
Controlling Adaptive Resampling

Fons Adriaensen
Casa della Musica, Parma

Linux Audio Conference 2012
CCRMA, Stanford CA, USA



1 Adaptive resampling ζ

• Converting a signal between two domains using incoherent sample clocks.

* The resampling ratio is only know nominally and may drift over time.

* It must be derived in an adaptive way from the actual signals.

• Required for

* Connecting installations that can’t share a common clock (quite common

in broadcasting).

* Adding an additional sound card as a Jack client.

* Receiving audio signals from the network while using a local audio device.

* An audio player slaved to timecode while the sample rate remains fixed.

Controlling Adaptive Resampling – 1 Linux Audio Conference – 12. . . 15 April 2012 – CCRMA, Stanford CA, USA c© 2012 F.Adriaensen



2 Adaptive resampling ζ

• A relatively simple problem in hardware

* Sample clocks are available or can be extracted from the signal.

* Apart from the resampler itself, only a relatively simple DLL is

required to control the resampling ratio.

* Some PRO hardware provides this on selected inputs.

• In a software enviroment the problem is not the actual variable ratio

resampling, but how to control it.

* Signals are available in blocks of samples only.

* Timing information is inaccurate and noisy.

Controlling Adaptive Resampling – 2 Linux Audio Conference – 12. . . 15 April 2012 – CCRMA, Stanford CA, USA c© 2012 F.Adriaensen



3 Delay modulation ζ

• A variable resampling ratio results in delay modulation.

* Small, slow and smooth changes are equivalent to a listener moving

w.r.t the speaker(s), or a sound source w.r.t. the microphone(s), and

are harmless.

* Larger variations may result in perceptible delay changes.

* Faster variations may result in perceptible pitch changes.

* Variations within the audio frequency range result in phase modulation

with a modulation index proportional to the signal frequency.

* The effect is the same as for jitter on a AD or DA converter sample

clock.

Controlling Adaptive Resampling – 3 Linux Audio Conference – 12. . . 15 April 2012 – CCRMA, Stanford CA, USA c© 2012 F.Adriaensen



4 Phase modulation and noise ζ

Original signal Output via cheap MOBO device

Resampled by zita-j2a resampled by alsa out

Controlling Adaptive Resampling – 4 Linux Audio Conference – 12. . . 15 April 2012 – CCRMA, Stanford CA, USA c© 2012 F.Adriaensen



5 Requirements ζ

• Jack client providing adaptive resampling for an ALSA device.

* Multichannel.

* CPU efficient.

• Preserve audio quality of the additional soundcard.

* Use only slow and very smooth adjustments of the resampling ratio.

• Add minimal and at least stable and repeatable delay.

• Fast recovery from incidents that disrupt normal timing.

* Skipped cycles (Jack1).

* Freewheeling.

* Server timeouts due to misbehaving clients.

* Xruns on the ALSA device.

Controlling Adaptive Resampling – 5 Linux Audio Conference – 12. . . 15 April 2012 – CCRMA, Stanford CA, USA c© 2012 F.Adriaensen



6 Principle of operation ζ

• If the resampling ratio is correct, then the delay will be constant.

• There will be a constant number of samples, measured in either the input or

output rate, ’in the pipeline’.

• Find this number, compare to a target value and use the difference to control the

resampling ratio. This is a feedback loop (DLL).

• To obtain zero average delay error, there must be two integration steps the loop.

The resampler acts as an integrator, so it we need just one more in the control

logic.

• Realistic values for the loop bandwidth are in the range 0.01. . . 0.10 Hz.

• A practical realisation will consist of a variable size buffer and the resampler.

Controlling Adaptive Resampling – 6 Linux Audio Conference – 12. . . 15 April 2012 – CCRMA, Stanford CA, USA c© 2012 F.Adriaensen



7 What does not work ζ

Resampler

ALSA Jack

Variable length

Buffer

• Observing the buffer state, and finding the average number of samples

stored in it.

• The timing of the vertical edges is irrelevant for the actual result.

• Using it introduces errors that do not average out in the long term.

• We can’t reliably observe the state of a lock-free queue anyway.

Controlling Adaptive Resampling – 7 Linux Audio Conference – 12. . . 15 April 2012 – CCRMA, Stanford CA, USA c© 2012 F.Adriaensen



8 A solution - 1 ζ

(Again using A2J as the example)

• If we could have two well-behaved functions A(t) and J(t) that represent

the number of samples put into resp. read from the buffer, we could

evaluate those at the start of each Jack period.

• On the Jack side we can have J(tJ) = kJ =
∑
kR, with tJ the the

start-of-cycle timestamp calculated by Jack’s DLL, and kR the number

of samples used or produced by the resampler in the previous cycle. Since

we are only interested in the value at the start of a cycle, that’s all we

need.

• On the ALSA side we can do the same if we implement a DLL there as

well, and transmit the result in a safe way (a lock-free queue) to Jack’s

process().

Controlling Adaptive Resampling – 8 Linux Audio Conference – 12. . . 15 April 2012 – CCRMA, Stanford CA, USA c© 2012 F.Adriaensen



9 A solution - 2 ζ

• On the Jack side this info is used to accumulate the number of sam-

ples written by the ALSA side in kA1, with a corresponding timestamp

tA1. Using also the values from the previous cycle, kA0 and tA0 we can

interpolate to find A(tj). The difference A(tJ) − J(tj) is the value we

want.

• Note that we don’t ever read the actual state of the lock-free audio buffer

at all, we only use the accumulated values kA and kJ .

• We need correct initial values for both of them.

• We must also ensure that the abstraction — the two accumulators kA
and kJ — stays in sync with the actual buffer. Any changes to either

value (e.g. for error recovery) must be compensated by some logical read

or write action on the actual buffer. We can only increment or decrement

them, not ever assign a new value.

• These and some other issues are discussed in more detail in the paper.

Controlling Adaptive Resampling – 9 Linux Audio Conference – 12. . . 15 April 2012 – CCRMA, Stanford CA, USA c© 2012 F.Adriaensen



10 Resampler delay ζ

inpdist = 2.7 samples

outdist = 4.5 samples

Output samples

Multiphase filter

Input samples

• So far we looked only at the variable size buffer and ignored the delay in the

resampling algorithm.

• In each period it will take/put an integer number of samples from/into the buffer,

but it stores a number of samples internally as well, and its state can also represent

a fraction of a sample.

• This value can be provided by the resampling library only.

Controlling Adaptive Resampling – 10 Linux Audio Conference – 12. . . 15 April 2012 – CCRMA, Stanford CA, USA c© 2012 F.Adriaensen



11 Loop error equations ζ

Let kJ be the jack side sample count at tJ , the start of the current

period, kA0 and kA1 two sample counts at the ALSA side at times

tA0 and tA1, then the loop error becomes

EA2J = [kA0 − kJ ] + dA + dres − ∆ (1)

EJ2A = [kJ − kA0] − dA + dres ∗ γ − ∆ (2)

with γ the current resampling ratio, ∆ the target latency value, dres

the current resampler delay, and

dA = A(tJ) = [kA1 − kA0]
tj − tA0
tA1 − tA0

(3)

which is the ALSA side sample count interpolated at the start of the

current Jack period.

Controlling Adaptive Resampling – 11 Linux Audio Conference – 12. . . 15 April 2012 – CCRMA, Stanford CA, USA c© 2012 F.Adriaensen



12 Zita-ajbridge structure ζ

Jack client

Lock-free

audio queue
Resampler

HW
buffer

HW
buffer

LF data queue

ALSA thread

A2J

DLL DLLControl

Jack server

ALSA threadJack client

Lock-free

audio queue
Resampler

HW
buffer

HW
buffer

LF data queue

J2A

DLLControlDLL

Jack server

Controlling Adaptive Resampling – 12 Linux Audio Conference – 12. . . 15 April 2012 – CCRMA, Stanford CA, USA c© 2012 F.Adriaensen



13 Results - residual phase variations ζ

Measured phase (degrees) of a 1kHz sine wave resampled by zita-a2j, 48kHz to 44.1kHz

X-axis in centiseconds.

Controlling Adaptive Resampling – 13 Linux Audio Conference – 12. . . 15 April 2012 – CCRMA, Stanford CA, USA c© 2012 F.Adriaensen



14 Results - two devices competing for one CPU ζ

Measured phase (degrees) of a 1kHz sine wave resampled by zita-a2j, 48kHz to 48kHz

X-axis in centiseconds.

Controlling Adaptive Resampling – 14 Linux Audio Conference – 12. . . 15 April 2012 – CCRMA, Stanford CA, USA c© 2012 F.Adriaensen



15 Q & A ζ

The End

Many thanks to CCRMA and the LAC team
for making this presentation possible!

Controlling Adaptive Resampling – 15 Linux Audio Conference – 12. . . 15 April 2012 – CCRMA, Stanford CA, USA c© 2012 F.Adriaensen


