
Using a DLL to filter time

Fons ADRIAENSEN
Alcatel Space

fons.adriaensen@skynet.be

Abstract
A new mechanism to obtain an accurate mapping
between samples and system time was recently in-
troduced into JACK1.It is based on a the use of a
Delay Locked Loop (DLL). This paper discusses the
problem that was solved, and introduces the reader
to the concept of control loops in general, and to the
DLL solution adopted in particular.

Keywords
DLL, synchronisation, filtering, JACK, Ardour

1 Introduction

In audio applications it is often required to have
an accurate mapping between the time a partic-
ular sound is reproduced or recorded, and the
actual samples that make up the signal. For
example, a synthesis system such as SuperCol-
lider will receive commands to produce a sound
at a given system time2, and has to find out
some in way which samples are going to repre-
sent that sound. Other places where this rela-
tion is important include DAW software such as
Ardour, where one often needs to find out which
sample is audible ’now’, for example when the
user clicks a mouse button. The techniques ex-
plained in this paper can be used for other pur-
poses as well, for example for tempo tracking.

To be useful, the mapping between system
time and sample count needs to have some qual-
ities. It has to be:

• Smooth. This means it should maintain
a ’constant speed’. We expect a given dif-
ference in time to always correspond to the
same distance in samples.

• Monotonic. If event A comes before B in
real time, we want A to map to a sample
that comes before the one that B maps to.

1This paper was written before the actual implemen-
tation. The code that is currently in JACK does not use
system time but JACK’s internal frame time.

2More accurately, an OSC time, but this has a fixed
relation to system time.

• Continuous. If two events are very close
together, we expect them to correspond to
samples that are close together too – there
should be no jumps.

Typically, audio processing is done in peri-
ods — samples are processed in blocks of fixed
size. In particular, all JACK-enabled applica-
tions work this way, and the situation is not re-
ally different when using ALSA directly. There
is no hard relation between the time a given
block of samples is actually available for pro-
cessing, and the time the signal represented by
those samples will exist, or existed as a phsysical
sound or as an analog electrical signal. Once a
signal is represented by data in computer mem-
ory, its real timing has become data too, which
in some way has to be stored along with the
samples.

We can, each time we start processing a pe-
riod, read the system timer. This will give an
approximate idea of when (in system time) the
sound was or will be audible. Doing this, there
are five more factors to consider:

• Latency. This is the time between the
sample was (or will be) converted from (or
to) to the analog domain (or to a format
that has physical timing), and the time the
audio hardware will generate an interrupt
that will trigger the processing of the block
that this sample is part of. Latency as
defined like this is only a function of the
amount of buffering performed by the au-
dio hardware, and will be not be considered
further in this paper.

• Delay. There will be some delay between
the HW interrupt, and the momemt we can
read the system time. This is made up
of interrupt, processing and scheduling de-
lays.

• Jitter. The delay mentioned in the previ-
ous point will not be constant. Advances



in Linux kernel design and implementation
have greatly reduced this variation, but it
still exist, and will remain. A typical well-
tuned system will show a small average de-
lay with some occasional peaks.

• Timer quantisation. The system timer
may have a considerable quantisation er-
ror, for example it could increment in steps
of a millisecond. When the period time is
an exact multiple of the timer step, this
will generate a constant error. In the other
case timer quantisation manifests itself as
additional jitter.

• Sample frequency errors. On most
hardware, the sample clock is not locked
in any way to the one that drives the sys-
tem timer. This means that the real sample
frequency (when measured against system
time) will not be exactly equal to the nom-
inal one, and that any mapping based on
the nominal sample frequency will show an
error.

Latency can be compensated for when we
know the driver and HW configuration. The
following sections will show that jitter, quanti-
sation, and sample frequency errors can be re-
moved as well. The only remaining error then
is the average interrupt to timer read delay. On
a system configured for audio work this should
be small, and a constant offset will remove most
of it.

2 Mapping between sample counts
and system time

Let p be the period size, F the nominal sam-
ple frequency, and T = 1/F the nominal sam-
ple period. At the start of a period i, we are
at sample n0i (this value will increase by p for
each period), and we read the system timer and
obtain t0i .

With this information, we have a mapping
between system time t and sample index n:

t = t0i + (n− n0i) ∗ T (1)
n = n0i + (t− t0i)/T (2)

Modulo some implementation details,
these two equations describe how JACK’s
frame time() function 3 operated originally.

3Names such as frame time can be quite confusing.
Is it the time of a frame, or some other time expressed
in frame units ? In this paper we’ll try to use a consis-

system time

sample count

Figure 1: Discontinuous mapping

There are some problems with this mapping,
as shown in fig.1. In this figure the grid rep-
resents nominal periods on both axes, and the
(red) dots are the points (t0i , n0i). The thin
(blue) line is the exact mapping we want. Note
that in this example the real sample frequency is
slightly lower that the nominal — the thin line
is lagging the grid as time advances. The thick
lines show what we get when using the equa-
tions above. The mapping is smooth, but only
within one period. It is certainly not continu-
ous and can even be non-monotonic. At some
points it is ambiguous or undefined.

What we want is more something like fig.2.
Here the thick lines are connected, and the map-
ping is continuous and monotonic. We will also
want to remove as much as possible of the ’wob-
bling’, i.e. obtain a straight linear mapping.

Define n1i and t1i as our estimates of the sam-
ple count and system time at the start of the
next period. Of course n1i = n0i + p, and our
best guess for t1i so far is t1i = t0i + pT .

The continuity requirement means that:

n0i = n1i−1 (3)
t0i = t1i−1 (4)

Equation (3) is already satisfied, and (4), in
practice, means that we should not try and find
t0 at the start of each period, but that we must

tent naming convention: the phrase A time of B always
means “the time of the event B, expressed on the time
scale A”.



system time

sample count

Figure 2: Continuous mapping

look ahead and find t1, and use the t1 from the
previous period as t0 in the current one.

Using these definitions, the mapping equa-
tions (1,2) above become:

Te = (t1i − t0i)/p; (5)
t = t0i + (n− n0i) ∗ Te (6)
n = n0i + (t− t0i)/Te (7)

This means that we have replaced the nomi-
nal sample period T by an estimated one, Te. As
a result of the jitter on the system timer, this Te

shows considerable variation. The following sec-
tion will show how this can be reduced, thereby
straigthening the thick line in fig.2. Note that
it will always remain at a small distance to the
right of the ideal mapping. This is the average
delay mentioned above.

3 Control loops

The problem we face when trying to remove the
timing errors is one of filtering : we want to re-
move the random fluctuations but to follow the
’average speed’ of time.

In electronics and digital signal processing
many filtering problems are solved by feedback
loops. The classical example is the Phases
Locked Loop or PLL, which enables a radio re-
ceiver to track the frequency of the signal it is
receiving even when that signal is erratic and
corrupted by much noise.

Now what is a control loop ? A good exam-
ple is what happens when you are driving and
you want to follow another car at a constant

Filter
x

y

e

Figure 3: A general control loop

distance. When you notice that the distance
increases, you will accelerate. When you come
too close, you will decrease your speed. The
thing that drives this mechanism is the differ-
ence between the distance you observe, and the
one you want to maintain — this is called the
loop error in feedback theory.

All loops operate in the same way (see fig.3):
there is some input quantity x and an output y
that tries to follow x, and y is driven in some
way by a filtered version of the error e = x −
y. To apply this to our problem, let x be the
jittering system time we are reading at the start
of each period, and then y is supposed to be a
smoothed version of the same.

In control loop theory a very important pa-
rameter is the loop order. The loop order de-
termines in which way the loop takes time into
account. For example, one way to react to a
given loop error would be to just use the value
of the error as it is, without taking into account
its history. That would be a zero-order loop.
Another way would be to increase the effect of
an error as it persists for a longer time – a first
or higher order loop will do exactly that.

More formally, the loop order is given by the
number of integration steps in the filter. What
is an integrator ? Basically a thing that outputs
an accumulated (over time) version of its input.
If xi are the inputs, then the outputs are

yi = yi−1 + xi (8)

In C this reduces to y += x; An integrator
has the interesting (for control theory) property
that when its output is in some way constrained
to remain bounded, for example because it is
part of a feedback loop, then the average value
of the input must be zero. So if there is at least
one integrator in the loop filter, and the average
speed of the input is zero, then the average loop
error must be zero as well.

Figure 4 shows the structure of a zero, first
and second order loop. In a zero-order loop we



x

y

e

a b c

INT INT

x

y

e

a b

INT

x

y

e

a

Figure 4: Zero, 1st and 2nd order loops

have just y = a ∗ e, so the average error will be
zero only if the input has the same property.

In a first order loop there are two feedback
paths, one direct, and the second one through
an integrator. This is equivalent to a single pole
lowpass filter. The average loop error will be
zero if the average input speed is zero. The car
chasing example given above is also a first order
loop. The loop error is expressed as distance,
but this error is used to control your speed. Dis-
tance is the integral of speed, so there is an in-
tegrator in the loop.

In our problem x is moving at a nonzero
speed, so the condition to have zero average loop
error is not satisfied. We could try to solve this
by subtracting the integrated speed of system
time from x and adding it again to y. But since
the nominal sample frequency is not exact, we
do not know this speed exactly — the difference
in system time between two interrupts is not ex-
actly equal to pT . So some error will remain.
What is worse is that this error will increase as
we decrease the filter bandwidth in order to re-
move more of the jitter. In a practical situation
this rapidly leads to unacceptable error magni-
tudes.

The solution is to use second order loop. In
this type of loop there is is one feedback path
that passes through two integrators. This will
give a zero loop error if the input x has zero

acceleration, which is the case in our DLL. The
circuit is equivalent to a two-pole lowpass filter,
such as used for example in a synthesiser.

This presentation is not the proper place to
repeat standard control loop theory — for a
complete treatment, see the classic works of
Gardner (Gardner, 1966) and Best (Best, 1984).
Both authors mainly discuss phase locked loops,
but most of the theory is directly applicable to
a DLL as well.

We will only give here the equations for a, b
and c in the second order loop shown in fig. 4.
Let F be the sample frequency of the loop (i.e.
the period frequency) and B be the required
bandwidth of the filter, then:

ω = 2πB/F (9)
a = 0 (10)

b =
√

2ω (11)
c = ω2 (12)

Here b is set to give a critically damped loop.

4 Implementation

The following code illustrates how the DLL can
be written in C. The code shown here is a
straightforward implementation of the second
order loop in fig.4, using the same symbols as
in the previous sections. Times are expressed in
seconds. Referring to the second order loop in
fig. 4, a = 0, x = read timer(), y = t1, and e2
is the state of the second integrator.

First we need some constants:

nper = period_size;
tper = period_size / sample_rate;

The first iteration sets initial conditions. This
is executed in the first process cycle when JACK
starts, or after an xrun:

// init loop
e2 = tper;
t0 = read_timer();
t1 = t0 + e2;

// init sample counts
n0 = 0;
n1 = nper;

The following code is executed in all following
iterations:



Figure 5: Jitter with USB audio card

// read timer and calculate loop error
e = read_timer() - t1;

// update loop
t0 = t1;
t1 += b * e + e2;
e2 += c * e;

// update sample counts
n0 = n1;
n1 += nper;

5 Some measured results

The DLL described in the previous sections can
easily reduce the system time jitter by a fac-
tor of 100. This is in particular important for
USB cards, and may also provide a solution to
the problem of finding accurate system time to
sample count mapping for networked audio.

While for most (PCI based) audio cards the
jitter is mainly determined by scheduling delays,
USB audio interfaces show and additional prob-
lem: the period timing jitter is mainly the result
of ALSA’s repackaging of the samples into pe-
riods of the requested size. In theory this jitter
should be in a range of 1ms (the USB interrupt
period), but in practice, variations in a range
of up to 4 ms are observed4. As an example,
fig.5, shows the loop error for the author’s USB
interface. This also shows the loop adapting to
the mean interrupt to timer read delay, wich is
quite high in this case.

Figure 6 shows the remaining jitter after the
DLL filtering. This is reduced from the original

4This probably indicates a problem with the ALSA
implementation.

Figure 6: Remaining jitter with DLL filter

± 2 ms to a range of about ± 10 µs. Most PCI
sound cards have significantly less jitter to start
with, and the filtered result will then be better
than one microsecond.

6 Acknowledgements

This paper is the synthesis of a very long dis-
cussion (by e-mail) of the author with Florian
Schmidt and Paul Davis. Many thanks to both
of them for their patience ! Florian Schmidt
wrote the code that is now part of JACK.

References

Roland E. Best. 1984. Phase-Locked Loops -
Theory, Design and Applications. McGraw-
Hill, New York.

Floyd M. Gardner. 1966. Phaselock Techniques.
John Wiley and Sons, New York.


