and y are real numbers; $G_v =$ "Total number of persons of age v years"; and $R_v =$ "Enrollment ratio for persons of age v years" as defined in equations (1), (1') and (1") in the main text).

$$(A-4) \qquad \qquad \frac{\sum_{\nu=6}^{i-1} G_{\nu} R_{\nu}}{\sum_{\nu=6}^{34} G_{\nu} R_{\nu}} < \frac{NP}{NP + NS + NT} < \frac{\sum_{\nu=6}^{i} G_{\nu} R_{\nu}}{\sum_{\nu=6}^{34} G_{\nu} R_{\nu}}$$

$$(A-5) \qquad \frac{NP}{NP + NS + NT} = \frac{G_i x + \sum_{\nu=6}^{i-1} G_{\nu} R_{\nu}}{\sum_{\nu=6}^{34} G_{\nu} R_{\nu}}$$

$$(A-6) \qquad \qquad \frac{\sum_{i=6}^{j-1} G_{v} R_{v}}{\sum_{u=6}^{34} G_{v} R_{v}} < \frac{NP + NS}{NP + NS + NT} < \frac{\sum_{i=6}^{j} G_{v} R_{v}}{\sum_{v=6}^{34} G_{v} R_{v}}$$

$$(A-7) \qquad \frac{NP + NS}{NP + NS + NT} = \frac{G_{j}y + \sum_{\nu=6}^{j-1} G_{\nu}R_{\nu}}{\sum_{\nu=6}^{34} G_{\nu}R_{\nu}}$$

Then, the enrollment ratio by levels of education and by single years of age from 6 to 34 is estimated as follows (PR_{w} , SR_{w} , TR_{w} are "primary school enrollment ratio for persons of age

w years," "secondary school enrollment ratio for persons of age w years," and "tertiary school enrollment ratio for persons of age w years" respectively as defined in equations (2") and (3") and (4")).

For W < i, $PR_W = R_W$, $SR_W = 0$, $TR_W = 0$;

For W=i, $PR_w=x$, $SR_w=R_w-x$, $TR_w=0$;

For i < w < j, $PR_w = 0$, $SR_w = R_w$, $TR_w = 0$;

For w=j, PR=0, $SR_w=y$, $TR_w=R_w-y$; and

For W > j, PR = 0, $SR_w = 0$, $TR_w = R_w$.

Now, the next problem is how to estimate *NP*, *NS*, and *NT*. The precise data sources and data processing are given below.

1890, 1900, 1910, 1920, 1930

Enrollment by levels of education (all ages inclusive) is available in various statistics from the US Office of Education. Since there is a small difference in total enrollment between the US Office of Education's statistics and the census's, I take the ratio between the two. Using this ratio as a multiplier, I get *NP*, *NS* and *NT* that are consistent with the total enrollment in censuses.

1830, 1840, 1850, 1860, 1870, 1880

For these years, data for primary education is very limited. So, the total enrollments of secondary and tertiary education are at first estimated as below.

Total enrollment of tertiary education

As for 1870 and 1880, the total enrollment of tertiary education is available from the US Office of Education's statistics. In the 1840, 50, 60 censuses, a school survey was conducted and the total enrollment in university and colleges are available there.

According to Cubberley (1934, p.140), the number of universities increased from 60 in 1930 to 98 in 1940. Assuming that enrollment per school is constant between 1830 and 1840, the total enrollment of tertiary education is estimated for 1830.

Total enrollment of secondary education

While the US Office of Education's data of the total enrollment of secondary education is available for 1890 and thereafter only, the number of high school graduates is available going back to 1870. So, the total enrollment is estimated by the number of high school graduates. First, the following equation is derived by an OLS regression.

 $Enr_{t} = 0.295 + 1.021 Grad_{t}R^{2} = .997$

(1.41) (32.75)

where,

 $Grad_t$ =Summation of the number of graduates from year t to t+3; and Enr_t=Enrollment of grades 8-12 in year t.

(t= 1890, 1900, 1910, 1920, 1930)

Then, applying this equation for $Grad_{1870}$ and $Grad_{1880}$, Enr_{1870} and Enr_{1880} are estimated.

In 1840 censuses, the total enrollment is reported for three types of school: "universities and colleges," "academies and grammar schools," and "primary schools." According to Cubberley (1980, p.140), English grammar school, Latin grammar school, and academy correspond to grades 4-12. So, four-ninths of enrollment in academies and grammar schools are assumed as secondary education enrollment. For 1830, 1850, 1860, the total enrollment of secondary education is interpolated or extrapolated by a log-linear curve.

Total enrollment of primary education

Total enrollment of the primary education is derived by subtracting the total enrollment of secondary and tertiary education (obtained above) from the total enrollment (all levels inclusive; prepared in Godo and Hayami (1999)).

Appendix B: Estimation Procedure for Physical Capital, Labor, GDP, and Candidates of Instrumental Variables

1. Physical Capital

Physical capital ('physical capital' is expressed as 'capital' below) in this paper is defined as gross non-residential fixed capital (excluding that for military use) at the beginning of the year measured in 1990 US dollars (PPP exchange rate).¹⁰ The perpetual inventory method is employed. More precisely, annual investment and retirement are accumulated starting in 1832 for which the initial stock level is assumed to be zero as a benchmark.

1-1. Japan

1955 and thereafter

Basically, I estimate capital stock "at fiscal year end" and then transform it into that "at the beginning of the calendar year" by the following equation (Japanese fiscal year t starts on April 1 in calendar year t and ends on March 31 in calendar year t+1).

¹⁰ When the physical capital stock is measured at the end of year in the original data sources, I assume it as the physical capital stock at the beginning of the next year.

 $ln \; S_t = 0.25 \; ln(PRIY_{t-1} + PUBY_{t-1}) + 0.75 \; ln(PRIY_{t-2} + PUBY_{t-2})$ where,

 S_t = Total capital at the beginning of calendar year t; PRIY_t= Private capital at the end of fiscal year t; and PUBY_t= Public capital at the end of fiscal year t.

Japan Economic Planning Agency (1998a, 2000) provide the data of gross investment and stock of private capital at 1990 prices for 1955-98 fiscal years. Japan Economic Planning Agency (1998b) provides the data of gross investment and stock of public capital at 1990 prices for 1953-93 fiscal years.¹¹ So, capital stock for 1955-93 fiscal year ends is available by simple summation of private capital in Japan Economic Planning Agency (1998a, 2000) and public capital in Japan Economic Planning Agency (1998b). Since private capital for 1994-97 fiscal year ends are available in Japan Economic Planning

¹¹ The classification between public and private capital in Japan Economic Planning Agency (1998a, 1998b, 2000) is totally consistent. For example, if some national enterprises are privatized (such as the case of Japan Railway in 1987), they are excluded from public capital in Japan Economic Planning Agency (1998b) and simultaneously included in private capital in Japan Economic Planning Agency (1998a, 2000).

Agency (1998a, 2000), all I have to do is to estimate public capital for 1994 fiscal year and thereafter. The following is how I extend the public capital data in Japan Economic Planning Agency (1998b).

First, I splice the public capital investment data of National Account, which are available in Japan Planning Agency (1996, 1999), to that of Japan Economic Planning Agency (1998b). More precisely, in this splicing, the following OLS regression is taken for 1970-93 fiscal years.

 $\ln X = -6.12 + 1.34 \ln Y + 0.161 D$ R-squared = .965

(-5.42) (20.5) (4.16)

where,

X= Public investment data from Japan Economic Planning Agency (1998b) (the sum of new installment and restoration for natural calamities at 1990 prices);
Y= Public investment data from Japan Economic Planning Agency (1996, 1999) (gross capital formation by government at 1990 prices); and
D= Dummy (1 for 1970-91 fiscal years ; 0 for 1992-3 fiscal years; in 1992, the railway structure of the new bullet train was sold off from the government to JR group).

Second, I calculate the retirement ratio of 1993 fiscal year by the following equation and use this ratio for all the years between 1994 and 1996.¹²;

Retirement ratio of 1993 fiscal year = (PUBYA₁₉₉₂ + X_{1993} - PUBYA₁₉₉₃)/PUBYA₁₉₉₂

Now that investment data as well as retirement data are obtained above, public capital stock for 1994 and thereafter can be calculated.

Before 1955

In order to calculate physical capital stock for these years, annual investment and retirement ratio data for 1832-1954 need to be estimated.

Investment data for 1832-1954

From 1935 to 1954

Japan Economic Planning Agency (1965) provides the data of nominal investment and the

1935-base deflator for 1935-44 calendar years and 1946-63 fiscal years.¹³

¹² Since there were several privatizations of governmental assets in 1985-91, I use retirement ratio of 1993 fiscal year instead of taking the average of retirement ratio going back to 1980s or 70s. 1993 is the last year Japan Economic Planning Agency (1998b) covers.

¹³ Precisely speaking, I get investment data by summing up expenditure for producer's durables

First, I need to convert the 1935-base to a 1990-base. The Japan Economic Planning Agency does not publish the 1990-base deflator for pre-1970 years. Instead, they publish the 1985-base deflator for 1955-89 in Japan Economic Planning Agency (1991). I convert the 1935-base real values to the 1990-base real values by the following equation:

$$S_{90,t} = \frac{S_{35,t} \sum_{i=1963}^{1955} D_{35,i}}{D_{90,1985} \sum_{i=1963}^{1955} D_{85,i}}$$

where,

 $S_{35,t}$ =Capital stock at 1935 prices;

 $S_{90,t}$ =Capital stock at 1990 prices;

 $D_{35,t}$ = 1935-base deflator for year t (for capital formation expenditure);

 $D_{85,t}$ = 1985-base deflator for year t (for capital formation expenditure); and

 $D_{90,t}$ = 1990-base deflator for year t (for capital formation expenditure).

For 1945, for which no data is available in Japan Economic Planning Agency (1965), I

use the investment data of 1944.

(equipment and structures) and the government's capital formation.

From 1887 to 1934

Emi (1971) provides the investment data for 1887-1940 at 1935 prices. Splicing Emi's data with my investment data for 1935-54 obtained above, I derive the investment data for 1887-1934.

From 1832 through 1886,

I take a semi-log-linear time-trend regression for 1887-1940. Using the result, I extrapolate the investment series for 1832-86.

Second Step: set the retirement ratio for 1832-1955.

The next problem is how to assume the retirement ratio. I at first calculate average retirement ratio for 1832-1924 by solving the following equation for k (here, I assume the war damage as 26.9 percent at the single years of destruction of capital stock in 1945; 26.9 percent comes from Ohkawa and Rosovsky (1973)).

$$SF_{1957} = 0.731 \left\{ \sum_{t=1832}^{1945} (1-k)^{1955-t} I_t \right\} + 1.25IF_{1946} (1-k)^{1.25} + \sum_{t=1947}^{1955} (1-k)^{1955-t} IF_t \right\}$$

where,

 SF_{1955} = Capital stock at the end of fiscal year 1955;

k = Retirement ratio;

 I_t = Investment in calendar year t; and

 IF_t = Investment in calendar year t.

Then, applying this k to all the years between 1832 and 1955, I extrapolate capital stock data for the pre-1955 years.

1.2 United States

For 1926 and thereafter, US Bureau of Economic Analysis (1993) provides satisfactory information on capital for our analysis. There, annual data series of capital stock are calculated by means of the perpetual inventory method.¹⁴ More precisely, annual investment and retirement are accumulated starting in 1832 for which the initial stock level is assumed to be zero as a benchmark. I use their estimates as they are for 1926-

¹⁴ The data of US Bureau of Economic Analysis (1993) are prepared in two ways in valuation; currentcost valuation and constant-cost evaluation (at 1987 prices). I use the figures of constant-cost evaluation, converting them to 1990 prices based on OECD's deflator for capital formation.
1990.

Data for pre-1926 years are somewhat problematic. For these years, US Bureau of Economic Analysis (1993) provides only investment data (nothing about capital stock nor retirement data). This is presumably because the concern of the US Bureau of Economic Analysis is to provide capital stock estimates for 1926 and thereafter and they do not dare to publish entire data series about the earlier period for which their estimates may be less accurate.

In order to obtain capital stock data going back to 1870, I at first calculate average retirement ratio for 1832-1925 by solving the following equation for k.

$$S_{1926} = \sum_{t=1832}^{1925} (1-k)^{t-1832} I_t$$

where,

 S_{1926} = Capital stock in 1926;

k = Average retirement ratio for 1832-1925; and

 I_t = Capital investment in year t.

Then, applying this k to all the years between 1832 and 1925, I extrapolate capital stock

data for pre-1926 years by the perpetual inventory method.

<u>2. Labor</u>

Labor input in this paper is measured both by number of workers and manhours. For 1953 and thereafter, Kim and Lau (1994) have already prepared sufficient data.¹⁵ As follows, I construct new data series that cover pre-1953 years so as to splice them into Kim and Lau (1994).

<u>2-1 Japan</u>

While the data of average working hours for the entire economy is unavailable for the prewar period, average working hours per worker per month in the manufacturing industry is available for 1923-40 in Japan Statistical Association (1987). The same kind of data for the postwar period is available from *Monthly Labour Survey*, a monthly reference book published by the Japan Ministry of Labour, and I obtain the following OLS regression with them.

¹⁵ Because some data sources are updated, labor input data for 1953 and thereafter in this paper are not exactly same as that of Kim and Lau (1994).

ln AL = -4.08+0.930lnML R-squared = .958

(-26.4) (31.3)

AL=Average working hour per person for the overall economy (from Kim and Lau(1994)); and

ML=Average working hour per person for the manufacturing industry (from *Monthly Labour Survey*).

Applying the data from Japan Statistical Association (1987) for ML, average working hours per worker is estimated for 1923-40. For pre-1923 years, I use the same number as 1923.

The data for number of workers for the prewar period are available in Umemura et. al. (1988). By multiplying the number of workers with the average working hours obtained above, I also get the manhour-base labor input.

2.2 United States

Both the number of workers and manhours are available in Kendrick (1965). I splice

them to those of Kim and Lau (1994).

<u>3. GDP</u>

Maddison (1994) provides GDP data (measured at 1990 PPP dollars) for 1870-1994 and OECD (1999) does for 1860 and 1869-97. Splicing the former data to the latter data, I obtain GDP data for 1870-1997.

As for Japan, Maddison estimates are constantly 2.36 percent higher than OECD estimates for 1860, 69 and 70 (the reason for the difference is not clarified). So, in splicing, I simply divide Maddison's estimates by 1.0236. As for the United States, I take a loglinear regression to splice the two series.

4. Instrumental variables

As my estimates of *average schooling* covers for as long as over-100 years, the data availability for instrumental variables is also limited. I prepare here (in Table C-2) the world prices of major commodities and the total population of 17 advanced capitalist countries as candidates of instrumental variables. Historical oil price data since 1859 is available in *Energy Statistics Sourcebook*. The world prices of wheat, cotton, lead, and copper going back to the nineteenth century are obtained at the Web site from *NBER Historical Data* (http://nber.org/databases/macrohistory). I spliced them to more recent price data that are available from *CRB Commodity Year Book* and *Metal Bulletin*. The total population in 17 advanced capitalist countries is available in Maddison(1994)¹⁶

¹⁶ The 17 countries are: Austria, Belgium, Finland, France, Germany, Italy, Netherlands, Norway, Sweden, Switzerland, United Kingdom, Australia, Canada, New Zealand, United States, and Japan.

Figure 1. Average schooling^a by levels of education, Japan

Figure 2. Average schooling^a by levels of education, United States

Figure 3. Japan/US ratio in *average schooling*^a by levels of education

Note a. Average number of years of schooling per person in the working-age population.
b. Schooling of 1st to 8th grades.
c. Schooling of 9th to 12th grades.
d. Schooling of beyond 12th grade.

Appendix C. Data Series

Table C-1 GDP, conventional inputs, and average schooling² by levels of education, Japan and the United States

										Average sch	<i>ooling</i> [*] by leve	els of education (year/person)				
	Re	al GDP	Physic	al capital	Total l	hours worked	Persons	engaged		Japan		1	United State	s		
	(trillion 1	990 dollars)	(trillion	1990 Dollars)	(billion	manhours)	(billion	persons)	Primary	Secondary		Primary	Secondary	Tertiary		
	Japan	United States	Japan	United States	Japan	United States	Japan	United States	education ^b	education'	education ^d	education ^b	education	education		
870	0.025	0.140	0.00069	0.0890												
871		0.147	0.00074	0.102												
872		0.152	0.00080	0.115	70.0		21.7									
873		0.159	0.00085	0.130	70.1		21.7									
874		0.158	0.00092	0.143	70.2	37.6	21.7	13.0								
875		0.165	0.00098	0.154	70.3		21.8									
876		0.167	0.00105	0.163	70.6		21.9									
877		0.172	0.00113	0.173	71.0		22.0									
878		0.179	0.00121	0.183	71.3		22.1									
879		0.199	0.00130	0.196	71.5		22.1									
880		0.220	0.00140	0.208	71.5		22.1									
881		0.228	0.00150	0.222	71.7		22.2									
882		0.240	0.00161	0.248	71.8		22.2									
883		0.246	0.00172	0.273	72.1		22.3									
884		0.250	0.00185	0.294	72.6	52.1	22.5	17.9								
885	0.031	0.251	0.00198	0.313	73.0		22.6									
886	0.033	0.258	0.00212	0.328	73.2		22.7									
887	0.035	0.269	0.00228	0.342	73.2		22.7									
888	0.033	0.268	0.00244	0.369	73.8		22.9		1.13	0.00583	0.00197					
889	0.035	0.283	0.00270	0.395	74.5	61.2	23.1	21.0	1.21	0.00608	0.00210					
890	0.038	0.287	0.00293	0.423	75.1	63.4	23.3	21.7	1.27	0.00634	0.00225	6.31	0.116	0.0668		
891	0.036	0.298	0.00323	0.458	75.6	65.0	23.4	22.2	1.33	0.00664	0.00242	6.38	0.117	0.0690		
892	0.039	0.325	0.00362	0.489	76.1	67.2	23.5	22.9	1.39	0.00698	0.00258	6.46	0.119	0.0712		
893	0.039	0.310	0.00389	0.521	76.5	66.4	23.7	22.8	1.45	0.00740	0.00275	6.53	0.121	0.0732		
894	0.044	0.302	0.00425	0.553	76.9	64.2	23.8	22.4	1.51	0.00787	0.00292	6.60	0.124	0.0754		
895	0.044	0.335	0.00475	0.583	77.2	68.1	23.9	23.5	1.57	0.00855	0.00311	6.66	0.127	0.0776		
896	0.042	0.329	0.00522	0.613	77.7	68.1	24.0	23.6	1.65	0.00959	0.00330	6.72	0.130	0.0799		
897	0.043	0.358	0.00588	0.650	78.1	70.2	24.2	24.3	1.72	0.0109	0.00352	6.78	0.134	0.0823		
898	0.051	0.365	0.00676	0.688	78.7	70.6	24.4	24.5	1.80	0.0126	0.00373	6.84	0.138	0.0848		
899	0.047	0.395	0.00759	0.726	79.0	75.7	24.5	26.0	1.88	0.0150	0.00399	6.89	0.142	0.0875		
900	0.049	0.405	0.00812	0.769	79.4	76.6	24.6	26.4	1.97	0.0175	0.00426	6.94	0.146	0.0902		
901	0.051	0.446	0.00870	0.817	79.7	80.0	24.7	27.6	2.06	0.0203	0.00453	6.98	0.152	0.0929		
902	0.048	0.450	0.00924	0.866	80.1	83.4	24.8	28.8	2.16	0.0234	0.00480	7.03	0.158	0.0958		
903	0.051	0.470	0.00968	0.926	80.6	85.9	25.0	29.6	2.24	0.0271	0.00570	7.07	0.166	0.0988		
904	0.052	0.465	0.0102	0.992	81.0	84.7	25.1	29.5	2.32	0.0311	0.00661	7.12	0.175	0.102		
905	0.051	0.496	0.0106	1.049	81.2	88.9	25.2	30.9	2.42	0.0349	0.00750	7.16	0.185	0.105		
906	0.058	0.548	0.0113	1.106	81.6	92.4	25.3	32.1	2.52	0.0389	0.00842	7.20	0.196	0.109		
907	0.059	0.556	0.0120	1.172	82.1	94.5	25.4	32.8	2.63	0.0433	0.00915	7.24	0.208	0.112		
908	0.060	0.514	0.0129	1.244	82.3	90.6	25.5	32.1	2.74	0.0479	0.00995	7.28	0.221	0.116		
909	0.060	0.572	0.0139	1.303	82.5	95.5	25.5	33.7	2.86	0.0547	0.0107	7.32	0.235	0.120		
910	0.061	0.577	0.0147	1.368	82.7	98.1	25.6	34.6	2.98	0.0619	0.0115	7.36	0.250	0.124		

Note a. Average number of years of schooling per person in the working age population b. Schooling of 1st to 8th grades. c. Schooling of 9th to 12th grades. d. Schooling of beyond 12th grade.

Table C-1 (continued)

										n (year/perso				
	Re	al GDP		cal capital	Total l	hours worked	Person	s engaged		Japan			United	States
	(trillion 1	990 dollars)		1990 Dollars)	(billion	manhours)		n persons)	Primary	Secondary	Tertiary	Primary	Secondary	Tertiary
	Japan	United States	Japan	United States	Japan	United States	Japan	United States	education ^b	education'	education ^d	education	education	education
1	0.064	0.594	0.0161	1.442	83.1	100.0	25.7	35.2	3.09	0.0696	0.0125	7.40	0.265	0.128
2	0.066	0.620	0.0181	1.512	83.7	103.2	25.9	36.2	3.20	0.0778	0.0134	7.44	0.281	0.133
3	0.067	0.642	0.0195	1.586	84.3	104.1	26.1	36.7	3.33	0.0866	0.0144	7.48	0.297	0.138
4	0.065	0.597	0.0208	1.662	84.9	102.3	26.3	36.3	3.45	0.0958	0.0153	7.51	0.313	0.143
5	0.071	0.612	0.0220	1.720	85.5	101.5	26.5	36.5	3.55	0.105	0.0162	7.55	0.330	0.149
6	0.082	0.689	0.0229	1.772	86.4	108.7	26.7	38.9	3.65	0.115	0.0171	7.59	0.347	0.154
7	0.085	0.673	0.0241	1.835	87.0	111.0	26.9	39.6	3.74	0.126	0.0181	7.63	0.364	0.160
8	0.086	0.728	0.0261	1.900	87.6	110.9	27.1	39.9	3.85	0.139	0.0191	7.66	0.377	0.165
9	0.095	0.734	0.0287	1.958	87.6	107.3	27.1	40.0	3.96	0.153	0.0204	7.70	0.399	0.173
0	0.089	0.728	0.0324	2.017	88.1	108.5	27.3	40.0	4.08	0.169	0.0217	7.74	0.420	0.180
1	0.099	0.713	0.0364	2.091	88.5	98.0	27.4	38.0	4.19	0.185	0.0233	7.78	0.444	0.187
2	0.098	0.749	0.0391	2.153	89.2	105.2	27.6	40.0	4.31	0.202	0.0249	7.81	0.470	0.194
3	0.099	0.839	0.0420	2.226	89.9	113.4	27.8	42.5	4.43	0.220	0.0265	7.84	0.500	0.202
4	0.101	0.862	0.0437	2.317	89.2	111.0	28.1	41.9	4.54	0.239	0.0280	7.87	0.534	0.210
5	0.105	0.880	0.0462	2.405	90.1	115.0	28.3	43.1	4.65	0.258	0.0299	7.90	0.570	0.218
6	0.106	0.933	0.0491	2.495	91.3	119.0	28.6	44.3	4.75	0.287	0.0400	7.93	0.610	0.227
7	0.108	0.941	0.0527	2.576	90.9	118.6	28.8	44.4	4.85	0.315	0.0490	7.95	0.653	0.236
8	0.117	0.951	0.0565	2.652	91.0	119.7	29.1	44.9	4.95	0.343	0.0572	7.97	0.699	0.245
9	0.120	1.004	0.0599	2.726	91.5	122.1	29.3	46.1	5.04	0.371	0.0649	7.99	0.748	0.255
0	0.112	0.922	0.0635	2.811	90.4	114.2	29.6	44.0	5.14	0.398	0.0728	8.01	0.799	0.265
1	0.113	0.857	0.0667	2.880	90.7	105.2	30.0	41.2	5.23	0.425	0.0803	8.03	0.848	0.274
2	0.122	0.753	0.0699	2.914	91.9	93.6	30.2	38.0	5.31	0.449	0.0869	8.05	0.895	0.283
3	0.134	0.738	0.0748	2.916	95.4	93.8	30.7	38.3	5.39	0.473	0.0940	8.07	0.940	0.291
4	0.134	0.790	0.0810	2.903	96.8	93.9	31.1	41.4	5.47	0.496	0.101	8.09	0.984	0.298
5	0.138	0.845	0.0899	2.901	98.8	99.1	31.6	42.8	5.55	0.533	0.108	8.12	1.03	0.305
6	0.148	0.955	0.0983	2.905	100.4	108.3	32.1	45.5	5.61	0.566	0.114	8.14	1.07	0.310
7	0.155	0.992	0.107	2.936	101.3	113.0	32.2	46.6	5.64	0.589	0.112	8.17	1.11	0.315
B	0.165	0.956	0.119	2.969	102.1	105.1	32.3	44.8	5.67	0.616	0.112	8.20	1.15	0.319
9	0.192	1.025	0.136	2.987	103.1	109.9	32.7	46.2	5.70	0.653	0.118	8.22	1.19	0.323
0	0.197	1.098	0.159	3.013	104.7	114.1	32.9	47.7	5.73	0.689	0.123	8.25	1.23	0.326
1	0.200	1.279	0.178	3.041		123.3		51.0				8.28	1.26	0.332
2	0.199	1.511	0.195	3.093		132.2		53.4				8.30	1.30	0.339
3	0.202	1.784	0.209	3.154		137.8		54.3				8.31	1.33	0.348
4	0.193	1.921	0.227	3.199		136.0		53.2				8.32	1.35	0.358
5	0.096	1.850	0.244	3.231		128.4		51.6				8.33	1.39	0.370
6	0.105	1.497	0.199	3.264		127.7		54.0	0.17	1.00	0.107	8.37	1.47	0.382
7	0.113	1.477	0.203	3.259		129.9		56.1	6.17	1.00	0.167	8.39	1.52	0.396
8	0.130 0.139	1.528 1.533	0.211 0.219	3.306 3.373		130.8 125.9		57.2 55.6	6.23 6.28	1.04 1.08	0.164 0.165	8.40 8.41	1.57	0.411 0.428
9 0	0.139	1.533	0.219	3.373		125.9		55.6 57.2	6.28	1.08	0.165	8.41 8.43	1.62	0.428
1	0.153	1.803	0.226	3.445		128.2		57.2 59.4	6.38	1.12	0.168	8.43	1.67	0.446
2	0.172	1.803				132.8		59.4 60.0	6.43	1.16	0.173	8.43		
2 3	0.192	1.873	0.234 0.242	3.644 3.751	90.0	133.8 134.6	39.1	61.0	6.49	1.21	0.179	8.44	1.76 1.81	0.481
5	0.206	1.937	0.242	3.869	90.0 91.7	134.6	39.1	60.0	6.55	1.26	0.186	8.45	1.81	
	0.218					125.7				1.31				0.515
5	0.236	2.024 2.061	0.264 0.276	3.994 4.117	94.2 97.9	135.6 139.5	40.9 41.7	62.0 63.8	6.60 6.65	1.35	0.203 0.210	8.47 8.47	1.91 1.96	0.532
5														0.549
7	0.273	2.097	0.289	4.256	100.1	137.5	42.8	64.1	6.72	1.44	0.217	8.48	2.00	0.565
8	0.289	2.088	0.307	4.395	100.3	132.8	43.0	63.0	6.77	1.49	0.224	8.48	2.05	0.579
9 0	0.315	2.192 2.232	0.328	4.508	102.1	135.5	43.4	64.6	6.83	1.54	0.231 0.240	8.48 8.48	2.11	0.595
9	0.356	2.232	0.352	4.634	105.7	136.5	44.4	65.8	6.89	1.59	0.240	8.48	2.17	0.611

Та	ble	C - 1	(concluded)	
та	DIe	C - 1	(concluded)	

										Average s	<i>chooling</i> [*] by l	evels of educa	tion (year/pe	rson)
		alGDP		cal capital		ours worked		ns engaged		Japan			United States	
	(trillion 1	990 dollars)	(trillion	1990 Dollars)	(billion	manhours)	(billio	n persons)	Primary	Secondary		Primary	Secondary	Tertiary
	Japan	United States	Japan	United States	Japan	United States	Japan	United States			education ^d	education ^b	education	<u>e</u> ducation ^d
1961	0.399	2.284	0.385	4.770	106.3	136.5	45.0	65.7	6.92	1.63	0.251	8.48	2.22	0.630
1962	0.435	2.412	0.426	4.904	106.3	138.8	45.5	66.7	6.93	1.67	0.259	8.48	2.27	0.645
1963	0.472	2.508	0.477	5.051	106.6	141.4	45.9	67.8	6.99	1.72	0.267	8.47	2.32	0.664
1964	0.527	2.646	0.536	5.216	107.6	144.2	46.6	69.3	7.04	1.77	0.275	8.47	2.38	0.684
1965	0.557	2.797	0.601	5.412	107.9	148.3	47.3	71.1	7.10	1.84	0.286	8.46	2.43	0.707
1966	0.617	2.963	0.670	5.648	110.3	151.3	48.3	72.9	7.16	1.90	0.300	8.46	2.49	0.732
1967	0.685	3.033	0.745	5.910	112.4	152.0	49.2	74.4	7.20	1.96	0.316	8.46	2.54	0.760
1968	0.773	3.158	0.836	6.167	114.1	154.3	50.0	75.9	7.25	2.01	0.334	8.46	2.59	0.790
1969	0.870	3.247	0.945	6.435	113.6	157.9	50.4	77.9	7.29	2.06	0.353	8.45	2.64	0.822
1970	0.963	3.254	1.075	6.711	113.0	157.0	50.9	78.7	7.31	2.11	0.371	8.45	2.69	0.856
1971	1.008	3.348	1.228	6.969	112.7	157.5	51.2	79.4	7.34	2.16	0.391	8.44	2.74	0.893
1972	1.093	3.519	1.389	7.217	112.1	163.4	51.3	82.2	7.37	2.21	0.412	8.44	2.78	0.930
1973	1.181	3.701	1.563	7.473	114.0	168.8	52.6	85.1	7.40	2.25	0.431	8.43	2.82	0.968
1974	1.166	3.687	1.737	7.773	110.0	170.3	52.4	86.8	7.42	2.30	0.451	8.43	2.86	1.01
1975	1.203	3.672	1.907	8.072	107.8	166.6	52.2	85.8	7.45	2.35	0.472	8.43	2.90	1.05
1976	1.250	3.851	2.074	8.314	110.2	172.3	52.7	88.8	7.47	2.39	0.494	8.42	2.94	1.09
1977	1.305	4.015	2.238	8.552	111.8	178.1	53.4	92.0	7.50	2.44	0.516	8.42	2.97	1.14
1978	1.374	4.214	2.409	8.814	113.5	184.9	54.1	96.0	7.52	2.48	0.537	8.42	3.00	1.19
1979	1.449	4.319	2.595	9.127	115.7	189.7	54.8	98.8	7.53	2.52	0.557	8.42	3.03	1.23
1980	1.490	4.295	2.793	9.453	116.6	188.5	55.4	99.3	7.55	2.56	0.576	8.42	3.06	1.28
1981	1.537	4.367	3.003	9.763	117.0	190.0	55.8	100.4	7.60	2.62	0.598	8.42	3.09	1.34
1982	1.584	4.279	3.218	10.072	118.0	186.2	56.4	99.5	7.60	2.65	0.616	8.41	3.12	1.39
1983	1.621	4.424	3.427	10.336	120.1	189.8	57.3	100.8	7.62	2.69	0.634	8.41	3.15	1.45
1984	1.685	4.692	3.635	10.558	121.9	198.7	57.7	105.0	7.65	2.73	0.651	8.40	3.17	1.51
1985	1.759	4.846	3.855	10.882	121.8	201.1	58.1	107.1	7.67	2.77	0.669	8.39	3.20	1.56
1986	1.810	4.987	4.066	11.225	122.2	205.1	58.5	109.6	7.68	2.81	0.685	8.38	3.23	1.62
1987	1.885	5.121	4.302	11.529	124.0	210.4	59.1	112.4	7.70	2.85	0.701	8.37	3.26	1.68
1988	2.002	5.314	4.536	11.822	126.1	214.5	60.1	115.0	7.73	2.89	0.717	8.36	3.30	1.74
1989	2.099	5.489	4.813	12.126	127.4	218.3	61.3	117.3	7.75	2.92	0.733	8.34	3.33	1.80
1990	2.205	5.554	5.128	12.444	128.0	218.7	62.5	117.9	7.78	2.96	0.752	8.33	3.36	1.86
1991	2.289	5.499	5.472		128.4	215.6	63.7	116.9	7.81	3.00	0.774	0.00	0.00	1.00
1992	2.312	5.653	5.876		127.1	217.4	64.4	117.5	7.83	3.04	0.798			
1993	2.320	5.790	6.226		124.1	221.3	64.5	119.3	7.86	3.04	0.824			
1994	2.325	6.005	6.538		123.6	225.9	64.5	121.1	7.88	3.11	0.852			
1995	2.369	6.159	6.835		123.0	228.0	64.6	122.9	7.90	3.15	0.883			
1995	2.369	6.379	0.835		124.0	230.6	64.9	122.9	7.90	3.15	0.085			
1990	2.482	6.630			124.8	230.8	65.6	124.7						

Table C-2 Candidates of instrumental variables

							To	tal Populat	tion (thousa	nd persons)		W orking-	age Populati	ion (thousand persons)		
							Advanced	United	States	Ja	ipan	United	States	Ja	ipan	
	W heat price (cent/bushel)	Cotton price (cent/pound)	Iron price (dollar/long		Copper price d (cent/pound)	Crude oil price (dollar/barrel)	17 capitalist countries ^a	male	fem ale	male	female	male	fem ale	male	fem ale	
1870	96.04	15.19	33.23	6.26	20.68	3.90	224,276	20,174	19,731			12,054	10,764			
1871	122.38	17.95	35.08	6.08	22.63	4.40	225,599	20,710	20,228	17,211	17,058	12,312	11,090			
1872	124.71	22.18	48.94	6.31	32.99	3.75	227,766	21,246	20,726	17,303	17,148	12,607	11,448			
1873	117.00	19.16	42.80	6.32	28.91	1.80	230,231	21,784	21,222	17,388	17,237	12,888	11,817			
1874	108.63	16.47	30.19	6.01	23.23	1.15	232,687	22,322	21,718	17,471	17,321	13,238	12,163			
1875	101.75	14.93	25.54	5.85	22.52	0.97	235,210	22,860	22,213	17,593	17,443	13,457	12,522			
1876	103.00	12.24	22.19	6.13	20.93	2.52	237,963	23,399	22,708	17,757	17,602	13,788	12,912			
1877	127.50	11.71	18.92	5.49	18.65	2.38	240,795	23,939	23,202	17,904	17,759	14,088	13,318			
1878	97.17	10.79	17.67	3.61	16.40	1.17	243,548	24,479	23,695	18,056	17,913	14,434	13,718			
1879	99.46	11.42	21.72	4.14	17.16	0.86	246,223	25,021	24,187	18,151	18,014	14,791	14,144			
1880	105.71	12.04	28.48	5.04	20.18	0.94	248,734	25,573	24,689	18,311	18,179	15,129	14,523			
1881	115.04	11.54	25.17	4.81	18.20	0.92	251,463	26,241	25,301	18,460	18,333	15,556	14,877			
1882	117.83	11.88	25.77	4.91	18.52	0.78	254,206	26,910	25,911	18,620	18,492	15,995	15,252	11,513	11.014	
1883	101.70	10.35	22.42	4.32	15.87	1.10	256,997	27,579	26,521	18,822	18,698	16,446	15,636	11,601	11,101	
1884	82.98	10.91	19.81	3.74	13.83	0.85	259,997	28,249	27,130	18,997	18,881	16,948	16,052	11,670	11,175	
1885	83.66	10.46	17.99	3.95	11.13	0.88	262,846	28,920	27,738	19,118	19,058	17,296	16,374	11,754	11,272	
1886	76.72	9.26	18.71	4.63	11.03	0.71	265,588	29,593	28,345	19,202	19,088	17,795	16,812	11,721	11,230	
1887	75.71	10.18	20.93	4.49	11.23	0.67	268,291	30,266	28,951	19,373	19,254	18,251	17,247	11,788	11,291	
1888	89.76	10.23	18.88	4.44	16.54	0.65	271,146	30,939	29.557	19.605	19.476	18,740	17.697	11.941	11.446	
1889	85.00	10.66	17.76	3.92	13.70	0.77	274,145	31,614	30,161	19,823	19,693	19,182	18,129	12,084	11,598	
1890	88.96	11.09	18.41	4.48	15.66	0.77	277,028	32,290	30,766	19,997	19,872	19,894	18,423	12,201	11,732	
1891	96.42	8.62	17.52	4.35	12.90	0.56	279,809	32,950	31,411	20,126	20,009	20,233	18,750	12,288	11,837	
1892	79.06	7.70	15.75	4.09	11.41	0.51	282,683	33,609	32,057	20,312	20,188	20,585	19,086	12,200	11,968	
1893	67.38	8.33	14.52	3.73	10.85	0.60	285,523	34,268	32,702	20,459	20,333	20,972	19,512	12,516	12,087	
1894	55.77	7.00	12.66	3.29	9.54	0.72	288,615	34,927	33,348	20,671	20,541	21,378	19,927	12,657	12,239	
1895	60.18	7.28	13.10	3.23	10.78	1.09	291,754	35,585	33,995	20,878	20,772	21,803	20,343	12,797	12,415	
1896	63.81	7.93	12.96	2.98	10.98	0.96	294,954	36,243	34,642	21,083	20,984	22,238	20,805	12,934	12,110	
1897	81.30	7.15	12.10	3.58	11.29	0.68	298,389	36,901	35,288	21,326	21,234	22,686	21,276	13,095	12,756	
1898	88.78	5.98	11.66	3.78	12.03	0.80	301,871	37,558	35,936	21,569	21,201	23,145	21,2764	13,197	12,958	
1899	70.62	6.59	19.36	4.47	17.60	1.13	305,259	38,215	36,584	21,779	21,741	23,613	22,254	13,341	13,117	
1900	70.43	9.64	19.98	4.37	16.53	1.19	308,549	38,867	37,227	22,035	22,022	24,094	22,754	13,474	13,263	
1901	71.55	8.62	15.87	4.33	16.54	0.96	312,210	39,649	37,935	22,340	22,322	24,666	23,250	13,604	13,388	
1902	73.71	8.94	22.19	4.07	11.88	0.80	316,163	40,483	38,680	22,632	22,614	25,276	23,250	13,004	13,541	
1902	77.45	11.20	19.92	4.07	13.43	0.94	319,991	40,483	39,370	22,032	22,922	25,270	24,264	13,703	13,541	
1904	100.45	12.11	15.57	4.24	12.98	0.86	323,871	42,089	40,077	23,160	23,184	26,488	24,204	14,083	13,710	
1904	97.08	9.57	17.89	4.32	15.68	0.62	327,713	42,085	40.857	23,338	23,184	27,148	25,337	14,033	14,011	
1905	76.94	11.03	20.98	5.66	19.61	0.73	331,535	42,905	40,857	23,538	23,409	27,148	25,883	14,174	14,011	
	87.21	11.88	20.98	5.33	20.68	0.73	331,535	43,841 44,682	41,609 42,326	23,522	23,809	27,813	25,883	14,241 14,349	14,100	
1907	97.26															
1908		10.46	17.70	4.20	13.42 13.33	0.72	339,732	45,594	43,116	24,056	24,170	29,141	26,986	14,444	14,332	
1909	113.03	12.08	17.81	4.27		0.70	344,025	46,545	43,945	24,385	24,466	29,851	27,582	14,595	14,459	
1910	102.63	15.06	17.36	4.45	13.05	0.61	348,501	47,554	44,853	24,720	24,769	30,580	28,220	14,760	14,593	

Note a. Austria, Belguim, Denmark, Finland, France, Germany, Italy, Netherlands, Norway, Sweden, Switzerland, United Kingdom, Australia, Canada, New Zealand, United States, and Japa

Table C-2 (continued)

								otal Popula	tion (thousa	nd persons)	W orking-	age Popula	tion (thousar	on (thousand persons)	
							Advanced	-	States		apan		States	-	apan	
	W heat price (cent/bushel)	Cotton price (cent/pound)	lron price (dollar/long		Copper price d (cent/pound)	Crude oil price (dollar/barrel)	17 capitalist countries ^a	male	fem ale	male	fem ale	m ale	fem ale	male	fem ale	
1911	91.98	13.01	15.71	4.42	12.63	0.61	352,613	48,290	45,573	25,080	25,099	31,074	28,705	14,930	14,757	
1912	97.90	11.51	16.56	4.47	16.55	0.74	356,461	49,025	46,310	25,469	25,457	31,556	29,192	15,104	14,911	
1913	88.43	12.80	17.07	4.37	15.47	0.95	360,788	49,957	47,268	25,850	25,823	32,145	29,813	15,281	15,094	
1914	98.76	11.19	15.33	3.86	13.36	0.81	365,274	50,883	48,228	26,215	26,173	32,721	30,429	15,432	15,240	
1915	128.83	10.13	16.10	4.67	17.50	0.64	367,959	51,573	48,973	26,585	26,524	33,133	30,905	15, 644	15, 442	
1916	133.70	14.45	21.13	6.86	27.56	1.10	369,659	52,234	49,727	26,919	26,849	33,521	31,437	15,860	15,660	
1917	221.75	23.48	34.16	8.79	27.55	1.56	371,128	52,728	50,480	27,217	27,148	33,772	31,847	16,043	15,857	
1918	220.23	31.70	30.79	7.40	25.02	1.98	371,398	52,034	51,234	27,400	27,311	32,721	32,361	16,152	15,963	
1919	231.98	32.26	27.89	5.76	19.09	2.01	372,501	53,103	51,411	27,554	27,479	33,779	32,464	16,244	16,064	
1920	243.76	33.90	37.65	7.96	17.52	3.07	376,014	54,291	52,170	28,044	27,919	34,739	33,004	16,433	16,173	
1921	136.17	15.06	23.40	4.54	12.67	1.73	380,688	55,292	53,246	28,412	28,254	35,365	33,699	16,590	16,286	
1922	120.17	21.22	24.09	5.73	13.57	1.61	384,626	55,886	54,163	28,800	28,590	35,675	34,324	16,831	16,460	
1923	111.10	29.39	25.47	7.27	14.61	1.34	389,129	56,861	55,086	29,177	28,942	36,358	34,970	17,073	16,663	
1924	123.78	28.68	21.24	8.10	13.19	1.43	393,996	57,985	56,124	29,569	29,307	37,164	35,709	17,352	16,914	
1925	163.04	23.44	21.97	9.02	14.24	1.68	398,280	58,813	57,016	30,013	29,724	37,744	36,369	17,631	17,161	
1926	150.89	17.53	21.66	8.42	13.99	1.88	402,507	59,588	57,809	30,521	30,220	38,341	37,001	17,948	17,463	
1927	135.05	17.51	20.64	6.76	13.10	1.30	406,543	60,397	58,638	30,982	30,678	38,982	37,663	18,269	17,773	
1928	129.11	20.02	19.76	6.31	14.75	1.17	410,442	61,101	59,408	31,449	31,146	39,579	38,333	18,589	18,085	
1929	121.20	19.13	20.24	6.83	18.37	1.27	413,977	61,680	60,087	31,891	31,570	40,111	38,978	18,892	18,362	
1930	94.02	13.61	19.18	5.52	13.16	1.19	418,023	62,297	60,780	32,390	32,060	40,692	39,678	19,177	18,630	
1931	66.47	8.57	17.75	4.24	8.23	0.65	421,557	62,726	61,314	32,899	32,559	41,128	40,174	19,468	18,909	
1932	52.43	6.43	16.15	3.18	5.63	0.87	424,618	63,070	61,770	33,355	33,079	41,526	40,651	19,680	19,182	
1933	73.58	8.70	17.01	3.87	7.14	0.67	427,571	63,384	62,195	33,845	33,587	41,934	41,143	19,903	19,413	
1934	94.89	12.39	19.83	3.86	8.56	1.00	430,497	63,726	62,648	34,294	34,015	42,383	41,679	20,122	19,635	
1935	96.50	11.88	20.24	4.06	8.77	0.97	433,736	64,110	63,140	34,734	34,520	42,840	42,223	20,466	20,018	
1936	109.25	12.12	21.00	4.71	9.61	1.09	436,643	64,460	63,593	35,103	35,011	43,276	42,764	20,680	20,321	
1937	120.67	11.44	23.97	6.01	13.34	1.18	439,782	64,790	64,035	35,128	35,503	43,708	43,288	20,474	20,641	
1938	77.08	8.65	23.01	4.74	10.14	1.13	442,849	65,235	64,590	35,125	35,888	44,167	43,828	20,343	20,929	
1939	77.33	9.48	22.57	5.05	11.11	1.02	446,077	65,713	65,167	35,226	36,154	44,625	44,373	20,495	21,201	
1940	90.33	10.38	23.68	5.18	11.59	1.02	448,344	66,184	65,770	35,387	36,546	45,066	44,919	20,400	21,503	
1940	103.25	14.45	24.41	5.79	11.95	1.14	450,267	65,999	66,482	34,704	36,974	45,186	45,273	20,818	21,848	
1941	123.88	20.15	24.41	6.48	11.94	1.14	453,827	65,622	67,263	34,704	37,511	44,836	45,672	21,067	22,208	
1942	150.48	21.36	24.43	6.50	11.94	1.20	457,047	64,928	68,193	34,771	38,116	43,767	46,138	21,319	22,567	
1943	170.21	21.89	24.43	6.50	11.94	1.21	460,378	64,923	69,019	34,771	38,439	41,975	40,138	21,519	22,935	
1944	177.45	23.33	25.18	6.50	11.94	1.22	463,845	64,352	69,893	33,894	38,439	41,973	47,338	21,390	22,933	
1945	209.79	31.98	27.04	8.11	14.01	1.41		69,296	70,758	34,905	38,209		48,088	22,243	23,324	
1940	300.02	36.24	27.04	8.11	21.23	1.41	469,439 475,862	69,296 71,266	70,758	34,905	38,209	46,238 47,249	47,901 48,346	22,243	23,734	
	278.96	35.53	38.32	14.07	22.33	2.60	475,862 483,924	72,592	73,501	39,129	40,873	47,249	48,840	23,120	24,107	
1948																
1949	246.92	33.12	38.32	15.36	19.46	2.54	491,259	73,812	74,853	40,063	41,710	48,111	49,255	23,611	25,050	
1950	253.75	38.22	38.32	13.30	21.52	2.51	497,885	74,813	76,422	40,812	42,388	48,474	49,574	24,137	25,521	
1951	267.87	44.30	63.76	17.50	24.52	2.53	504,287	75,533	77,777	41,489	43,052	48,271	49,946	24,696	26,082	
1952	268.66	41.04	68.92	16.47	24.52	2.53	510,423	76,506	79,181	42,128	43,680	48,275	50,341	25,222	26,613	
1953	244.14	34.60	61.97	13.49	29.18	2.68	516,461	77,672	80,570	42,721	44,260	48,493	50,726	25,701	27,110	
1954	190.63	35.91	52.85	14.05	30.09	2.78	522,998	79,111	82,053	43,344	44,895	48,925	51,123	26,116	27,535	
1955	177.25	36.55	56.25	14.70	36.76	2.77	529,367	80,741	83,567	43,861	45,415	49,538	51,546	26,654	28,075	
1956	162.76	37.84	66.02	15.38	35.34	2.79	535,893	82,183	85,123	44,301	45,871	50,023	52,039	27,221	28,667	
1957	172.79	38.99	69.38	14.07	27.93	3.09	542,633	83,635	86,736	44,671	46,258	50,516	52,577	27,780	29,253	
1958	180.59	35.95	66.39	12.27	26.28	3.01	549,147	85,043	88,277	45,078	46,689	51,188	53,249	28,308	29,812	
1959	166.10	34.00	52.79	12.10	29.26	2.90	555,802	86,454	89,835	45,504	47,137	51,826	53,815	28,855	30,391	
1960	187.28	34.41	52.79	12.22	29.84	2.88	562,099	88,632	91,347	45,878	47,541	52,586	54,642	29,219	30,783	

(continued)

Table C-2	(concluded)
	•

							٦	otal Popula	tion (thousa	nd persons)		W orking-	age Populat	tion (thousan	d persons)
							Advanced	United	States	Ja	ipan	United	States	Ja	pan
	W heat price	Cotton price	Iron price			Crude oil price		m ale	female	male	female	male	female	male	female
1000	(cent/bushel)	(cent/pound)				(dollar/barrel)	countries ^a	00.000	01.047	45,878	47,541	52,586	54,642	29,219	30,783
1960	187.28	34.41	52.79	12.22	29.84	2.88	562,099	88,632	91,347						
1961	192.86	34.55	54.98	11.55	28.68	2.89	567,084	90,045	92,947	46,300	47,987	53,112	55,240	29,576	31,132
1962	202.89	32.29	51.77	10.84	28.99	2.90	576,265	91,304	94,467	46,733	48,447	54,095	56,317	30,350	31,889
1963	201.77	32.67	48.49	11.48	29.01	2.89	583,136	92,548	95,935	47,208	48,947	54,972	57,267	31,169	32,695
1964	215.15	33.50	48.49	14.39	36.77	2.88	589,821	93,774	97,367	47,710	49,471	55,850	58,216	32,005	33,526
1965	190.63	34.84	48.49	15.30	43.45	2.86	596,287	94,835	98,691	48,244	50,031	56,675	59,150	32,709	34,219
1966	209.58	34.35	47.13	13.96	47.87	2.88	602,186	95,640	99,936	48,611	50,425	57,398	60,166	33,268	34,792
1967	207.35	34.35	41.72	13.04	40.25	2.92	607,654		101,144	49,180	51,016	58,078	61,248	33,758	35,297
1968	198.43	35.47	39.03	13.38	45.21	2.94	612,755		102,274	49,739	51,592	59,020	62,330	34,195	35,747
1969	191.74	36.99	36.10	14.65	49.92	3.09	618,619		103,385	50,334	52,202	60,028	63,418	34,598	36,162
1970	185.05	37.28	47.04	14.86	48.35	3.18	624,621		104,693	50,918	52,802	61,353	64,583	35,004	36,562
1971	199.54	37.37	42.16	13.60	41.27	3.39	631,624	100,738		51,607	53,538	62,748	65,782	35,378	36,904
1972	244.14	38.04	39.53	13.70	41.18	3.39	637,664	101,984		52,822	54,773	64,199	67,019	36,070	37,721
1973	628.73	41.62	53.16	17.54	55.40	3.89	643,247	102,962		53,606	55,498	65,460	68,213	36,464	38,021
1974	851.69	50.29	58.63	20.49	60.09	6.87	648,373	103,890	109,452	54,376	56,197	66,687	69,389	36,878	38,290
1975	588.60	48.91	70.00	17.19	44.70	7.67	652,909	104,876		55,091	56,849	67,865	70,540	37,274	38,533
1976	477.12	46.45	68.70	17.97	48.25	8.19	656,864	105,859	111,704	55,658	57,436	69,138	71,770	37,559	38,773
1977	360.07	50.85	66.70	20.95	46.32	8.57	660,916	106,880	112,880	56,184	57,981	70,331	72,939	37,852	39,011
1978	471.55	46.58	60.64	21.57	47.38	9.00	665,540	107,963	114,132	56,682	58,508	71,508	74,132	38,177	39,277
1979	532.86	47.09	72.44	28.89	58.90	12.64	669,865	109,132	115,435	57,151	59,004	72,683	75,298	38,523	39,552
1980	605.32	47.06	84.19	25.24	62.48	21.59	674,876	110,399	116,826	57,594	59,467	73,812	76,415	38,942	39,893
1981	605.32	46.88	76.09	22.70	54.61	31.77	679,420	111,503	117,963	58,002	59,882	74,746	77,247	39,159	40,042
1982	491.62	45.28	81.01	19.68	49.73	28.52	683,629	112,579	119,085	58,402	60,291	75,568	77,980	39,606	40,404
1983	435.88	45.41	74.08	17.20	52.89	26.19	687,518	113,647	120,145	58,790	60,694	76,338	78,625	40,066	40,767
1984	367.88	49.43	71.42	17.82	47.59	25.88	691,265	114,670	121,155	59,155	61,080	77,152	79,312	40,571	41,168
1985	298.76	48.91	70.03	16.78	48.49	24.09	695,169	115,730	122,194	59,497	61,552	77,960	80,014	41,031	41,475
1986	243.02	49.43	67.65	17.11	48.47	12.51	699,378	116,865	123,268	59,788	61,871	78,851	80,739	41,457	41,787
1987	243.02	52.75	68.70	20.55	55.10	15.40	703,585	117,961	124,328	60,058	62,181	79,522	81,285	41,894	42,103
1988	454.83	61.47	71.46	21.55	69.00	12.58	708,201	119,086	125,413	60,302	62,443	80,138	81,786	42,330	42,428
1989	536.21	80.39	81.62	21.87	72.68	15.86	713,410	120,278	126,541	60,515	62,690	80,697	82,220	42,702	42,727
1990	589.72	75.78	91.42	23.96	69.94	20.03	717,804	121,239	127,471	60,697	62,914	81,403	82,834	42,968	42,936
1991	400.20	60.01	97.97	19.92	64.89	16.54	723,429			60,934	63,167			43,200	43,109
1992	603.09	51.86	93.57	19.59	63.90	15.99	730,459			61,155	63,413			43,380	43,238
1993	468.21	47.91	84.17			14.25	736,811			61,317	63,621			43,530	43,340
1994	491.62	44.62	76.99	24.31	82.66	13.19	743,688			61,446	63,819			43,643	43,398
1995	599.75			26.36	96.63	14.62	,			61,574	63,996			43,734	43,430