
Near Field filters for Higher Order Ambisonics

Fons ADRIAENSEN
fons@kokkinizita.net

Abstract

A digital implementation of the near-field filters
used in Higher Order Ambisonics may introduce
some problems with numerical precision and stabil-
ity. This is due to the fact that these filters mainly
operate at the very low end of the audio range. This
technical note documents a simple practical solution
to this problem, and introduces a set of C++ classes
implementing the filters up to fourth order.

1 Introduction

The importance of compensating for the near-
field (NF) effect of the loudspeakers used in
an Ambisonics reproduction system was already
pointed out in the early days of this technology
by Michael Gerzon.

While in a first order system and at practi-
cal source distances only the very low end of
the audio range is affected, this is no longer the
case for HOA. At higher orders the effect starts
at higher frequencies, and for order m it is in-
versely proportional to the m-th power of both
frequency and source distance.

Filters (and their inverses) emulating the
higher order near-field effects are required in
three situations:

• Compensation of NF effects in a HOA re-
production system. At a practical speaker
distance of a e.g. two meters, the NF effect
in the second and higher order components
can not be ignored.

• To create virtual sound sources close to the
listener. This is mainly important in the
context of electro-acoustical music encoded
into HOA, and for virtual reality and tele-
presence systems.

• In the synthesis of HOA from signals cap-
tured by a cluster of omnidirectional or
first-order microphones. In this case, en-
coding for a finite (and relatively small) re-
production rig radius limits the excessive

gains required at low frequencies to man-
ageable proportions.

Near field effects in HOA were analysed in
detail by Jérôme Daniel in his paper (Daniel,
2003) presented at the 23rd AES Conference
in Copenhagen. This paper also discusses the
derivation of the digital filters corresponding to
these NF effects. However, a ’textbook’ form
of these filters will not work correctly unless it
uses very high precision arithmetic.

2 Digital realisation of NF filters

The NF effect for a signal of order m corre-
sponds exactly to a simple analog filter which
is the inverse of an m-th order highpass. This
means that the forward filters amount to m-fold
integration at low frequencies, and have infinite
gain at DC. Any offset voltage (in an analog
realisation) or biased round-off error (for a dig-
ital one), no matter how small, will result in
an uncontrolled DC component. So in practice
the forward filter must always be combined with
some feedback mechanism that turns it into a
finite-gain shelf filter, or with an inverse NF fil-
ter corresponding to a larger source distance.
The latter approach is taken in the C++ classes
documented in the final section. As we will see
this can be done with essentially zero overhead.

We start with equation (5) of Jérôme Daniel’s
paper1, which can be rewritten as

Fm(s) =
m∑

i=0

am,iX
i (1)

with

am,i =
(m + i)!

(m− i)! i! 2i
(2)

X =
c

sr
(3)

1There is a small typographical error in the equation
as printed in that paper: the factor 2i is missing (con-
firmed by the author).

s = jω = j2πf (4)

with c the speed of sound, and r the distance to
the source. The am,i for orders 1 to 4 are:

m am,i

1 1, 1
2 1, 3, 3
3 1, 6, 15, 15
4 1, 10, 45, 105, 105

For a practical realisation we need to factor
the polynomials in s into first and second order
sections. By considering them to be polynomi-
als in X we need to do this only once:

m 1 X X2

1 1 1
2 1 3 3
3 1 3.6778 6.4595

1 2.3222
4 1 4.2076 11.4877

1 5.7924 9.1401

Given these factorisations, we can now for
each order m and for a given c and r express
(1) as a product of sections of the form

H1(s) = 1 + b1,1s
−1 (5)

H2(s) = 1 + b2,1s
−1 + b2,2s

−2 (6)

2.1 Using the bilinear transform
The standard way to convert an analog filter
into the digital z domain is to use the bilinear
transform which consists of the substitution

s = 2Fs
1− z−1

1 + z−1
(7)

with Fs being the sample frequency. This trans-
form causes a warping of the frequency scale,
but this can be safely ignored in this case. The
first and second order sections (5), (6) are trans-
formed into respectively

H1(z−1) = g1
1 + c1,1z

−1

1− z−1
(8)

H2(z−1) = g2
1 + c2,1z

−1 + c2,2z
−2

1− 2z−1 + z−2
(9)

with

b
′
k,i = bk,i/(2Fs)

i (10)

g1 = 1 + b
′
1,1 (11)

c1,1 = −(1− b
′
1,1)/g1 (12)

g2 = 1 + b
′
2,1 + b

′
2,2 (13)

c2,1 = −2(1− b
′
2,2)/g2 (14)

c2,2 = (1− b
′
2,1 + b

′
2,2)/g2 (15)

Two things should be noted about these.
First, in both H1 and H2 the denominator does
not depend on bk,i. So it will cancel out if we
combine forward and inverse operations into one
section. Second, the coefficients in the numera-
tor and denominator are almost equal for realis-
tic values of c/r and Fs, and the entire action of
these filters is determined by minute differences
between them.

For example, in the second order section for
m = 2, r = 10m, Fs = 48kHz we have b

′
2,2 '

3.8e− 7. Given that we have about seven deci-
mal digits of precision in an IEEE floating point
number or a 24-bit fixed point value, it is clear
that the resulting value of c2,1 will not accu-
rately represent the small difference with the
corresponding coefficient (-2) in the denomina-
tor.

2.2 An alternative form
A first solution that comes to mind is to replace
the z−1 delay element by

ζ−1 =
1 + z−1

1− z−1
(16)

s =
2Fs

ζ−1
(17)

This would result in an H1(ζ−1) and H2(ζ−1)
similar to H1(s) and H2(s). However, this is
not a practical solution. The problem is that
(16) contains a zero delay path, and this forces
the denominator to be empty. So we can not
add a feedback term to limit the DC gain nor
combine with an inverse NF filter.

A second approach is to use a delay element
of the form

ζ−1 =
z−1

1− z−1
(18)

s =
2Fs

1 + 2ζ−1
(19)

In practical terms this means that instead of
shifting a sample into a delay element, it is
added to the current value. The first and sec-
ond order sections (5), (6) are now transformed
into respectively

H1(ζ−1) = g1(1 + d1,1ζ
−1) (20)

H2(ζ−1) = g2(1 + d2,1ζ
−1 + d2,2ζ

−2) (21)

with

b
′
k,i = bk,i/(2Fs)

i (22)

g1 = 1 + b
′
1,1 (23)

d1,1 = 2b
′
1,1/g1 (24)

g2 = 1 + b
′
2,1 + b

′
2,2 (25)

d2,1 = (2b
′
2,1 + 4b

′
2,2)/g2 (26)

d2,2 = 4b
′
2,2/g2 (27)

The dk,i are now free of added constants, and
can be represented accurately in single preci-
sion floating point format. The two sections still
have infinite gain at DC, but since (18) includes
a delay, we can use feedback terms to add an in-
verse NF filter.

3 The C++ filter classes

The code documented below is made available
under the terms of the GPL license. The com-
plete text of this license can be found in the file
named COPYING that comes with the source
files.

The filter classes are designed to be used in
Linux applications where the standard sample
format is single precision IEEE float, and pro-
cessing is typically done in blocks of N sam-
ples. There is however nothing that makes them
Linux specific. They only use the very basic
C++ feature of a class and nothing else.

There are four classes named NF filtk, where
k is 1. . . 4, and represents the order. They com-
bine the forward and inverse filters in one oper-
ation and all have the same interface. The first
order one is used as an example below.

NF_filt1 (void) {}
~NF_filt1 (void) {}

Constructor and destructor. Each object con-
tains precomputed coefficients for the forward
and inverse filters, and the filter state preserved
in between process() calls (see below). So you
should have one object per channel to be pro-
cessed.

void init (float w1,
float w2,
float g = 1.0f);

void init (NF_filt1& F);
void reset (void) { _z1 = 0; }

The init() method initialises the filter charac-
teristics. The parameters w1 and w2 are for the
forward and inverse filters respectively. Both
are interpreted as

wi =
c

riFs
(28)

with c = speed of sound, ri = source or speaker
distance, and Fs = sample frequency.

If no forward filter is required, w1 can be set
to zero. This should not be done for w2, as the
result is a filter with infinite DC gain. In prac-
tice the maximum distance for the inverse filter
should be something like 10m. Note that a high
distance ratio will lead to extreme LF gains (e.g.
80 dB for the 4th order filter and a ratio of 1:10),
so some care should be taken with this. If the
forward filter is used in ’panner-with-distance’
module for example, it may be wise to encode
for a reasonable reproduction rig radius, limit
the minimum virtual source distance, and high-
pass the panner input signal.

The optional parameter g specifies the HF
gain of the filter. This can be useful sometimes
and it comes for free since it just modifies a gain
factor that has to be there anyway.

The second init() call is just for convenience
and copies the filter coefficients from an other
filter of the same order.

The reset() call resets the internal state to all
zeros. Note that init() does not imply reset().

void process (int n,
float *ip,
float *op,
int d = 1);

void process1 (int n,
float *ip,
float *op,
int d = 1);

Process n samples from input array ip and place
the result in op. The two pointers can be iden-
tical for in-place processing. The second form
saves some CPU cycles if only the inverse filter
is required (i.e. if w1 was zero). The optional
parameter d specifies the distance between two
samples of the same channel in case an inter-
leaved representation is used.

4 Some examples

Figures 1 and 2 show some plots obtained by
filtering a Dirac pulse and using a 64K FFT on
the result.

References

Jérôme Daniel. 2003. Spatial sound encoding
including near field effect: Introducing dis-
tance coding filters and a viable, new Am-
bisonic format. 23rd AES conference, Copen-
hagen, Denmark.

-140

-120

-100

-80

-60

-40

-20

 0

 10 100 1000

Figure 1: Inverse filters for a source distance of 1m

 0

 5

 10

 15

 20

 25

 30

 35

 40

 10 100 1000

Figure 2: Filters for virtual source at 1m and 3m speaker distance

