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Abstract

We construct estimates of educational attainment for a sample of OECD countries using previously

unexploited sources. We follow a heuristic approach to obtain plausible time profiles for attainment

levels by removing sharp breaks in the data that seem to reflect changes in classification criteria. We

then construct indicators of the information content of our series and a number of previously available

data sets and examine their performance in several growth specifications. We find a clear positive

correlation between data quality and the size and significance of human capital coefficients in growth

regressions. Using an extension of the classical errors in variables model, we construct a set of meta-

estimates of the coefficient of years of schooling in an aggregate Cobb-Douglas production function.

Our results suggest that, after correcting for measurement error bias, the value of this parameter is

well above 0.50.
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1. Introduction

Recent empirical investigations of the contribution of human capital accumulation to economic

growth have often produced discouraging results. Educational variables frequently turn out to be

insignificant or to have the "wrong" sign in growth regressions, particularly when these are estimated

using first-differenced or panel specifications.1 The accumulation of such negative results in the recent

literature has fueled a growing skepticism about the role of schooling in the growth process, and has

even led some researchers (notably Pritchett, 1999) to seriously consider possible reasons why

educational investment may fail to contribute to productivity growth.

In this paper we provide evidence that these counterintuitive results on human capital and growth

can be attributed to deficiencies in the data, and show that improvements in data quality lead to larger

and more precise estimates of schooling coefficients in growth regressions. In the first part of the

paper, we review the main schooling data sets that have been used in the empirical growth literature

and document a number of suspicious features and inconsistencies that suggest that these data

contain substantial measurement error. Next, we attempt to increase the signal-to-noise ratio in the

data by constructing new schooling series for a sample of 21 OECD countries. These series make use

of previously unexploited sources, including unpublished data supplied by the OECD and by a

number of national statistical agencies, and rely on a heuristic procedure to obtain plausible time

profiles for attainment levels by removing sharp breaks in the data that can only be due to changes in

classification criteria. Following Krueger and Lindhal (2001), we use estimates of reliability ratios to

measure the amount of measurement error in different cross-country data sets and find that, for the

case of the OECD sample we work with, our series have the highest information content of all those

available, followed closely by the attainment estimates constructed by Cohen and Soto (2001).

In the final part of the paper, we systematically compare the performance of our series and several

other attainment data sets in a number of standard growth specifications and find a clear positive

correlation between estimated schooling coefficients and reliability ratios. Finally, we use an extension

of the classical errors-in-variables model to construct estimates of reliability ratios that allow for

correlated measurement errors and to obtain a set of meta-estimates of the coefficient of schooling that

correct for attenuation bias. The exercise suggests that the coefficient of years of schooling in an

aggregate Cobb-Douglas production function is well above 0.50.

1 See among others Knight, Loayza and Villanueva (1993), Benhabib and Spiegel (1994), Islam (1995), Caselli et al
(1996), Hamilton and Monteagudo (1998) and Pritchett (1999).

2



2. International data on educational attainment: a brief survey and some worrisome features

This section reviews the available cross-country data on educational attainment levels and

documents some of the problems they display. We focus primarily on panel data sets that were

available as of the mid 1990s because most of the existing empirical studies on the growth effects of

human capital have relied on these series.

Most governments gather information on a number of educational indicators through population

censuses and labour force and specialized surveys. Various international organizations collect these

data and compile comparative statistics that provide easily accessible and (supposedly) homogeneous

information for a large number of countries. Perhaps the most comprehensive regular source of

international educational statistics is UNESCO's Statistical Yearbook. This publication provides

reasonably complete yearly time series on school enrollment rates by level of education for most

countries in the world and contains some data on the educational attainment of the adult population,

government expenditures on education, teacher/pupil ratios and other variables of interest. Other

UNESCO publications contain additional information on educational stocks and flows and some

convenient compilations. Other useful sources include the UN's Demographic Yearbook, which also

reports educational attainment levels by age group, and the IMF's Government Finance Statistics, which

provides data on public expenditures on education. Finally, the OECD also compiles educational

statistics both for its member states and occasionally for larger groups of countries.2

The UNESCO enrollment series have been used in a large number of empirical studies of the link

between education and productivity. In many cases this choice reflects the easy availability and broad

coverage of these data rather than their theoretical suitability for the purpose of the study. Enrollment

rates can probably be considered an acceptable, although imperfect, proxy for the flow of educational

investment. On the other hand, these variables are not necessarily good indicators of the existing stock

of human capital since average educational attainment (which is often the more interesting variable

from a theoretical point of view) responds to investment flows only gradually and with a very

considerable lag.

In an attempt to remedy these shortcomings, a number of researchers have constructed data sets

that attempt to measure directly the educational stock embodied in the population or labour force of

large samples of countries. One of the earliest attempts in this direction is due to Psacharopoulos and

Arriagada (P&A, 1986) who, drawing on earlier work by Kaneko (1986), report data on the

educational composition of the labour force in 99 countries and provide estimates of average years of

schooling. In most cases, however, P&A provide only one observation per country.

More recently, there have been various attempts to construct more complete data sets on

educational attainment that provide broader temporal coverage and can therefore be used in growth

accounting and other empirical exercises. This requires panel data for as many countries and years as

possible.

2 See especially its annual Education at a Glance report.
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2.1. Educational data bases: coverage and construction

The existing panel data sets on educational attainment have been constructed by combining the

available data on attainment levels with the UNESCO enrollment figures to obtain series of average

years of schooling and of the educational composition of the population or the labour force.

Enrollment data are transformed into attainment figures through a perpetual inventory method or

some short-cut procedure that attempts to approximate it. We are aware of are the following studies:

• Kyriacou (1991)  provides estimates of the average years of schooling of the labour force (H) for a

sample of 111 countries. His data cover the period 1965-1985 at five-year intervals. He uses UNESCO

data and P&A's attainment figures to estimate an equation linking H to lagged enrollment rates. This

equation is then used to construct an estimate of H for other years and countries.

• Lau, Jamison and Louat (1991) and Lau, Bhalla and Louat (1991). These studies use a perpetual

inventory method and annual data on enrollment rates to construct estimates of attainment levels for

the working-age population. Their perpetual inventory method uses age-specific survival rates

constructed for representative countries in each region but does not seem to correct enrollment rates

for dropouts or repeaters. "Early" school enrollment rates are estimates constructed through backward

extrapolation of post-1960 figures. They do not use or benchmark against available census figures.

• Barro and Lee (B&L 1993) construct attainment series by combining census data and enrollment

rates, both taken primarily from UNESCO. To estimate attainment levels in years for which census

data are not available, they use a combination of interpolation between available census observations

(where possible) and a perpetual  inventory method that can be used to estimate changes from nearby

(either forward or backward) benchmark observations. Their version of the perpetual inventory

method makes use of data on gross enrollments3 and on the age composition of the population (to

estimate survival rates). The data set contains observations for 129 countries and covers the period

1960-85 at five-year intervals. Besides the average years of education of the population over 25, Barro

and Lee report information on the fraction of the (male and female) population that has reached and

completed each educational level. In a more recent paper (B&L, 1996), the same authors present an

update and extension of their previous work that has been used in a large number of empirical

applications. The revised database, which is constructed following the same procedure as the

previous one (except for the use of net rather than gross enrollment rates), extends the attainment

series to 1990 and to the population over 15 years of age, and provides new information on quality

indicators such as the pupil/teacher ratio, public educational expenditures per student and the length

3 The gross enrollment rate is defined as the ratio between the total number of students enrolled in a given
educational level and the size of the population which, according to its age, "should" be enrolled in the course.
The net enrollment rate is defined in an analogous manner but counting only those students who belong to the
relevant age group. Hence, older students (including repeaters) are excluded in this second case.

4



of the school year. Some further extensions and refinements of this data base have been made

available by the authors in recent years and are discussed in Barro and Lee (2000) and Lee and Barro

(2001). The latest update of this data set uses gross enrollment rates corrected for repeaters to fill in

missing observations, corrects for observed changes in the duration of educational cycles, and

includes some information on student achievement as measured by scores in standardized

international tests.

• Nehru, Swanson and Dubey (NSD 1995) follow roughly the same procedure as Lau, Jamison and

Louat (1991) but introduce several improvements. The first one is that Nehru et al collect a fair

amount of enrollment data prior to 1960 and do not therefore need to rely as much on the backward

extrapolation of enrollment rates. Secondly, they make some adjustment for grade repetition and

drop-outs using the limited information available on these variables.

We can divide these studies into two groups according to whether they make use of both census

attainment data and enrollment series or only the latter. The first set of papers (Kyriacou and Barro

and Lee) relies on census figures where available and then uses enrollment data to fill in the missing

values. Kyriacou uses a simple regression of educational stocks on lagged flows to estimate the

unavailable levels of schooling. This procedure is valid only when the relationship between these two

variables is stable over time and across countries, which seems unlikely although it may not be a bad

rough approximation, particularly within groups of countries with similar population age structures.

In principle, Barro and Lee's procedure should be superior to Kyriacou's because it makes use of more

information and does not rely on such strong implicit assumptions. In addition, these authors also

choose their method for filling in missing observations on the basis of an accuracy test based on a

sample of 30 countries for which relatively complete census data are available.

The second group of papers (Louat et al and Nehru et al) uses only enrollment data to construct

time series of educational attainment. The version of the perpetual inventory method used in these

studies is a bit more sophisticated than the one in the first version of Barro and Lee, particularly in the

case of Nehru et al.4 On the other hand, these studies completely ignore census data on attainment

levels. To justify this decision, Nehru et al observe that census publications typically do not report the

actual years of schooling of individuals (only whether or not they have completed a certain level of

education and/or whether they have started it) and often provide information only for the population

aged 25 and over. As a result, there will be some arbitrariness in estimates of average years of

schooling based on these data, and the omission of the younger segments of the population may bias

the results, particularly in LDCs, where this age group is typically very large and much more

educated than older cohorts. While this is certainly true and may call for some adjustment of the

4 Differences across these studies have to do with the correction of enrollment rates for dropouts and repeaters
and with the estimation of survival probabilities. Latter versions of Barro and Lee have improved the treatment
of the first of these issues.
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census figures on the basis of other sources, in our opinion it hardly justifies discarding the only direct

information available on the variables of interest.

2.2. A closer look at the data for an OECD sample

Methodological differences across different studies would be of relatively little concern if they all

gave us a consistent and reasonable picture of educational attainment levels across countries and of

their evolution over time. As we will see presently, this is not the case. One problem is that there are

very significant differences across sources in terms of the relative positions of different countries.

Although the various studies generally coincide when comparisons are made across broad regions

(e.g. the OECD vs. LDCs in various geographical areas), the discrepancies are very important when

we focus on the group of industrialized countries. Another cause for concern is that practically all

available data on educational stocks and flows, including UNESCO's enrollment series, present

anomalies which, to some extent, raise doubts about their accuracy and consistency. In particular, the

schooling levels reported for some countries do not seem very plausible, while others display

extremely large changes in attainment levels over periods as short as five years (particularly at the

secondary and tertiary levels) or extremely suspicious trends.5

To illustrate these problems and to get some feeling for the overall reasonableness of the existing

data, in this section we will take a closer look at the Barro and Lee (B&L 1996) and Nehru et al (NSD

1995) data sets. These are the most sophisticated data sets within each of the groups of studies

identified in the previous section that were available in the mid 1990s, and they have been used in

many growth studies. As in the rest of the paper, we will concentrate on a sample of OECD countries.

One of the main reasons for this choice is that educational statistics for this set of advanced industrial

nations are presumably of decent quality. Any deficiencies we find in them are likely to be

compounded in the case of poorer countries.

Table 1: Correlation among alternative estimates of average schooling
_________________________________________________________

NSD P&A B&L Kyr

Nehru et al (NSD) 1
Psch. and Arr. (P&A) 0.84 1
Barro and Lee (B&L 93) 0.81 0.92 1
Kyriacou (Kyr) 0.89 0.86 0.89 1
_________________________________________________________

     - Source: Nehru et al (1995).

The degree of consistency between the various sources varies a lot depending on the level of

aggregation we consider. Table 1, taken from NSD (1995), shows that the overall correlation

(computed over common observations) between different estimates of average years of schooling is

reasonably high. For example, the correlation between the B&L (1993) and NSD series over the whole

5 Behrman and Rosenzweig (1994) discuss some of the shortcomings of UNESCO's educational data.
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sample stands at a respectable 0.81. An examination of average values for different geographic regions

and of their evolution over time also reveals a fairly consistent and reasonable pattern. Industrialized

countries and socialist economies display much higher attainment rates than less developed countries.

Within this last group, Africa lies at the  bottom of the distribution, while Latin America does fairly

well and Southeast Asia features the largest improvement over the period.

This high overall correlation, however, hides significant discrepancies between the two data sets,

both over time and across countries. Figure 1 shows B&L's (1996) and NSD's estimates of the average

years of total schooling of the population over 15 for OECD countries in 1985. The correlation for the

23 countries in this sample (there are no data for Luxembourg) is now 0.574, but drops to zero (0.063)

when we exclude the four countries with the lowest levels of schooling. When we disaggregate, the

correlation is fairly high at the university level (0.767) and much lower for primary (0.362) and

secondary (0.397) attainment.

Figure 1: Average years of schooling in1985: B&L (1996) vs NSD

    

3 4 5 6 7 8 9 10 11 12
4

6

8

10

12

14

Tur

Por

Ire

Sp

It

US

NZ

CH

Aus

Dk

Can

Jap

Fr
Ost

Nor

Gr
Ice

Bel

Nl-Ge

UK
Swe

Fin

Barro and Lee (1996)

Nehru et al

   Notes:
- The estimates refer to the population over 15 in the case of Barro and Lee and to the age group 15-64 in Nehru et
al.
- The estimated equation is of the form H.NSD = 4.50 + 0.503 H.B&L, t = 3.21, R2 = 0.329. The flattest line in the
figure is the regression line fitted after excluding the four countries with the lowest schooling levels. The thinnest
and steepest line is the "diagonal", where all the observations would fall if both sources agreed.
- Legend: Tu = Turkey; Por = Portugal; CH = Switzerland; Sp = Spain; Aus = Australia; It = Italy; Be = Belgium; Ge =
West Germany; Nl = Netherlands; Fr = France; NZ = New Zealand; Gr = Greece; Ost = Austria; Is = Iceland; Dk =
Denmark; Nor = Norway; Fin = Finland; Swe = Sweden; Can = Canada; UK = United Kingdom; Jap = Japan; USA =
United States; Ir = Ireland.

7



Figure 2: Average years of schooling by level in the OECD: B&L (1996) vs. NSD
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    Notes:
- Unweighted averages over the available OECD countries. Neither source reports data for Luxembourg. The
sample excludes New Zealand except for average total years of schooling, as NSD only provide data on this
variable but not its breakdown by level.
- The data are for the age group 15-64 in the case of NSD and for the population aged 15 and over in Barro and
Lee (1996).
- The last year for the NSD series is 1987, rather than 1990.
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Figure 2 shows the evolution of average years of total schooling (H) in the average OECD country

and the breakdown of H by (primary, secondary and tertiary) levels (H1, H2 and H3) according to the

same two sources (B&L, 1996 and NSD). If we focus on average years of total schooling, both data sets

display an increasing trend, although it is much more marked in the case of B&L. In terms of their

levels, NSD's figures on average attainment are significantly higher, although the difference between

the two sets of estimates diminishes over time and becomes minor towards the end of the period. In

principle, this discrepancy may be due at least in part to the difference between the age groups

considered in the two studies. While B&L focus on the population aged 15 and over, NSD attempt to

measure the educational attainment of the 15 to 64 age group. Since the older cohorts included in the

B&L sample and excluded by NSD are typically less educated than the rest of the population, we

would expect Barro and Lee's attainment estimates to be somewhat lower than Nehru et al's.

Significant differences between the two sources emerge when we disaggregate by educational

level. In terms of secondary schooling the trend is quite similar in both cases but NSD's estimates are,

unexpectedly, lower on average than B&L's. At the primary level, NSD's attainment figures are

implausibly high, exceeding the duration of this school cycle (which is around six years on average),

and display a downward trend. This "finding" that primary schooling levels have decreased over time

in industrial countries is extremely suspicious, for it implies that new entrants into the labour force

have less primary schooling than the older generations -- in spite of the rapid increase of enrollment

rates observed over the relevant period.

For OECD countries we have some alternative sources that can be used to assess the likely

accuracy of the B&L and NSD series. In particular, the OECD has published some reasonably

complete educational statistics for most of its member countries. Although these data refer only to the

last few years, and are therefore not an alternative to the other sources for the statistical analysis of the

impact of education on growth, a comparison of the three sets of figures may perhaps give us some

clues as to the possible shortcomings of the B&L (1996) and NSD data sets.

Table 2 summarizes the most relevant data. Notice that although both the year and the age groups

differ somewhat across the three sources (see the notes to the table), the figures should be roughly

comparable. The breakdown by educational level is also comparable with the one used by Barro and

Lee (1996), although the OECD provides more detail. In particular, this last source disaggregates

secondary attainment into two levels and, for most countries, reports data on advanced vocational

programmes6 separately.

The differences across the various sources are quite significant. On the whole, the picture which

emerges from the OECD figures seems to be the more plausible one -- at least in the sense of

conforming better to common perceptions as to the relative educational levels of different countries.

As for the other two sources, both contain rather implausible features and it is difficult to choose

6 These programmes generally correspond to level 5 of the International Standard Classification of Educational
Attainment Levels (ISCED5).
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between them. Starting with the relative positions of different countries in terms of average total years

of schooling (reported in the last three columns of the table),7 we find a number of large discrepancies.

Barro and Lee's estimates for Austria, France, Norway and Portugal are much lower than those given

in the other sources, while their figure for New Zealand is much higher. On the other hand, NSD give

very low figures for Australia, Switzerland and Germany, an extremely high estimate for Ireland

(which is probably an error) and an implausibly high number for Greece.8 The overall correlation with

the OECD estimates is higher for Barro and Lee (0.807) than for NSD (0.531) but this is due to a large

extent to the Irish outlier.

In the case of Barro and Lee, it is possible to make a detailed comparison by levels of schooling

with the OECD data that may give us some idea of the likely sources of some of their more

implausible results.9 We observe that OECD estimates of secondary attainment are generally higher

than Barro and Lee's.10 The difference exceeds forty points in Austria, Germany, Finland, Denmark,

Norway and the UK, and is quite important in a number of other European countries and in Japan.

We think the main reason for these large discrepancies has to do with the treatment of apprenticeships

and other vocational training programmes, which are included in the OECD data but probably not in

the UNESCO series used by Barro and Lee. Differences in tertiary attainment are significant as well

and also seem to be related to the treatment of (higher-level) vocational programmes. In particular,

Barro and Lee seem to report ISCED 5 studies (see footnote 6) as part of university schooling but, even

accounting for this, significant differences remain in some cases.

Turning from the cross-section to the time-series dimension of the data, another disturbing feature

of the human capital series is the existence of sharp breaks and implausible changes in attainment

levels over very short periods. This problem affects the B&L data set much more than the NSD series,

which are much smoother essentially by construction. Figures 3 and 4 show the evolution of Barro and

Lee's (1996) secondary and university attainment rates for the population over 25 in a number of

countries that display extremely suspicious patterns. In all cases, the sharp break in the series signals

in all probability a change of criterion in the elaboration of educational statistics. Similar

inconsistencies are present in other countries as well.

7 To estimate the average years of schooling on the basis of the OECD data we have used the following durations:
Primary, 6 years; Secondary I, 9 years; Secondary II, 12 years; ISCED 5, 14 years; ISCED 6 and 7, 16 years. Since
the computation assumes that everybody who started a certain level has completed it, the resulting figures
should overstate the true years of schooling but, hopefully, not so much the relative positions of the different
countries, which is what we are trying to get at. Our comparisons are based on the standardized attainment
figures shown in Table 2, which are constructed by normalizing each estimate of average years of schooling by
the unweighted average of the available contemporaneous observations in each data set.
8 According to NSD the average years of primary schooling in Ireland ranged between 15 in 1960 and just over 11
in 1985. Both figures are much higher than those for any other country and are of the order of twice the duration
of this level of schooling. Greece does not appear in Table 2 because the OECD reports no data for this country.
Greece is ranked by NSD ahead of Switzerland, Australia, Belgium, the Netherlands and France.
9 For a comparison of Barro and Lee's latest series with more recent OECD data, see Barro and Lee (2000).
10 Original OECD figures add up to 100% when we sum primary, secondary and tertiary attainment rates. Since
this implies that everybody has received some schooling, we have corrected the figures using Barro and Lee's
estimate of the fraction of the population with no schooling. The table reports the original primary attainment
figure minus the no schooling fraction from Barro and Lee (1996).
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Figure 3: Evolution of university attainment levels, Australia, New Zealand and Canada
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      - Source: Barro and Lee (1996). Population aged 25 and over.

Figure 4: Evolution of secondary attainment levels, Netherlands, New Zealand and Canada
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      - Source: Barro and Lee (1996). Population aged 25 and over.

The preceding discussion is far from providing an exhaustive list of the suspect features of

different educational data sets. On the other hand, it is probably sufficient to conclude that --despite

the fact that the contributions we review represented a significant advance in this area-- the data on

human capital stocks that have been used in most empirical analyses of the determinants of growth

are still of dubious quality. Remaining problems are probably due in part to the fact that the primary

statistics used in these studies are not consistent, across countries or over time, in their treatment of
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vocational and technical training and other courses of study,11 and reflect at times the number of

people who have started a certain level of education and, at others, those who have completed it.

Additional problems may be traced to the procedure used in the construction of the data and even to

computational mistakes. Thus, NSD's neglect of census data probably accounts for their unreasonable

results in terms of the overall level and trend of primary and secondary schooling while Barro and

Lee's (1993) approximation to a perpetual inventory method is probably not entirely satisfactory.

Concerns about poor data quality and about its implications for empirical estimates of the growth

effects of human capital have motivated some recent studies that attempt to increase the signal to noise

ratio in the schooling series by exploiting additional sources of information and introducing various

corrections. As we have seen, the latest version of the Barro and Lee data set (B&L, 2000) incorporates

various refinements of the procedure used to fill in missing observations. De la Fuente and Doménech

(D&D, 2000) and Cohen and Soto (C&S, 2000), on the other hand, have focused on trying to clean up

the available census and survey data.12 In the following section we will discuss the construction of

attainment series that update the work in our previous paper, and we will carry out a comparative

analysis of these three sources in a sample of OECD countries.

3. Educational attainment in the OECD: A revised set of estimates for 1960-95

As we have seen in the previous section, the available schooling data contain a large amount of

noise that can be largely traced back to inconsistencies of the underlying primary statistics. In an

attempt to reduce this noise, we have constructed educational attainment series for the adult

population of a sample of 21 OECD countries covering the period 1960-95.13  The complete series and

a detailed set of country notes can be found in de la Fuente and Doménech (2002).

 This data set is a revised and partially extended version of the one described in de la Fuente and

Doménech (D&D, 2000). There are two major changes relative to our earlier estimates. First, we have

incorporated a fair amount of new information supplied by the national statistical offices of around a

dozen countries in response to a request by the OECD's Statistics and Indicators Division that was

accompanied by our previous paper. Second, we have extended the series to 1995 for around three

fourths of the sample using national sources, the latest editions of Education at a Glance (EAG) and

Labour Force Survey data supplied directly by the OECD. For the remaining countries, these sources

11 Steedman (1996) documents the existence of important inconsistencies in the way educational data are
collected in different countries and argues that this problem can significantly distort the measurement of
educational levels. She notes, for example, that countries differ in the extent to which they report qualifications
not issued directly (or at least recognized) by the state and that practices differ as to the classification of courses
which may be considered borderline between different ISCED levels. The stringency of the requirements for the
granting of various completion degrees also seems to vary significantly across countries.
12 Cohen and Soto (2001) construct a schooling data set for a sample of 95 countries covering the period 1960-2000
at 10-year intervals. They collect census and survey data from UNESCO, the OECD's in-house educational data
base and the websites of national statistical agencies, and exploit to the extent possible the available information
on attainment levels by age group to fill in missing cells through forward and backward extrapolations.
Remaining gaps in the data are filled using enrollment rates from UNESCO and other sources. Their estimates
refer to the 15 to 64 age group.
13 Iceland, Luxembourg, Turkey and recent OECD members are left out because of the scarcity of information
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do not seem to be consistent with the national data on which our series are primarily based (at least in

part because of differences in the age groups covered by them), so an extension will have to wait until

the results of the current round of censuses are available. Finally, there are a few minor changes in the

series that are mostly due to corrections of i) arithmetical mistakes, ii) the dates attributed to some

census observations (usually by one year) and iii) changes in the assumed duration of some schooling

cycles (following the indications of national statistical offices or to make them consistent with the

cutoff levels we have used for some countries).

Table 3: Attainment levels and codes
__________________________________________________________

code level

L0 Illiterates
L1 Primary schooling
L2.1 Lower secondary schooling
L2.2 Upper secondary schooling
L2 Total secondary schooling = L2.1 + L2.2
L3.1 Higher education, first cycle or shorter courses
L3.2 Higher education, second cycle or full-length courses
L3 Total higher education = L3.1 + L3.2

__________________________________________________________

We aim to provide estimates of the fraction of the population aged 25 and over that has started (but

not necessarily completed) each of the levels of education shown in Table 3 (illiterates (L0), primary

schooling (L1), lower and upper secondary schooling (L2.1 and L2.2) and two levels of higher

education (L3.1 and L3.2)). For some countries, however, the available data may refer to a different age

group or to those who have completed each schooling level, and it is not always possible to detect

when this is the case. We have tried (with uncertain success) to include higher vocational training

(ISCED 5) in the first level of higher attainment. We report L0 only for the four countries where

illiteracy rates are significant during the sample period (Portugal, Greece, Spain and Italy). For the rest

of the sample, the lowest reported category is L1, and it includes all those who have not reached

secondary school.

Our approach has been to collect all the information we could find on educational attainment in

each country, both from international publications and from national sources (census and survey

results, statistical yearbooks and unpublished national and OECD data), and use it to try to

reconstruct a plausible attainment profile for each country. For those countries for which reasonably

complete series are available, we have relied primarily on national sources. For many of the rest, we

start from the most plausible set of attainment estimates available around 1990 or 1995 (taken

generally from OECD sources) and proceed backwards using all the assembled information and

trying to avoid unreasonable jumps in the series by choosing the most plausible figure when several

are available for the same year, and by reinterpreting some of the data (as referring to broader or

narrower schooling categories than the reported one) when it seems sensible to do so. Missing
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observations are then filled in a variety of ways. Where possible, we interpolate between available

observations. Otherwise, we use information on educational attainment by age group in order to make

backward or forward projections, or rely on miscellaneous information from a variety of sources in

order to construct estimates of attainment levels. We have avoided the use of flow estimates based on

enrollment data because they seem to produce implausible time profiles.

Clearly, the construction of our series involves a fair amount of guesswork. Our "methodology"

looks decidedly less scientific than the apparently more systematic estimation procedures used by

other authors starting from supposedly homogeneous data. As discussed in the previous section,

however, even a cursory examination of the data shows that there is no such homogeneity. Hence, we

have found it preferable to rely on judgment to try to piece together the available information in a

coherent manner than to take for granted the accuracy of the primary data. As we will see below, the

results do look more plausible than most existing series, at least in terms of their time profile, and

perform rather well in terms of a statistical indicator of data quality.

A number of countries do not separate primary education from lower secondary schooling and

report a single attainment level that comprises all mandatory courses. To preserve the homogeneity of

our attainment categories, we have estimated the breakdown of compulsory schooling into L1 and

L2.1. For some countries we have managed to find enough information to make what seemed to be a

reasonable guess. For others, we have used data from close neighbours. In particular, we have used

information for the US, Germany and Norway to estimate the breakdown in Canada, Austria and

Denmark, respectively.14 Finally, for those countries for which there is no obvious candidate for this

role (the UK and Japan), we have used an ad-hoc regression estimate of the relevant ratio. Using those

countries in the sample for which there is decent direct information on L1 and L2.1,15 we estimate the

following equation with pooled data:

(1)  L2.1/(L1+ L2.1)  = 0.1730 + 0.00947 (L3+L2.2) + 0.08272(L3/L2.2) - 0.025*trend   adj. R2 = 0.674
                                                  (1.71)        (16.23)                            (2.03)                        (1.77)

where the numbers in parentheses below each coefficient are t ratios. That is, we hypothesize that

those countries that are more "efficient" in getting students into the upper schooling cycles will also

have greater accession rates to lower secondary schooling. Hence we specify the weight of lower

secondary attainment relative to primary attainment as a function of university and upper secondary

attainment and the ratio of the two, and allow it to vary systematically over time. Since the fit of the

equation is reasonably good, we use it to estimate the lower-secondary/compulsory attainment ratio

in those countries for which this information is not available.

Using our attainment series, we construct an estimate of average years of total schooling for each

country and period. The assumed cumulative duration of the different school cycles in each country is

shown in Table 4. In constructing these series we are implicitly assuming that everybody who starts a

14 See the country notes in de la Fuente and Doménech (2002) for further details.
15 We exclude from the sample used in this regression Norway, Finland, New Zealand and Germany (as well as
Denmark, Austria and Canada).
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given school cycle does eventually complete it, which is clearly not the case. Hence, our figures will be

biased upward and are not strictly comparable with Barro and Lee's (1996 or 2000) average schooling

series, which do make use of estimates of completion rates.16,17

Table 4: Cumulative years of schooling by educational level
___________________________________________________________

L1 L2.1 L2.2 L3.1 L3.2

Australia 7 11 13 15 16
Austria 4 8/9a 13 15 17
Belgium 6 9 12 15 16
Canada 6 9 12 15 16
Denmark 6 9 13 14 17
Finland 6 9 12 14 17
France 5 9 12 14 16
Germany 4 10 13 15 17
Greece 6 9 12 16 16
Ireland 6 9 12 14 16
Italy 5 8 13 15 18
Japan 6 9 12 14 16
Netherlands 6 10 12 16 17
Norway 6 9 12 14 16
New Zealand 6 11 13 15 16
Portugal 6 8 12 14 16
Spain 5 8 12 14 17
Sweden 6 9 12 14 16
Switzerland 7b 9 13 16 17
UK 6 9 12 14 16
USA 4c 8c 12 14 16
Mode 6 9 12 14 16
___________________________________________________________

- Sources: Education at a Glance 1997 (OECD, 1998), except figures in bold type (WDI, World Bank, 1999) and in
italics (national sources).
(a) The duration of compulsory schooling in Austria changed from 8 to 9 years in the mid sixities.18

(b) The duration of L1 in Switzerland is 6 years, but the cutoff between L1 and L2.1 in our data is 8. Hence, we use
the average of these two figures to calculate the average years of schooling.
(c) Set in accordance with our cutoffs for L1 and L2.1.

Data availability varies widely across countries. Table 5 shows the fraction of the reported data

points that are correspond to "direct observations" and the earliest and latest such observations

available for secondary and higher attainment levels. The number of possible observations is typically

either 21 or 24 for each level of schooling depending on whether the series ends in 1990 or 1995 (two

16 The available data on completion rates  display the same anomalies we have discussed above in connection
with attainment and enrollment rates.
17 Except for the fact that they refer to different age groups, our estimates of years of schooling do seem to be
comparable to Cohen and Soto's (2001). These authors, however, do not provide sufficient details to identify any
possible differences in the procedures followed in the two studies.
18 We allow for this in a crude way when computing the average years of schooling in Austria. For this
calculation, we assume that the cumulative duration of L2.1 is 8 years until 1975 (since those completing L2.1 in
1965 will not enter the 25+ age group until that year). For later years, we attribute to L2.1 a cumulative duration
which is a weighted average of 8 and 9 years, with the weight of the second figure set equal to the fraction of the
population 25 and over in the current year that studied under the new system. The data on the age structure of
the population required for the adjustment was obtained from the UN's Demographic Yearbook (DYB).
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sublevels and a total19 times seven or eight quinquennial observations). In the case of Italy, there seem

to be no short higher education courses, so the number of possible observations at the university level

drops to eight. We count as direct observations backward and forward projections constructed using

detailed census data on educational attainment by age group and the age structure of the population,

and various "reasonable guesses" that incorporate some information from census or survey data.

As can be seen in the Table, for most of the countries in the sample we have enough primary

information to reconstruct reasonable attainment series covering the whole sample period. The more

problematic cases are higlighted using bold characters. In the case of Italy, the main problem is that

much of the available information refers to the population over six years of age. For Denmark and

Germany (at the secondary level), the earliest available direct observation refers to 1970 or later. In

these two cases, we have projected attainment rates backward to 1960 using the attainment growth

rates reported in OECD (1974), but we are unsure of the reliability of this extrapolation.

Table 5: Availability of primary data
________________________________________________________________________

                                                         secondary attainment                       university attainment     .

direct/tot.
observ.

first
observ.

last
observ.

direct/tot.
obs.

first
observ.

last
observ.

USA 24/24 1960 1995 24/24 1960 1995
Netherlands 12/24 1960 1995 12/24 1960 1995
Italy 15/24 1961 1999 5/8 1960 1998
Belgium 13/24 1961 1995 12/24 1960 1995
Spain 12/21 1960 1991 12/21 1960 1991
Greece 15/24 1961 1995 15/24 1961 1997
Portugal 12/21 1960 1991 8/21 1960 1991
France 12/21 1960 1989 12/21 1960 1990
Ireland 15/24 1961 1998 11/24 1961 1998
Sweden 9/24 1960 1995 9/24 1960 1995
Norway* 15/24 1960 1998 9/24 1960 1998
Denmark* 9/24 1973 1994 12/24 1973 1994
Finland* 16/24 1960 1995 21/24 1970 1995
Japan* 8/21 1960 1990 12/21 1960 1990
N. Zealand 10/24 1965 1998 10/24 1965 1998
UK* 6/21 1960 1993 10/21 1960 1991
Switzerland 15/24 1960 1995 15/24 1960 1995
Austria* 11/24 1961 1995 7/24 1961 1995
Australia 11/24 1965 1997 11/24 1966 1997
W. Germany 11/24 1970 1995 17/24 1961 1995
United Germany 6/6 1991 1995 6/6 1991 1995
Canada* 15/24 1961 1996 21/24 1960 1996

______________________________________________________________________
   - (*) Countries where primary and lower secondary attainment are generally not reported separately.

19 For those countries where primary and lower secondary attainment are generally not reported separately
(identified by an asterisk in Table 5), the three categories reported in the column for secondary attainment are
L2.1, L2.2 and L1+L2.1 (rather than L2.1, L2.2 and L2 as in the other cases).
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3.1 An example: the case of higher education in Canada

To give the reader a flavour for the way our series have been constructed and for their limitations,

we will discuss in some detail the case of higher education in Canada. This is a country for which

there is a considerable amount of published information that displays, if taken literally, a rather

implausible pattern. It is also a case in which the new data supplied by national statistical agencies

allows us to check our original estimates (D&D 2000).

The essence of our approach is captured by Figure 5. The thickest line in the figure (labeled

B&L.96) describes Barro and Lee's (1996) higher educational attainment series for the population aged

25 and over, which is based on Unesco and UN data. The implausible hump-shaped pattern of the

series strongly suggests that the 1975 and 1980 observations refer to a broader concept of higher

attainment than the rest of the data. Our (2000) estimate was based on the guess that, unlike the rest of

the observations, the data for these two atypical years included upper-level vocational training

courses. Using other available information, we tried to homogenize the series by consistently

including or excluding an estimate of this category, obtaining the more plausible profile described by

the two thinnest lines shown in the figure.20 The higher of these lines (L3.00) refers to higher education

in a broad sense, and the lower one (UNIV) to strictly university attainment (which is not exactly the

same thing as L3.2). The dots lying on these two lines represent actual data taken from various sources

and attributed to the exact year to which they correspond (and not to the closest multiple of five). For

the rest of the years, the series are completed through linear interpolation.

Figure 5: University attainment in Canada, B&L (1996) vs. D&D (2000) and this paper
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20 The details  can be found in de la Fuente and Doménech (2000).
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Our current estimates correspond to the lines of intermediate thickness shown in the figure and are

based mainly on data supplied directly by Statistics Canada. The series labeled L3.2.02 (completed

Bachelor's or higher) extends back to 1951 and displays a plausible profile. To recover total tertiary

attainment (L3.02) we add to the previous series an estimate of L3.1. From 1971 onward, this estimate

is also taken directly from Statistics Canada. For the previous period, we use other sources to estimate

this category as discussed in the country notes (see de la Fuente and Doménech, 2002). The new data

suggest that our 2000 estimate was essentially correct for the second part of the sample period, but

probably overestimated higher attainment until 1975.

3.2. A  comparison of three recent data sets

In this section we compare our attainment series with those constructed by Cohen and Soto (2001)

and with the latest version of the Barro and Lee data set (B&L 2000). We find that there are significant

differences across these three sources in terms of both their cross-section and their time profiles. In the

cross-section dimension, our estimates tend to lie between the other two. In the time dimension, both

our series and Cohen and Soto's display considerably less volatility than Barro and Lee's. A detailed

country by country comparison of these three attainment series and a set of pairwise scatterplots for

the data in levels and in growth rates can be found in Figures A.1-A.6 in the Appendix.

Table 6: Normalized average years of schooling over 1960-90
Correlation across data sets

_________________________________________

B&L C&S D&D

B&L (2000) 1.000
C&S (2001) 0.885 1.000
D&D (2002) 0.925 0.924 1.000

_________________________________________
        - Note: Data from the last 3 columns of Table 7.

To compare their cross-section profiles, we begin by normalizing each of the years of schooling

series by its contemporaneous sample mean.21 Table 7 shows the resulting attainment indices for 1960

and 1990. The last three columns of the table refer to average attainment calculated over the entire

period 1960-90. Focusing on this last set of figures, we observe that although the correlation across

data sets is quite high (see Table 6), there are also large discrepancies among them. This is illustrated

in Figure 6, which shows the differences in normalized average attainment across sources, taking as a

reference Barro and Lee's estimates. To construct a rough measure of the degree of agreement across

series, we will say that two sources (or the three of them) agree for a given country if the (maximum)

difference between them in terms of normalized years of schooling is less than 5% of their average

value. We find that there is not a single country for which all three sources agree. The number of

21 As has already been noted, our average years of schooling series is not directly comparable with Barro and
Lee's.
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Table 7: Normalized average years of schooling
___________________________________________________________________________
                                                    1960                                            1990                               average 1960-90         .

B&L00 D&D02 C&S01 B&L00 D&D02 C&S01 B&L00 D&D02 C&S01

USA 129.3 126.3 126.1 135.2 119.1 115.5 136.5 123.4 120.6
Australia 140.8 117.7 121.7 114.1 121.1 116.8 128.2 122.4 119.5
New Zealand 142.7 125.1 111.3 126.0 113.8 100.8 136.6 119.2 105.8
Switzerland 109.0 124.8 135.8 111.8 114.9 118.6 113.7 120.0 125.7
Canada 125.0 124.1 112.9 118.3 119.7 113.1 122.7 122.4 113.2
West Germany 123.6 118.5 117.9 102.1 121.7 120.9 109.8 121.1 121.3
Denmark 133.6 129.0 112.5 114.2 110.2 105.6 119.6 119.3 108.8
Norway 91.2 115.8 112.1 122.3 104.4 112.7 102.2 109.3 112.7
Japan 102.6 103.1 117.4 103.9 105.6 109.2 101.1 104.6 112.1
Sweden 114.2 96.2 107.5 107.9 99.8 110.2 110.7 97.0 109.4
UK 114.5 102.5 112.9 98.5 98.9 112.4 104.0 100.1 112.9
Austria 100.2 107.7 102.6 92.6 106.3 100.1 97.5 105.1 101.2
Netherlands 78.7 97.0 103.3 97.0 102.9 98.1 95.1 99.6 100.9
Belgium 111.4 92.5 91.6 95.0 94.7 91.8 104.0 94.1 91.1
Finland 80.2 91.5 84.9 106.8 103.1 98.2 94.3 98.5 91.3
France 86.3 97.3 83.4 85.2 98.2 94.8 84.2 99.2 89.8
Ireland 96.3 88.0 89.8 95.8 88.4 87.2 93.3 87.1 88.0
Greece 69.3 66.5 73.6 86.3 74.3 79.7 77.5 70.5 75.9
Italy 68.1 64.7 72.1 69.4 75.6 83.3 69.0 70.1 77.3
Spain 54.3 59.5 71.7 68.6 66.7 77.2 61.7 60.6 73.5
Portugal 29.0 52.3 39.0 48.8 60.2 54.1 38.3 56.3 48.9
average 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
average in years 6.70 8.36 8.07 8.87 10.64 10.93 7.67 9.47 9.59

___________________________________________________________________________

Figure 6: Normalized years of schooling, differences with B&L (2000)
based on average schooling over the entire sample period
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observations for which there is agreement is 9 (out of 21) when our data are compared with either the

B&L or C&S series, and only 4 when these two series are compared with each other.

When we turn to the time profiles, both our series and Cohen and Soto's display a considerably

smoother and more plausible pattern than the Barro and Lee data set. Barro and Lee's series contain a

large number of sharp breaks that give a distorted image of the pattern of human capital accumulation

and may obscure its relationship with productivity growth. This is clearly illustrated in Figure 8,

where we have plotted the fitted distribution of the annualized growth rate of average years of

schooling for all countries and years in each data set. The difference in the range of this variable across

data sets is enormous: while our annual growth rates range between 0.09% and 1.92%, and those of

Cohen and Soto between 0.27% and 3.27%, Barro and Lee's go from -1.35% to 6.13%; moreover, 19% of

the observations in this last data set are negative, and 16.7% of them exceed 2%.

Figure 7: Fitted distribution of the growth rate of years of schooling,
Barro and Lee (2000), Cohen and Soto (2001) and this paper
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As shown in Figure 8, an implausibly broad range of values (for the data in growth rates) is a

common feature of all versions of the Barro and Lee data set. We believe that this anomaly, which

seems to arise from these authors' reliance on UNESCO data, cannot be corrected by any

improvements in the fill-in procedure alone. We also suspect that this feature may explain why these

series often generate implausible results in growth regressions, particularly when they are estimated

using panel or differenced specifications. A first indication of this is that the coefficient of a univariate

regression of the growth rate of output per employed worker on the growth rate of years of schooling

(with both variables measured in deviations from their contemporaneous sample averages) increases

from 0.173 (with a t-ratio of 1.89) with the Barro and Lee (2000) data to 0.348 (with t = 3.07) with

Cohen and Soto's series, and to 1.03 (with t = 3.16) with those constructed in this paper. The results we

report later in the paper are also consistent with this hypothesis.
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Figure 8: Fitted distribution of the growth rate of years of schooling,
different versions of the Barro and Lee data set
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One conclusion we draw from the above comparisons is that a fair amount of detailed work

remains to be done before we can say with some confidence that we have a reliable and detailed

picture of educational achievement levels in industrial countries or of their evolution over time. On

the other hand, the existing data bases may contain sufficient information to provide reasonable

statistical estimates of the contribution of human capital accumulation to productivity growth,

particularly if we exploit differences in quality across them to correct for measurement error. This will

be the objective of section 5 of the paper.

3.3 Measuring data quality: preliminary estimates of reliability ratios

In this section we will construct an indicator of the quality of a number of schooling series using an

extension of the procedure suggested by Krueger and Lindhal (2001). As these authors note, the

information content of a noisy proxy can be measured by its reliability ratio, defined as the ratio of

signal to signal plus measurement noise in the data. When several noisy measures of the same

magnitude are available, estimates of their respective reliability ratios can be obtained by regressing

these variables on each other. Under certain assumptions, the coefficients obtained in this manner can

be used to approximate the bias induced by measurement error (which will be a decreasing function

of the reliability ratio) and to obtain consistent estimates of the parameters of interest in growth

regressions.

Let H be the true stock of human capital and let P  = H +  be a noisy proxy for this variable,

where the measurement error term  is an iid disturbance with zero mean and uncorrelated with H.

The reliability ratio of this series (r )  is defined as

(2) r   
var H

var P
  = 

var H

var H + var 
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Assume now that in addition to P  we have a second imperfect measure of human capital, P = H + ,

where  is also iid noise. Then, the covariance between P  and P  can be used to obtain an estimate of

the variance of H whenever the measurement error terms  and are uncorrelated. Under this

assumption, r can be estimated by

(3)    ̂ r 1  =  
cov (P ,P )

var P

which happens to be the formula for the OLS estimator of the slope coefficient of a regression of P  on

P . Hence, to estimate the reliability of P  we run a regression of the form P  = c + r P . 22 Notice,

however, that if the measurement errors of the two series are positively correlated (E   > 0) as may

be expected in many cases,   ̂ r 1  will overestimate the reliability ratio and hence understate the extent of

the attenuation bias induced by measurement error.

We will build on this approach to construct indicators of the information content of the most widely

used cross-country schooling data sets, restricting ourselves to the sample of 21 OECD countries

covered by our series. For now, we will maintain Krueger and Lindhal's assumption that measurement

error is uncorrelated across data sets (and with other variables of interest), and we will exploit the

availability of a number of alternative human capital series to construct a minimum-variance estimator

of the reliability ratio. In section 5 we will relax this assumption and allow for correlated measurement

errors.

Proceeding as indicated above, for each data set Pj we first construct a series of "pairwise" reliability

ratio estimates, 
  
ˆ r jk , by using Pj to try to explain alternative schooling series Pk; that is, for each j we

estimate a system of equations of the form

(4) Pk = ck + rjk Pj + uk     for  k = 1..., K

where k denotes the "reference" data set and varies over the last available version of all schooling series

different from j. The reliability ratio of Barro and Lee's (2000) data set, for instance, is estimated by

using these authors' estimate of average years of schooling as the explanatory variable in a set of

regressions where the reference (dependent) variables are the average years of schooling estimated by

Kyriacou (1991), NSD (1995), Cohen and Soto (2001) and ourselves. Other versions of the Barro and Lee

data set, however, are not used as a reference because the correlation of measurement errors across the

same family of schooling series is almost certainly very high and this will artificially inflate the

estimated reliability ratio.

Under the assumption that measurement error is uncorrelated across families of data sets (i.e. that

E j k = 0 for j k when j and k belong to different families) all the pairwise estimates of rj obtained

above will be consistent and so will be any weighted average of them,

(5) 
  
r j  = k k  

ˆ r jk     where   k k = 1.

22 Intuitively, regressing P  on P  gives us an idea of how well P  explains the true variable H because
measurement error in the dependent variable (P  in this case) will be absorved by the disturbance without
generating any biases. Hence, it is almost as if we were regressing the true variable on P  .
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To obtain the most efficient estimator of rj, we  choose the weights k in (5) so as to minimize the

variance of 
  
r j . The resulting estimator, which will be denoted by 

  
ˆ r j , can be implemented by imposing

a common slope coefficient across the equations in (4) and estimating the system as a restricted SUR.23

Hence, we will refer to 
  
ˆ r j  as the SUR reliability ratio.

The exercise we have just described is repeated for several transformations of average years of

schooling.24 In particular, we estimate reliability ratios for years of schooling measured in levels (Hit)

and in logs (hit), for average annual changes in both levels and logs measured across successive

(quinquennial) observations ( Hit and hit), for log years of schooling and for their annualized changes

measured in deviations from their respective country means (hit - hi and hit - hi) and for average

annual log changes computed over the period 1965-85 ( hi).
25 Notice that hit corresponds to annual

growth rates and that hit - hi and hit - hi are the "within" transformations often used to remove fixed

effects. We also estimate all the reliability ratios (except for the case of hi) twice, once with the raw

data and a second time after removing the period means from the different schooling series. Since all

our growth estimates (reported below) include fixed period effects, this second set of reliability ratios is

the relevant one for the analysis of the sensitivity of human capital estimates to data quality we will

carry out in a later section.

The results are shown in Tables 8a and 8b with the different data sets arranged by decreasing

average reliability ratios. The last row of each table shows the average value of the reliability ratio for

each type of data transformation (taken across data sets), and the last column displays the average

reliability ratio of each data set (taken across data transformations). Our mean estimate of the reliability

ratio in the OECD sample is 0.386 for the raw data and 0.335 after removing period fixed effects. This

suggests that the average estimate of the coefficient of schooling in a growth equation is likely to suffer

from a substantial downward bias, even without taking into account the further loss of signal that

arises when additional regressors are included in these equations (see below). The bias will tend to be

smaller when the data are used in levels or logs, even when fixed effects are removed, but is likely to be

extremely large in specifications that use data differenced over relatively short periods. The average

reliability ratio is only 0.227 for the data in quinquennial log differences, and 0.075 for level differences

taken at the same frequency.26 It should be noted that, while reliability ratios must lie between zero and

one, some of the estimates reported in Table 8 fall outside these bounds. We interpret these results as

23 Actually, the restricted SUR yields an approximation to the desired estimator because the number of available
data points differs across data sets and the SUR is estimated only over the common observations.
24 Notice that each set of estimates will be based on assumptions about the properties of the measurement error
term that are not necessarily consistent with each other.
25 This is the longest period over which all the available schooling series overlap. For some countries, the earliest
observation provided by Kyriacou (1991) corresponds to 1970 or 1975. Rather than dropping these observations,
in these cases we set hi equal to the average growth rate over the available period.
26

 Estimated reliability ratios are generally somewhat higher in larger samples (see de la Fuente 2002a). This is
likely to be misleading, however, because the number of available primary sources that can be drawn upon to
construct estimates of educational attainment is probably higher in developed than in underdeveloped countries.
As a result, the variation across data sets is likely to be smaller in LDCs, and this will tend to raise the estimated
reliability ratio. To a large extent, however, this will simply reflect a higher correlation of errors across data sets
(i.e. an upward bias in the estimated reliability ratio).
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Table 8: SUR estimates of reliability ratios, OECD 21 sample

a. Raw data
____________________________________________________________________________

Hit hit Hit hit hit-hi hi hit- hi average

D&D (2002) 0.806 0.859 0.293 0.716 1.166 1.028 0.163 0.719
[0.027] [0.032] [0.110] [0.133] [0.035] [0.205] [0.121]

D&D (2000) 0.775 0.848 0.057 0.477 1.139 0.813 0.040 0.592
[0.029] [0.034] [0.098] [0.131] [0.040] [0.255] [0.103]

C&S (2001) 0.793 0.889 0.227 0.389 0.735 0.545 0.124 0.529
[0.033] [0.032] [0.084] [0.060] [0.021] [0.101] [0.054]

B&L (2000) 0.768 0.644 0.011 0.046 0.488 0.255 0.002 0.316
[0.035] [0.023] [0.024] [0.028] [0.036] [0.092] [0.014]

Kyr. (1991) 0.698 0.601 0.027 0.064 0.326 0.164 0.025 0.272
[0.097] [0.079] [0.019] [0.020] [0.027] [0.050] [0.011]

B&L (1996) 0.628 0.562 0.014 0.042 0.466 0.125 0.013 0.264
[0.041] [0.029] [0.023] [0.027] [0.034] [0.088] [0.014]

B&L (1993) 0.587 0.476 0.010 0.033 0.286 0.109 -0.010 0.213
[0.037] [0.025] [0.021] [0.016] [0.027] [0.082] [0.008]

NSD (1995) 0.308 0.383 -0.037 0.045 0.510 0.179 -0.137 0.179
[0.061] [0.060] [0.040] [0.047] [0.074] [0.075] [0.048]

average 0.670 0.658 0.075 0.227 0.639 0.402 0.027 0.386

____________________________________________________________________________

b. Data in deviations from period means
____________________________________________________________________________

Hit hit Hit hit hit-hi hit- hi average

D&D (2002) 0.754 0.775 0.337 0.769 0.917 0.246 0.633
[0.026] [0.031] [0.091] [0.118] [0.092] [0.098]

C&S (2001) 0.806 0.912 0.330 0.467 0.547 0.185 0.541
[0.036] [0.034] [0.096] [0.063] [0.049] [0.073]

D&D (2000) 0.720 0.761 0.100 0.550 0.818 0.074 0.504
[0.027] [0.032] [0.084] [0.119] [0.102] [0.085]

Kyr. (1991) 0.723 0.600 0.024 0.065 0.111 0.026 0.258
[0.111] [0.092] [0.017] [0.020] [0.024] [0.011]

B&L (2000) 0.707 0.603 -0.018 0.045 0.178 -0.016 0.250
[0.034] [0.022] [0.025] [0.031] [0.040] [0.015]

B&L (1996) 0.559 0.516 -0.017 0.039 0.146 -0.007 0.206
[0.040] [0.028] [0.024] [0.030] [0.041] [0.014]

B&L (1993) 0.526 0.436 -0.019 0.029 0.121 -0.017 0.179
[0.036] [0.024] [0.022] [0.017] [0.021] [0.008]

NSD (1995) 0.278 0.330 -0.021 0.066 0.095 -0.115 0.106
[0.051] [0.050] [0.036] [0.046] [0.046] [0.042]

average 0.634 0.617 0.090 0.254 0.367 0.047 0.335

____________________________________________________________________________
Notes:

- Standard errors in brackets below each estimate.
- Data are reported at 5-year intervals except by Cohen and Soto who do it at 10-year intervals. We use linear
interpolation (with the data in levels) to complete these series prior to all calculations.
- The version we use of Barro and Lee (1993) is actually taken from Barro and Lee (1994). We do not know if the
two data sets are identical or if there are minor differences between them.
-  Panel a corresponds to the variables as originally measured. The estimates shown in panel b are obtained after
removing the corresponding period means. This is done by introducing period dummies in equation (4).
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an indication that measurement error is likely to be correlated across data sets, a possibility that will be

investigated below.

Our results indicate that the importance of measurement error varies significantly across data sets,

although their precise ranking depends on the data transformation that is chosen. Two of the datasets

most widely used in cross-country empirical work, those by Kyriacou (1991) and Barro and Lee

(various years), perform relatively well when the data are used in levels but, as Krueger and Lindhal

(2001) note, contain very little signal when the data are differenced. Recent efforts to increase the signal

content of the schooling data seem to have been at least partially successful. Taking as a reference the

average reliability ratio for the (1996) version of the Barro and Lee data set (0.264 for the raw data and

0.206 after removing period means), the latest revision of these series by the same authors has

increased their information content by 20% (21% after removing period means), while the estimates

reported in Cohen and Soto (2001) and in this paper raise the estimated reliability ratio by 100% (162%)

and 172% (207%) respectively. Our updated data set has the highest information content of all those

available, particularly when the data are used in growth rates or after removing fixed country effects.

4. Comparative growth results for different data sets

Doubts about the accuracy of existing data sets must raise concerns about the validity of the

findings of empirical studies based on them. Concerns about data quality, however, also admit an

optimistic interpretation of these results. Since there are no reasons to suspect that the available data

contain systematic biases that may lead us to overestimate the contribution of human capital to

productivity, the fact that the empirical results are quite favourable in some cases in spite of the

dubious quality of the data suggest that improvements in this regard should lead to clearer and more

conclusive results about education's contribution to economic growth.

In this final part of the paper we will provide some evidence that this is indeed the case. In this

section, we examine the performance of different schooling data sets in a number of standard growth

specifications and find a clear pattern of human capital coefficients rising with increases in data

quality as measured by estimated reliability ratios. In the following section, we will use this

correlation to produce a "meta-estimate" of the relevant parameter that corrects for measurement error

bias. As we will see, our results support the hypothesis that the lack of correlation between

productivity growth and human capital accumulation reported in some recent studies may be due to

data deficiencies and suggest that the return to investment in education is substantial.

We will assume that the educational attainment of employed workers (HE) is one of the inputs in a

constant-returns Cobb-Douglas aggregate production function which we will write in intensive form

(6) qit = ait + zit + b*heit

where qit is the log of output per employed worker in country i at time t, z the log of the stock of

physical capital per employed worker, he the log of the average number of years of schooling of
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employed workes and ait the log of total factor productivity (TFP). One difficulty we face when trying

to estimate (6) is that our human capital data (H) generally refer to the adult population rather than to

employed workers. To get around this problem, we will hypothesize that HE increases with

population attainment and decreases with the ratio of employment to the adult population (E), i.e. that

(7) heit = c*hit  - d*eit

where all variables are measured in logarithms. Substituting (7) into (6) we obtain the reduced-form

production function

(8) qit = ait + zit + hit  - eit

where

(9)   = bc   and    = bd.

Hence, our use of population data is likely to introduce a bias in the human capital coefficient that

cannot be corrected without outside information on the value of the parameter c. We will attempt to

obtain one such estimate later on, but for now we will concentrate on the estimation of , keeping in

mind that this coefficient is likely to be a biased estimate of b, which is the parameter we are really

interested in.

We will estimate a number of specifications based on (8) using different schooling series and a

common set of other variables. Our first specification is obtained directly from (8) by replacing ait by a

set of period and country dummies,

(10) qit =  + i + t + zit + hit  - eit + it

where t and i are fixed time and country effects and it the disturbance term. A second

specification is obtained by taking differences of (10),

(11) qit =  + t + zit + hit  - eit + bit + it

(which eliminates the country fixed effects), and a third one by extending (11) to allow for

technological diffusion along the lines of de la Fuente (2002b). This last equation is of the form27

(12) qit =  + i + t  + zit + hit   - eit + bit + it

where  denotes annual growth rates (over the subperiod starting at time t) and bit is a technological

gap measure which enters the equation as a determinant of the rate of technical progress in order to

allow for a catch-up effect. This term is the Hicks-neutral TFP gap between each country and the US at

the beginning of each subperiod, given by

(13) bit =  (qUS,t - zUS,t - hUS,t + eUS,t )  -  (qit - zit - hit  + eit).

To estimate this specification we substitute (13) into (12) and use non-linear least squares with data on

both factor stocks and their growth rates. In this specification the parameter  measures the rate of

(conditional) technological convergence. Notice that if this parameter is positive, relative TFP levels

eventually stabilize, signalling a common asymptotic rate of technical progress for all countries, and

27 Equation (12) is obtained from equation (11) under the assumption that the rate of technological progress
(which is implicitly assumed to be constant across countries for each period in the first equation) is given by 

ait = bit + i + t
The term bit is obtained by solving for TFP in the production function in log levels and taking differences with the
US.
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the country fixed effects i capture permanent differences in relative total factor productivity that will

presumably reflect differences in R&D investment and other omitted variables.

Our data on output, employment and investment are taken from an updated version of Dabán,

Doménech and Molinas (1997), who replicate Summers and Heston's (1991) Penn World Table for the

OECD using National Accounts data from this organization and a set of purchasing power parities

specific to this sample.28 The construction of the stock of physical capital using a perpetual inventory

procedure is discussed in section 2 of the Appendix. We use pooled data at five-year intervals starting

in 1960 and ending either in 1985 or in 1990 depending on the duration of the different schooling

series.

The results obtained with the different specifications are reported in Table 9. All equations contain

period dummies and those in panels b and d of the table include fixed country effects as well. The

equations shown in panel a correspond to equation (10) without fixed country effects and control for

the employment ratio (eit), which is highly significant and displays the expected negative sign. For the

remaining equations, eit turned out to be non-significant (which is not surprising given its very small

time variation), so this variable is omitted (with very marginal changes in the remaining coefficients).

Panel e contains results for the technological catch-up specification when only the significant country

dummies are left in the equation so as to retain as much of the cross-country variation in the data as

possible. This is our preferred specification. The last panel of the table shows average coefficient

values and t ratios for each data set computed across the different specifications, and the last column

within each panel reports average results across data sets for each specification.

The pattern of results that emerges as we change the source of the human capital data is consistent

with our hypothesis about the importance of educational data quality for growth estimates. For all the

data sets, the coefficient of human capital ( ) is positive and significant in the specification in levels

without fixed country effects (panel a of Table 9), but the size and significance of the estimates

increases appreciably as we move to the data sets with higher reliability ratios. The differences are

even sharper when the estimation is repeated with fixed country effects (panel b in Table 9) or with the

data in growth rates with or without a catch-up effect (panels c, d and e). The results obtained with the

Kyriacou, B&L and NSD data in growth rates are consistent with those reported by Kyriacou (1991),

Benhabib and Spiegel (1994) and Pritchett (1999), who find insignificant (and sometimes negative)

coefficients for human capital in an aggregate production function estimated with differenced data.

On the other hand, our series and those of Cohen and Soto produce rather large and precise estimates

of the human capital coefficient in most equations and, in the case of our preferred catch-up

specification (panel e), yield plausible values of the remaining parameters of the model as well, with

estimates of  close to the share of physical capital in national income and positive diffusion

coefficients.

28 The OECD has recently revised these series to incorporate changes in national accounting standards. As a
result, our non-schooling data are slightly different from those used in de la Fuente and Doménech (2000 and
2001), and so are the results of the growth equations reported in this section.
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Table 9: Alternative production function specifications

a. Log levels (without fixed country effects)
______________________________________________________________________

[a1] [a2] [a3] [a4] [a5] [a6] [a7] [a8] [a9]

H data from: NSD KYR B&L93 B&L96 B&L00 C&S D&D00 D&D02 avge.

0.580 0.588 0.512 0.512 0.479 0.447 0.451 0.448 0.502
(18.56) (15.77) (13.35) (14.43) (12.62) (11.81) (13.24) (12.04) (13.98)

0.078 0.186 0.141 0.165 0.238 0.397 0.407 0.378 0.249

(2.02) (2.18) (4.49) (4.82) (6.19) (7.98) (7.76) (6.92) (5.30)

-0.257 -0.235 -0.311 -0.362 -0.432 -0.563 -0.560 -0.596 -0.414
(3.45) (3.07) (4.05) (5.19) (5.73) (7.46) (7.30) (6.97) (5.40)

adj. R2 0.881 0.884 0.890 0.889 0.911 0.918 0.923 0.914
std. error reg. 0.129 0.103 0.124 0.119 0.113 0.108 0.105 0.128
no. of observ. 126 95 126 147 147 147 147 147
______________________________________________________________________

   - Note: based on equation (10) without fixed country effects.

b. Log levels with fixed country effects
_______________________________________________________________________

[b1] [b2] [b3] [b4] [b5] [b6] [b7] [b8] [b9]

H data from: NSD KYR B&L93 B&L96 B&L00 C&S D&D00 D&D02 avge.

0.540 0.533 0.531 0.539 0.536 0.516 0.506 0.491 0.524
(16.92) (16.29) (18.59) (18.54) (19.90) (20.08) (18.17) (19.80) (18.54)

0.068 0.066 0.136 0.115 0.203 0.608 0.627 0.958 0.348

(0.76) (1.86) (3.30) (1.80) (3.74) (4.49) (3.99) (6.51) (3.31)

adj. R2 0.978 0.980 0.979 0.977 0.978 0.980 0.978 0.982
std. error reg. 0.056 0.043 0.054 0.058 0.057 0.053 0.056 0.051
no. of observ. 126 95 126 147 147 147 147 147
_______________________________________________________________________

    - Note: based on equation (10) with a full set of fixed country effects.

c. Growth rates
_______________________________________________________________________

[c1] [c2] [c3] [c4] [c5] [c6] [c7] [c8] [c9]

H data from: NSD KYR B&L93 B&L96 B&L00 C&S D&D00 D&D02 avge.

0.504 0.534 0.501 0.490 0.493 0.477 0.475 0.470 0.493
(9.78) (6.92) (9.79) (9.59) (9.71) (9.22) (9.36) (9.34) (9.21)

0.079 0.009 0.089 0.083 0.079 0.525 0.520 0.744 0.266

(0.70) (0.15) (2.52) (1.47) (1.28) (2.57) (2.17) (3.10) (1.75)

adj. R2 0.711 0.684 0.722 0.708 0.708 0.720 0.715 0.726
std. error reg. 0.0097 0.0094 0.0095 0.0096 0.0096 0.0094 0.0094 0.0093
no. of observ. 105 74 105 126 126 126 126 126
_______________________________________________________________________

    - Note: based on equation (11).
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Table 9: Alternative production function specifications (continued)

d. Growth rates with technological diffusion and fixed country effects
______________________________________________________________________

[d1] [d2] [d3] [d4] [d5] [d6] [d7] [d8] [d9]

H data from: NSD KYR B&L93 B&L96 B&L00 C&S D&D00 D&D02 avge.

0.406 0.397 0.421 0.330 0.327 0.414 0.399 0.400 0.387
(5.68) (4.84) (6.05) (3.93) (3.90) (6.16) (5.85) (5.79) (5.28)

- 0.206 0.014 0.056 -0.007 -0.019 0.573 0.587 0.540 0.192

(1.61) (0.29) (1.80) (0.11) (0.31) (3.52) (3.47) (2.89) (1.24)

0.094 0.144 0.096 0.069 0.068 0.097 0.091 0.094 0.094
(6.84) (9.70) (6.21) (5.52) (5.49) (6.41) (6.14) (5.97) (6.54)

adj. R2 0.838 0.837 0.838 0.815 0.815 0.823 0.823 0.819
std. error reg. 0.0073 0.0068 0.0073 0.0056 0.0076 0.0075 0.0074 0.0075
no. of observ. 105 74 105 126 126 126 126 126
______________________________________________________________________

    - Note: based on equation (12) with a full set of fixed country effects.

e. Growth rates with technological diffusion and significant country dummies
______________________________________________________________________

[e1] [e2] [e3] [e4] [e5] [e6] [e7] [e8] [e9]

H data from: NSD KYR B&L93 B&L96 B&L00 C&S D&D00 D&D02 avge.

0.435 0.433 0.490 0.357 0.360 0.372 0.343 0.345 0.392
(5.67) (6.50) (8.25) (5.67) (5.69) (7.50) (6.94) (6.83) (6.63)

-0.089 -0.008 0.062 -0.043 -0.039 0.300 0.399 0.394 0.122

(1.39) (0.19) (1.83) (0.63) (0.72) (4.47) (4.39) (4.57) (1.54)

0.083 0.144 0.091 0.065 0.065 0.084 0.075 0.074 0.085
(8.98) (7.36) (7.40) (10.2) (10.2) (7.16) (6.72) (7.07) (8.14)

adj. R2 0.840 0.844 0.842 0.820 0.820 0.823 0.823 0.828
std. error reg. 0.0072 0.0066 0.0072 0.0075 0.0075 0.0074 0.0074 0.0073
no. of observ. 105 74 105 126 126 126 126 126
______________________________________________________________________

    - Note: based on equation (12). Only significant country dummies are left in the equation.

f. Averages across specifications
_________________________________________________________________

[f1] [f2] [f3] [f4] [f5] [f6] [f7] [f8]

H data from: NSD KYR B&L93 B&L96 B&L00 C&S D&D00 D&D02

-0.014 0.053 0.097 0.063 0.092 0.481 0.508 0.603

(t) (0.10) (0.80) (2.79) (1.47) (2.04) (4.61) (4.36) (4.80)

_________________________________________________________________
   Notes:
- All  equations include period dummies.
- White's heteroscedasticity-consistent t ratios in parentheses below each coefficient.
- The average value of t shown in panel f is computed respecting the sign of the t ratios obtained for the different
specifications; i.e. for this computation we assign to each t ratio the same sign as the corresponding coefficient
estimate.
- In panel a, is the coefficient of the ratio of employment to the population aged 15 to 64 (e).
- Key: NSD = Nehru et al (1995); KYR = Kyriacou (1991); B&L = Barro and Lee (various years); C&S = Cohen and
Soto (2001); D&D = de la Fuente and Doménech (various years); D&D02 refers to this paper.
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We have checked the robustness of the results obtained with our latest data set in a number of

ways. First, we have reestimated our preferred specification (the catch-up equation labeled [e8] in

Table 9e) for all the possible subsamples obtained by deleting one country at a time from the original

data set. Figure 9 displays the estimated human capital coefficient and the 95% confidence interval

around it with the coefficient estimates arranged in decreasing order across subsamples. As can be

seen in the Figure, although there are two particularly influential observations (Greece and Portugal),

our estimate of  remains significantly different from zero at conventional confidence levels even in

the most unfavourable case. By contrast, Temple (1998) reports that Mankiw, Romer and Weil's (1992)

proxy for educational investment looses its significance once a few influential observations are

removed. He shows, in particular, that the removal of Japan from the OECD sample is sufficient to

make the coefficient of the human capital variable insignificant (with a t ratio below one).

Figure 9: Estimated coefficient of human capital and 95% confidence interval around it
when deleting one country at a time from the sample
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- Note: Catch-up specification with country dummies (equation [e8] in Table 9e), estimated after excluding the
country shown in the horizontal axis. Only significant country dummies are left in each equation.
- Legend: Gr = Greece; Sw = Sweden; Ir = Ireland; No = Norway; Ge = West Germany; Ost = Austria; Be = Belgium;
Nl = Netherlands; US = United States; Fr = France; Fi = Finland; CH = Switzerland; NZ = New Zealand; Aus =
Australia; It = Italy; UK = United Kingdom; Dk = Denmark; Ja = Japan; Ca = Canada; Sp = Spain; Po = Portugal.

Second, we have replicated the exercise using the Mincerian specification that seems to be

favoured by many authors in the recent literature. This specification change, which involves replacing

the log of H by its level in equations (10)-(13), produces results that are qualitatively very similar to

those discussed above (and slightly worse all around). (See Table A.1 in section 3 of the Appendix).

Finally, we have reestimated our preferred model instrumenting the growth rate of years of schooling

with the (log) stock of the same variable at the beginning of the current subperiod without any
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appreciable change in the estimated coefficients of the model (see Table A.2 in the Appendix). We

interpret this finding as an indication that our results are not primarily driven by reverse causation

bias.29

5. Correcting for measurement error bias

The results summarized in Table 9 strongly suggest that measurement error often induces a large

downward bias in human capital coefficients. They also show that improvements in data quality

reduce this bias and generate results that are generally more favourable to the view that investment in

schooling contributes substantially to productivity growth. To make this point visually, Figure 10

plots the various estimates of  given in panels a through d of Table 9 against the relevant SUR

reliability ratios, along with the regression lines fitted for each of the growth specifications.30 The

scatter shows a clear positive correlation between these two variables within each specification and

suggests that the true value of  is at least 0.50 (which is the prediction of the levels equation for r = 1).

In the remainder of this section we will explore more systematically the relationship between data

quality and growth equation results. We will use an extension of the classical errors-in-variables

model (CEVM) to obtain a set of meta-estimates of  after correcting for measurement error bias. To

proceed further we will drop the catch-up specification (panel d of Table 9). There are two reasons for

this choice. The first one is that, as suggested by Figure 10, an extrapolation based on our estimates of

  with this specification and the relevant reliability ratios will yield an extremely high and rather

implausible meta-estimate of . The second and more important reason is that the catch-up model is a

restricted non-linear specification in which human capital enters both in growth rates and in levels

(through the technological gap variable). Hence, we would have to deal with two sources of

measurement error, and with features (non-linearity and parameter restrictions) that are not easily

incorporated into the errors-in-variables model we will be using below.

We will write the model we want to estimate (i.e. the different versions of the growth equation) in

the generic form

(14)  Q = H  + X  + u

where Q is (some transformation of) output per employed worker, H  the true stock of human capital,

X = (Z, E) a row vector whose components are the other growth regressors (the stock of capital per

29 While this is a standard concern in this sort of exercise, we believe it is very unlikely that it will induce  a
significant upward bias in our preferred specification. There are two reasons for this: one is the relatively high
frequency at which our observations are taken, and the other is that our estimates are obtained using a fairly
complete specification of the technical progress function that allows for technological diffusion and for country
fixed effects that should help control for omitted variables such as R&D investment. The first of these features
makes it unlikely that any increases in enrollment induced by higher income or faster growth will have time to
appreciably affect schooling stocks. The second feature is important because the reverse causation problem arises
when the residual of the growth equation is not a "clean" random disturbance but contains systematic
components of the growth rate that will enter the demand for education because they can be anticipated by
individuals. See de la Fuente (2002a) for a more detailed discussion of these issues.
30 We do not use the results in block e of Table 9 because each of these equations contains a different set of country
dummies. This makes the coefficients not strictly comparable with each other and raises some questions about the
appropriate reliability ratio.
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employed worker, Z, and the employment ratio, E) and a column vector of coefficients. It will be

assumed that the error term u  satisfies all the standard assumptions of the linear regression model

(and is, in particular, uncorrelated with the regressors) so that the estimation of (14) by OLS with the

correctly measured stock of human capital will be consistent.

Figure 10: Estimated  vs. SUR reliability ratio
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We want to calculate the bias that arises when   is estimated in equation (14) using a noisy proxy

for the stock of human capital,

Pj = H + j

rather than H itself. We will assume that the measurement error terms, j, have the following

structure:

(15) j = j + j  + X j

where j is an idyosincratic error component and j a coefficient that measures the extent to which

data set j amplifies or dampens a common source of error (say, that present in the underlying primary

data) which is captured by an iid disturbance, . Notice that this specification allows measurement

error to be correlated across data sets (as E j k will be different from zero if j k 0) and with the

components of X = (Z, E), as indicated by the last term of (15) where j = ( jz, je)' is a column vector

32



of coefficients. Finally, it will be assumed that both the common and the idyosincratic components of

the measurement error terms are uncorrelated with each other and with H and X, i.e. that

(16) EH  = EH j = E j  = E j k = EXn  = EXn j = 0

for all j and k j and for all components Xn of X.

Under these assumptions, it is shown in the Appendix that the expected value in large samples

(probability limit) of the OLS estimator of  obtained using schooling series Pj  is given by31

(17) plim ˆ 
j  =   

(1 -  ERH )rj'

1 - ERH rj'
  aj

where  is the true value of the parameter, ERH plim R2(H X) is the probability limit of the

coefficient of determination of a regression of H on the rest of the explanatory variables of the growth

equation, X, and rj' is what we will call the adjusted reliability ratio of series Pj. This variable is defined

as the standard reliability ratio of the series Pj' = Pj - X j that is obtained by removing from the

original schooling series Pj the component of measurement error that is correlated with X; that is,

(18) rj' = 
EH

E(Pj - X j)'(Pj - X j)
  .

We will refer to the expression that multiplies the true value of the parameter in the right-hand side of

(17) as the attenuation coefficient, and we will denote it by aj. Notice that the attenuation coefficient

reduces to the reliability ratio when Pj is the only regressor in the growth equation (or when H is

perfectly uncorrelated with the rest of the right-hand side variables). Otherwise, there is a further loss

of signal that increases with the correlation of H with the other explanatory variables in the model.

Using the fact that ERH  and rj' must both lie between zero and one, it is easily seen that aj is an

increasing function of rj' with 0 aj  rj' 1, and that aj < rj' except if rj' = 0, rj' = 1 or ERH = 0. Hence,

contrary to what may appear to be the case in equation (17') in footnote 31, measurement error cannot

reverse coefficient signs in large samples, even when the human capital proxy is highly correlated

with other regressors.

Our meta-estimates of   will be obtained by estimating (for each of the different specifications of

the production function we have used) a regression of the form

(19) ˆ 
j =

  
˜ a j  + j

where j is a disturbance term and 
  
˜ a j a consistent estimate of the relevant attenuation coefficient

which will be constructed independently of ˆ 
j . This equation is the finite sample counterpart of

equation (17), and it is obtained from this expression by deleting the probability limit, leaving on the

left-hand side the corresponding sample estimate, and by replacing the attenuation coefficient on the

right-hand side by a consistent estimate of it and adding a disturbance term to capture small-sample

31 When measurement error is uncorrelated with the components of X (i.e. when  = 0)  equation (17) can be
shown to be equivalent to the bias-correction formula given in Krueger and Lindhal (2001) which, in our notation,
would be written

(17') plim ˆ 
j  = 

 rj -  ERj
2

1 - ERj
2  
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deviations from the asymptotic relationship between these two variables. The following sections

discuss the construction of 
  
˜ a j . Technical details can be found in section 4 of the Appendix.

5.1. Estimating reliability ratios with correlated errors

We will first discuss the estimation of the unadjusted reliability ratios. When measurement error in

H is correlated across data sets or with the other regressors of the growth equation, the procedure

developed by Krueger and Lindhal (2001) will generally yield asymptotically biased estimates of

reliability ratios. Consistent estimates of these ratios, however, can be recovered through a two-step

procedure. We will first obtain all possible pairwise estimates of the reliability ratios of the different

schooling data sets by regressing them on each other as suggested by Krueger and Lindhal. As part of

the first stage, we will also estimate a set of auxiliary regressions that will exploit the information

contained in the correlations between the different schooling series and the remaining growth

regressors. The coefficient estimates obtained in this manner will be biased, but they can be used as

data in a set of second-stage regressions that will yield consistent estimates of the parameters of

interest. As equation (19), these second-stage equations are derived from the probability limits of the

first-stage estimators.

As noted, the first step in the estimation procedure involves regressing the different schooling

series on each other and on the remaining explanatory variables of the growth model. We fix some

data set Pj and use it to try to explain the remaining data sets k j,32 as well as the other growth

regressors contained in the vector X. Hence, for each j we estimate by OLS the following set of

equations:

(20) Pk = rjk Pj + ujk     for  k = 1..., J  with k j  and

            (21) Xn =  jn Pj + ujn   for n = z, e

where the u's are disturbance terms and J (= 8) the number of alternative proxies for H that are

available. This yields (inconsistent) estimates of rj and n that we will denote by 
  
ˆ r jk  and 

  
ˆ jn  (hats will

be used throughout to indicate possibly biased first-stage OLS estimates and tildes will be reserved for

second-stage estimates and for other consistent estimates of various quantities).33 In addition to the J

systems of the form given in (20)-(21), we also estimate by OLS all the "reverse" regressions of Pj on X,

(22) Pj = X j + uxj

to obtain coefficient estimates we will denote by 
    
ˆ 

j .

It is easily shown that

(23) plim 
    
ˆ 

j  =   + j

where   is the probability limit of the vector of coefficients of X in a regression analogous to (22) in

which Pj is replaced by H. Hence, the estimation of equation (22) yields consistent estimates of j "up

32 Contrary to what we did in Section 3.3, we now  construct all possible pairwise estimates of the reliability ratio,
without excluding series that are members of the same family of data sets.
33 As elsewhere in this paper, these equations include period dummies and, where appropriate, country
dummies as well in order to remove time and/or country means.
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to a constant" -- that is, differences across series in the estimated coefficients 
    
ˆ 

j  will be consistent

estimates of differences in the value of j. To exploit this information, we take a specific data set

(D&D02) as a reference, denote the corresponding value of j  by , define j by

(24) j = j - 

and obtain a consistent estimate of its value as

(25) 
    
˜ 

j  = 
  
ˆ 

j  -     
ˆ 

DD02 .

This leaves us with only the two components of   = ( z, e)' to be estimated in the second stage.

To derive the second-stage regressions, we begin by calculating the probability limits of the first-

stage estimators, which are given by (see the Appendix):

(26) plim 
  
ˆ r jk  = rj[1 + ejek  + ( k+ j)' ] +  Cjk

(27) plim 
  
ˆ jn  = rj n + Cjn

where = ( z, e)' and rj are the true values of the parameters of interest and the remaining terms in

these expressions are given by

(28) Cjk  
j'(EX'X) k

EPj
      Cjn  

j'EX'Xn

EPj
     and     ej  j

E

EH  

Hence, the pairwise estimate of the reliability ratio of series Pj obtained using Pk as a reference, 
  
ˆ r jk ,

will be biased upward (downward) whenever the measurement error components of the two series

are positively (negatively) correlated, and an additional bias will be introduced by the existence of a

non-zero correlation of either series with the components of X.

Equations (26) and (27) relate the expected values of 
  
ˆ r jk  and 

  
ˆ jn to the true values of rj and n and

to the coefficients that describe the structure of the measurement error terms, ej and j  =  + j.

Proceeding as above, we construct the second-stage regressions as the natural finite sample

approximations to these relations; that is, we suppress the probability limits in the left-hand side of

(26) and (27), leaving as dependent variables the actual first-stage parameter estimates, replace any

population moments that appear on the right-hand side by their sample counterparts, and introduce a

disturbance term. Rewriting Cjk  and Cjn as explicit functions of  and j, the equations to be estimated

can be written

(29)  
  
ˆ r jk  = rj[1 + ejek  +  2( z z  + e e) + 

  
( ˜ 

jz + ˜ 
kz ) z + 

  
( ˜ 

je + ˜ 
ke ) e] +

+  
1

svar Pj  
 ˜ d jk + ˜ V zz z

2 +2 ˜ V ze z e + ˜ V ee e
2 + ˜ d jz + ˜ d kz( ) z + ˜ d je + ˜ d ke( ) e{ }+ jk

(30) 
  
ˆ jn  = rj n +  

1

svar Pj
 
  

˜ d jn + ˜ V nz z + ˜ V ne e{ } + jn

where jk and jn are disturbance terms and tildes denote consistent sample estimates of the relevant

quantities. Notice that we have replaced EPj   by the sample variance of Pj (denoted by svar Pj) and V

EX'X  by the sample variance-covariance matrix of X = (Z, E). This matrix will be written

    

˜ V =
˜ V zz

˜ V ze

˜ V ze
˜ V ee

 

 
 
 

 

 
 
 

= ˜ V z , ˜ V e( )

where    
˜ V n is its n-th colum. Finally, the terms 

  
˜ d jk  and 

  
˜ d jn are defined as
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(31)   
˜ d jk   

    
˜ 

j ' ˜ V ̃  
k      and    

  
˜ d jn  

    
˜ 

j ' ˜ V n

and can be computed using information known at this stage.

Thus, the only unknown quantities in (29) and (30) are the coefficients to be estimated: rj and ej for j

= 1...J, z, e, z and e. We estimate both equations jointly by "stacking them" so that, for each j, the

first J observations of the dependent variable (one of which will be missing as k must be different from

j) correspond to the pairwise estimates of the reliability ratio,
  
ˆ r jk , and the last two observations

correspond to the first-stage estimates, 
  
ˆ jn . Next, we recover an estimate of  using (23) as

(32)   ̃  =     
ˆ 

DD02  -   ̃  .

We also estimate a restricted version of (29) and (30) in which we impose the assumption that

measurement error is uncorrelated with X (i.e. that j = 0 for all j). When this is done, a similar

restriction is imposed on equation (22) to obtain a direct estimate of   ̃ . The detailed results of the

estimation of the restricted and unrestricted models for each growth specification can be found in

section 4.f of the Appendix.

5.2 Adjusted reliability ratios and attenuation coefficients

We will refer to the reliability ratio estimates obtained from equations (29) and (30) as the (restricted

or unrestricted) "consistent" estimates of the reliability ratio, and we will denote them by 
  
˜ r j . One

drawback of these estimates is that they depend on the correlation of each schooling series with X. As

a result, they do not necessarily lie between zero and one when  is different from zero, and are not

strictly comparable either across data sets or with alternative estimates of the same magnitude that

assume  = 0. To get around these problems, it is convenient to work with the adjusted reliability

ratios we have defined at the beginning of this section, rj'. Once these adjusted ratios have been

computed, the attenuation coefficient that appears in equation (17) can be calculated. We show in the

Appendix that these variables can be estimated by

(33) 

  

˜ r j ' =
˜ r j

(1 − ˜ C jj ) − 2˜ 
j ' ˜ ̃  r j

and

(34) ERH   =   ̃ ' ˜ 

where 
  
˜ C jj  is constructed using (28), our estimates of j =  + j and the sample variances and

covariances of Pj and X.

Table 10 collects our different estimates of the reliability ratios and attenuation coefficients of the

different schooling series used in the literature. These variables are shown in relative terms, with the

average value of each series across data sets (shown at the bottom of the table under avge. value)

normalized to 100. The three panels of the table refer to the different growth specifications or data

transformations we have retained in this section (levels, fixed effects and differences (growth rates)).

Within each panel, the left-hand side block of the table shows three alternative estimates of the

adjusted reliability ratio: the SUR estimates constructed in section 3.3, and the two "consistent"
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estimates obtained using the model developed in this section. The "restricted" consistent estimate

assumes that measurement error is uncorrelated with the remaining growth regressors ( j = 0 for all j),

whereas the unrestricted estimate allows these parameters to be different from zero. For the

unrestricted estimate, we show the adjusted reliability ratio computed as indicated above. In the other

two cases, the raw and adjusted reliability ratios are the same.

The right-hand side block of each panel of the table shows the attenuation coefficient (aj) implied

by each of the three estimates of the reliability ratio we have just discussed. The value of aj is

calculated using equation (17) and an estimate of ERH .  For the case of the consistent reliability ratios,

ERH  is generally obtained as   ̃ ' ˜   using equation (34)  but there are some exceptions, as in some

cases this procedure yields estimates of ERH   that do not lie between zero and one (see the notes to

the table). In the case of the SUR reliability ratios, the value of ERH  cannot be obtained in the same

way because no estimate of  is then available. Under the assumptions used to estimate these ratios,

however, it can be shown that (see equation (26) in the Appendix)

(35) ERj  = rj ERH

so we obtain an estimate of ERH  by regressing the observed value of Rj  = R2(Pj X) on the SUR

estimate of rj without a constant. The last two rows of each panel show, respectively, the value of   ̃ ' ˜ 

and the value of ERH   that was used to construct the displayed attenuation coefficients.

At the bottom of each panel of the table we show the average value (across data sets) of the

reliability ratio and the attenuation coefficient, and the correlation between each of these series and the

SUR reliability ratio. These statistics show that, when the data are used in differences or after removing

fixed effects, the corrections required for the presence of additional growth regressors and for

correlated measurement errors are generally minor on average. Hence, the SUR reliability ratios are

decent measures of the information content of the different series for these data transformations. For

the data in levels, however, the situation is more complicated. Our restricted consistent model suggests

that the SUR reliability ratios are highly inflated by the positive correlation of measurement error

across data sets (notice that the average value of the reliability ratio drops by two thirds as we go from

the first to the second column of panel a of the table). When we allow the measurement error term to be

correlated with X, however, the estimated values of the (adjusted) reliability ratio rise above our SUR

estimates, even though there are still clear signs of positively correlated errors (see Table A.4 in the

Appendix). We find the size of the correction for the correlation of measurement error with X

surprising, particularly because the assumption that j = 0  seems fairly reasonable ex-ante, but there

are clear indications that this assumption does not hold for the data in levels, particularly in regard to

the employment ratio (see Appendix tables A.3a and A.4).

On the whole, our alternative estimates of reliability ratios display a fairly consistent picture of the

relative quality of the different series and reinforce our earlier conclusion that recent attempts to

increase the information content of the schooling data have been fairly successful. There are, however,

some patterns in the results that suggest that our assumptions about the nature of measurement error
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Table 10: Adjusted reliability ratios and attenuation coefficients,
relative values of various estimates

a. data in levels
______________________________________________________________

                                                         reliability ratios                                    attenuation coefficients       .
consistent consistent consistent consistent

SUR restricted unrestr. SUR restricted unrestr.

NSD 53.6 84.0 85.2 38.6 80.4 53.6
KYR 97.3 171.3 128.5 88.1 186.0 229.2
B&L93 70.7 52.6 75.6 55.4 48.2 41.6
B&L96 83.6 64.4 82.1 70.1 60.1 49.3
B&L00 97.7 70.9 89.3 88.7 66.7 59.8
C&S 147.9 122.6 113.3 190.5 123.9 122.6
D&D00 123.4 118.9 110.6 132.0 119.5 112.1
D&D02 125.8 115.3 115.3 136.8 115.2 132.0

avge. value 0.617 0.221 0.741 0.421 0.116 0.302

corr. w/SUR 1.000 0.526 0.696 0.984 0.498 0.479

  ̃ ' ˜ 1.069 0.887

ERH 0.607 0.551 0.887

______________________________________________________________

- Note: Since the value of   ̃ ' ˜ exceeds one in the restricted consistent case, we use as ERH   the highest observed

value of Rj . Under the assumptions used in this case, equation (35) holds so we should have ERj   < ERH   for any
Pj with rj < 1 and this implies that the reported aj's should overestimate the true ones. We do not use equation (35)
to estimate ERH   because this procedure also yields a value of this parameter greater than one.

Table 10: Adjusted reliability ratios and attenuation coefficients (continued)

b. fixed effects
______________________________________________________________

                                                         reliability ratios                                    attenuation coefficients       .
consistent consistent consistent consistent

SUR restricted unrestr. SUR restricted unrestr.

NSD 25.9 28.1 46.0 22.9 25.4 46.0
KYR 30.2 47.2 16.0 26.8 43.2 16.0
B&L93 33.1 22.7 17.5 29.4 20.5 17.5
B&L96 39.9 53.1 41.4 35.7 48.8 41.4
B&L00 48.5 57.5 47.9 43.6 53.0 47.9
C&S 149.2 141.8 175.2 145.3 139.0 175.2
D&D00 223.0 219.4 144.6 231.0 228.4 144.6
D&D02 250.2 230.2 311.5 265.3 241.7 311.5

avge. value 0.367 0.416 0.301 0.339 0.393 0.301

corr. w/SUR 1.000 0.994 0.921 0.999 0.995 0.921

  ̃ ' ˜ 0.163 -0.020

ERH 0.198 0.163 0.000

______________________________________________________________

- Note: Since the value of   ̃ ' ˜ is negative in the unrestricted consistent case, we use a zero value for ERH  .

38



c. differences
______________________________________________________________

                                                         reliability ratios                                    attenuation coefficients       .
consistent consistent consistent consistent

SUR restricted unrestr. SUR restricted unrestr.

NSD 26.0 26.1 48.3 25.2 25.6 48.1
KYR 25.5 17.1 9.9 24.8 16.7 9.8
B&L93 11.5 17.2 15.4 11.2 16.8 15.3
B&L96 15.5 45.4 41.2 15.0 44.6 41.0
B&L00 17.6 53.7 52.8 17.1 52.8 52.6
C&S 184.1 220.6 221.3 183.0 221.7 221.5
D&D00 216.8 172.5 150.1 216.7 172.2 150.0
D&D02 303.0 247.6 261.1 307.0 249.7 261.7

avge. value 0.254 0.330 0.301 0.247 0.325 0.300

corr. w/SUR 1.000 0.962 0.951 1.000 0.962 0.951

  ̃ ' ˜ 0.039 0.009

ERH 0.060 0.039 0.009

______________________________________________________________
- Note: In all panels of the table, reliability ratios and attenuation coefficients are normalized in each column by
their average value taken across data sets.

may not be entirely adequate for the estimation of reliability ratios. Perhaps the clearest indication of

this can be found in the behaviour of the relative reliability ratios for the Kyriacou and NSD series in

levels, which rise sharply as we go from the SUR to the consistent estimates -- to the extent that, as we

will see below, the Kyriacou series becomes an extreme outlier when we consider the relationship

between consistent attenuation coefficients and human capital coefficients for the specification in

levels. We suspect that this anomaly may be due to our assumption of a common source of error

arising from reliance on similar primary data (see equation (15) above). Since the Kyriacou and NSD

series, unlike the rest of the data sets, rely mostly on enrollment data rather than on census

compilations, their estimated correlation with the primary error shared by the remaining data sets

(captured by the parameter j) is likely to be quite low. This, in turn, will cause the consistent reliability

ratio estimates for these two series to increase relative to those of the remaining data sets (see equation

(16)).34

5.3 Meta-estimates of 

Table 11 shows the meta-estimates of  obtained through the estimation of equation

(19) ˆ 
j =

  
˜ a j  + j

which is reproduced here for convenience. The table has three panels that correspond to the alternative

estimates of the attenuation coefficient shown in Table 10. Within each panel, the columns correspond

34 An additional peculiarity of the Kyriacou data set is that it is the only one that refers to the attainment of the
labour force, rather than that of the adult population. Under our assumptions, this is likely to translate into a high
negative correlation of measurement error with the employment ratio.
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to the three growth specifications we have been working with (levels, fixed effects and differences). In

panels b and c, we add an additional levels specification that includes a dummy for the Kyriacou data

set which, as noted in the previous section, is an extreme outlier for the data in levels. This fact is also

illustrated in Figure 11, where we show the scatter diagram obtained with the unrestricted consistent

attenuation coefficients together with two alternative regression lines fitted to the data in levels with

and without the Kyriacou observation.

Table 11: Meta-estimates of 

a. with SUR attenuation coefficients
_______________________________________________________

[1] [2] [3] [4] [5] [6]
levels f. e. diffs. levels f. e. diffs.
0.569 0.966 0.965 0.587 0.998 1.016
(6.30) (10.05) (16.31) (16.50) (16.12) (22.23)

constant 0.009 0.020 0.028
(0.22) (0.46) (1.28)

R2 0.869 0.944 0.978 0.868 0.942 0.972
_______________________________________________________

b. with restricted consistent attenuation coefficients
_________________________________________________________________

[1] [2] [3] [4] [5] [6] [7] [8]

levels levels f. e. diffs. levels levels f. e. diffs.

0.954 3.224 0.898 0.872 1.967 2.606 0.889 0.843

(1.03) (3.77) (7.76) (12.52) (5.31) (10.05) (12.80) (18.82)

constant 0.138 -0.070 -0.001 -0.018
(1.19) (0.76) (0.09) (0.58)

dummy Kyr -0.438 -0.375
(3.46) (4.07)

R2 0.151 0.749 0.909 0.963 -0.050 0.721 0.909 0.961
_________________________________________________________________

c. with unrestricted consistent attenuation coefficients
_________________________________________________________________

[1] [2] [3] [4] [5] [6] [7] [8]

levels levels f. e. diffs. levels levels f. e. diffs.

0.238 1.078 1.054 0.940 0.672 1.053 1.107 0.912

(0.93) (5.58) (10.62) (10.51) (4.33) (14.77) (16.55) (16.06)

constant 0.177 -0.007 0.031 -0.016
(1.97) (0.14) (0.74) (0.43)

dummy Kyr -0.551 -0.541
(5.28) (7.66)

R2 0.125 0.867 0.949 0.948 -0.438 0.867 0.945 0.947
_________________________________________________________________

40



We first estimate equation (19) with a constant, which is generally not significant as predicted by the

model, and then without the constant to obtain our final estimates of the coefficient of human capital.

These meta-estimates of consistently display very large values and significantly exceed those found in

the previous literature. If we leave aside the atypical results obtained with the data in levels and the

consistent attenuation coefficients when the Kyriacou outlier is included in the sample, our estimates of

 range from 0.587 to 1.967, and from 0.843 to 1.107 if we restrict ourselves to the results obtained with

the fixed effects and the differenced growth models, which are less likely to be misspecified and do not

display obvious outliers.

Figure 11: Estimated  vs. unrestricted consistent attenuation coefficient
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Before commenting further on these results, it should be recalled that our use of data on

population attainment (rather than the attainment of employed workers) potentially introduces a bias.

As noted in section 4, the production function parameter we would like to estimate is not   itself, but

rather b = /c where c is one of the coefficients of a regression of the form

(7) heit = c*hit  - d*eit

where h is the log of population attainment, he the log of the average attainment of employed workers

and e the ratio of employment to the adult population. Since the data sets we have used do not provide

information on the schooling of employed workers, we have used panel data for the Spanish regions

from Mas et al (1998) to estimate equation (7) thus obtaining an outside estimate of c that may give us
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an idea of the size of the required correction. Since measurement error is almost certainly a problem in

these data as well (and there are no alternative sources that can be used to estimate reliability ratios),

we obtain a set of bounds on the value of c by estimating both (7) and the reverse regression with the

roles of h and he interchanged. The exercise is repeated with the data in (log) levels with and without

fixed effects and in growth rates to obtain three alternative intervals of plausible values of c that can be

matched with our three growth specifications to obtain ranges of possible values of b.

Table 12: range of meta-estimates of b
___________________________________________________________________________
                                                SUR                                       restricted                                    unrestricted          .

levels f. e. diffs. levels f. e. diffs. levels f. e. diffs.

  ̂ c , direct 0.907 0.867 0.983 0.907 0.867 0.983 0.907 0.867 0.983

  ̂ c , reverse 0.993 1.182 1.468 0.993 1.182 1.468 0.993 1.182 1.468

  
˜ 0.587 0.998 1.016 2.606 0.889 0.843 1.053 1.107 0.912

bmin 0.591 0.844 0.692 2.624 0.752 0.574 1.060 0.937 0.621

bmax 0.647 1.151 1.034 2.875 1.025 0.858 1.162 1.277 0.928
___________________________________________________________________________

The results are shown in Table 12. The first two rows of the table show the bounds on the value of c

obtained from the direct and reverse regressions based on (7). The third row shows the estimates of 

taken from Table 11, and the last two rows display the minimum and maximum values of b, which are

obtained by dividing the estimated   by each of the estimates of c. As can be seen in the table, the

correction is potentially important in some cases but does not qualitatively change our previous results.

Our smallest lower bound for b  (0.574) is roughly twice as large as Mankiw, Romer and Weil's (1992)

estimate of  1/3, which could probably have been considered a consensus value for this parameter a

few years ago and has lately come to be seen as too optimistic in the light of recent negative results in

the literature.

We interpret our results as a clear indication that investment in human capital is an important

growth factor whose effect on productivity has been underestimated in previous studies because of

poor data quality. Considerable uncertainty remains, however, regarding the correct value of the

coefficient of this factor in an aggregate production function. Values of b of the order of 0.6 imply

Mincerian rates of return on schooling (of around 6%) that are consistent with the evidence available

from microeconometric wage equations.35 Somewhat higher values of this parameter remain plausible

as our macroeconometric estimates should pick up any externalities that may be associated with the

accumulation of human capital, such as those arising from the contribution of an educated labour force

to the development and adoption of new technologies. But some of the estimates at the upper end of

our range of results seem decidedly implausible. Possible explanations for these very large coefficient

values include the underestimation of the relevant reliability ratios (for the restricted model in levels)

35 See for instance Card (1999) and Harmon, Walker and Westergaard-Nielsen (2001).
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and an upward bias arising from reverse causation. An additional problem we have not addressed in

this paper is that the likely mismeasurement of the remaining growth regressors may also bias the

coefficient of human capital.

6. Conclusion

Existing data on educational attainment contain a considerable amount of noise. Due to changes in

classification criteria and other inconsistencies in the primary data, the most widely used schooling

series often display implausible time-series and cross-section profiles. After discussing the

methodology and contents of the most widely used schooling data sets and documenting some of

their weaknesses, we have constructed new estimates of educational attainment for a sample of OECD

countries. We have attempted to increase the signal-to-noise ratio in these data by exploting a variety

of sources not used by previous authors, and by eliminating to the extent that it was possible sharp

breaks in the series that  must reflect changes in data collection criteria. While our estimates

unavoidably involve a fair amount of guesswork, we believe that they provide a more reliable picture

of cross-country relative educational attainments and of their evolution over time than previously

available data sets.

We have also constructed statistical measures of the information content of the schooling data sets

used in the growth literature under alternative assumptions on the nature of measurement error.

While the choice of assumptions does make some difference for the ranking of the different data sets,

on the whole these indices support our view that the amount of measurement error in these data is

rather large, and clearly suggest that both our attainment series and those constructed by Cohen and

Soto (2001) constitute a significant improvement over earlier sources. Even so, remaining

discrepancies among recent attainment estimates suggest that further work is required in this area.

This paper was originally motivated by the view that weak data is likely to be one of the main

reasons for the discouraging results obtained in the recent empirical literature on human capital and

growth. Our results clearly support this hypothesis, as does recent work by Krueger and Lindhal

(2001) and Cohen and Soto (2001), and suggest that the contribution of investment in education to

productivity growth is sizable. Unlike several older data sets, our revised series produce positive and

theoretically plausible results using a variety of growth specifications and, unlike MRW's original

(1992) results for a similar sample, our findings survive a simple robustness check. More importantly,

our analysis of the performance of different schooling data sets in a variety of production function

specifications shows a clear tendency for human capital coefficients to rise and become more precise

as the information content of the schooling data increases. We have extrapolated this tendency to

construct estimates of the value of the coefficient that would be obtained with the correctly measured

stock of human capital. Using an extension of the classical errors-in-variables model, we correct for

measurement error bias and produce meta-estimates of the elasticity of output with respect to average

years of schooling that suggest that the true value of this coefficient is almost certainly above 0.50.
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