
The WFS system at La Casa del Suono, Parma

Fons Adriaensen
Casa della Musica
Pzle. San Francesco
43000 Parma (PR),

Italy,
fons@kokkinizita.net

Abstract

At the start of 2009 a 189-channel Wave Field Syn-
thesis system was installed at the Casa del Suono in
Parma, Italy. All audio and control processing re-
quired to run the system is performed by four Linux
machines. The software used is a mix of standard
Linux audio applications and some new ones devel-
oped specially for this installation. This paper dis-
cusses the main technical issues involved, including
sections on the audio hardware, the digital signal
processing algorithms, and the software used to con-
trol and manage the system.

Keywords

Wave field synthesis, spatial audio, distributed audio
systems

1 Introduction

La Casa del Suono in Parma, Italy, is one of the
cultural entities managed by the city of Parma,
located in a small restored church and open to
the general public. It is in the first place a mu-
seum dedicated to the history of audio technol-
ogy, showing a collection of vintage audio equip-
ment. It also aims to provide to its visitors a
view on current developments in this area.

One of the installations designed for that pur-
pose is the Wave Field Synthesis system in-
stalled in the Sala Bianca, shown in fig. 1.
This is a room of around 7.5 by 4.5m meters
and 4.5m high. When the doors (seen in the
back) are closed, there is a continuous ring of
189 small speakers running along the complete
inner circumference of the room, one every 12cm
(with some small exceptions due to construc-
tional constraints). The speakers are hidden
behind a white tissue covering all the walls,
and are constructed in ’blocks’ of 10, 15, or
17 units. They are a bass-reflex design consist-
ing of a small four inch bass and midrange unit
(from Ciare) and a tweeter, driven by a pas-
sive crossover network. The height of the ring
is a compromise between typical ear height for
a seated and a standing audience. The usable

Figure 1: La Sala Bianca

frequency range is 50Hz to 20kHz, and sound
quality is remarkably good for a design of this
size. Except for the space taken by the speak-
ers the walls are completely covered by sound
absorbing material, leading to reasonably good
’dead’ acoustics.

As a project the Sala Bianca is the result of
a collaboration between the city of Parma and
the Engineering Department of the University
of Parma. The university in turn contracted
the author to specify the audio hardware and
design the complete software.

The system is intended to be used both as a
public demonstration of WFS technology, and
as a scientific research instrument. This has re-



sulted in some quite peculiar and contradictory
requirements. In the first role the system is op-
erated by the museum staff, and it has to run
fully automatically every day and without any
technical support. As a scientific instrument on
the other hand it has to be reconfigurable with-
out any artificial limits, allowing the researchers
to e.g. easily replace part of the software with
experimental versions, or use it as a listening
room for psycho-acoustic experiments using en-
tirely different rendering algorithms. After the
system was constructed a third way of using it
was added as the direction of La Casa della Mu-
sica (who are managing the installation) also
expressed their desire to use the Sala Bianca as
an instrument for electro-acoustic music.

This is of course not the first large-scale WFS
installation using Linux. A much larger one was
constructed in 2007 at the Technical Univer-
sity of Berlin, see [Baalman et al., 2007]. The
two systems are however quite different both in
the hardware and software solutions that were
adopted.

2 A short introduction to WFS

Wave Field Synthesis operates by reconstruct-
ing the wavefront that would be generated by a
real sound source, called the primary source, by
a large number of real secondary sources. The
method used is based on the Huygens principle,
and formally expressed by the Kirchoff integral
[Verheyen, 1998]. It only works up to a fre-
quency determined by the distance between the
secondary sources, which should be less than
half the wavelenght. Above this frequency, spa-
tial aliasing will lead to false images of the pri-
mary source being generated as well as the cor-
rect one. For this reason most WFS systems
use linear arrays of closely spaced secondary
sources, as filling a plane would increase the re-
quired number above practical limits. Reducing
a WFS system to 2-D operation has some con-
sequences: it complicates the signal processing,
and it also leads to an approximate solution that
however still works very well in practice. Marije
Baalman’s recently published book [Baalman,
2008] provides a good overview of the state of
WFS technology today, including some features
not covered by the system discussed in this pa-
per.

A WFS system can generate virtual sound
sources either behind or in front of the sec-
ondary sources. The latter, in a complete sur-
round setup as the Sala Bianca or the Berlin

system, means virtual sources that appear to
be inside the room.

Each virtual source is in principle repro-
duced by all speakers (in practice about half of
them). For each pair of primary and secondary
sources different gain factors, delays and filter-
ing are required. So the complexity of the DSP
software is proportional to Nprimary sources ×
Nsecondary sources

The system installed in the Sala Bianca is de-
signed to create up to 48 moving virtual sources
in real time. Movement of the primary sources
is continuous - it is not implemented by cross-
fading between fixed points but by adjusting the
synthesis parameters at the full sample rate.
This means that also the Doppler effect of a
moving source is reproduced faithfully.

3 The audio system

Figure 2 shows the structure of the audio sys-
tem. There are four PCs, all of them from the
Siemens/Fujitsu Celsius range of workstations.
This choice was influenced largely by the IT de-
partment of the city of Parma which imposed its
requirements regarding suppliers, warranty con-
ditions etc., but it turned out to be a very good
one. At the time of writing all these machines
are running Fedora 8 (installed two years ago),
but they will all be converted to ArchLinux in
the coming weeks. This distro makes it easy to
use a much leaner system (e.g. without a fat
desktop such as Gnome or KDE).

All machines are fitted with an RME HDSP-
MADI interface providing 64 channels of digital
audio input and output. RME ADI648 units are
used to convert between MADI and ADAT, the
latter being the format required by all AD/DA
units used in the system. All machines are on a
local gigabit LAN, and for audio they are con-
nected to each other using an RME MADI ma-
trix. The matrix has actually 8 inputs and 8
outputs, the remaining ones being used to con-
nect to the ’Lampadario Acustico’, another au-
dio system installed at the CdS, and to pro-
vide connections for external PCs of researchers
and musicians. All units share the same sample
clock, transmitted either by the MADI links or
by explicit word clock connections.

The wfsmaster machine coordinates the op-
eration of the the WFS system, and provides all
the access points to external applications using
it. It is also the only machine having a human
interface.



A
D

I6
4

8
A

D
I6

4
8

A
D

I6
4

8

ADI648

D
A

C
s

, 
a

m
p

li
fi

e
rs

 a
n

d
 s

p
e

a
k

e
rs8

8

8
DACs ADCs

MADI

ADAT

PC wfsmaster

PC wfsren1

PC wfsren2

PC wfsren3

MADI
Matrix

Figure 2: The audio system

The three wfsrender machines each take
care of 64, 61, and 64 speaker outputs respec-
tively, for a total of 189. They run ’headless’
in Unix runlevel 3, and are fully remotely con-
trolled.

All the equipment shown in fig 2, except the
ADI648 units of the rendering machines is lo-
cated in a small control room adjacent to the
Sala Bianca. The three ADI648 connected to
the rendering machines and all DA convertors
and amplifiers are located two large racks in a
separate technical room. The entire system is
powered by a large UPS.

The normal MADI connections are as shown
in fig 2: the 64 outputs of the the master ma-
chine are connected to the inputs of all three
rendering machines. The hardware ensures that
audio is synchronised system-wide - if the ren-
dering machines all use the same Jack period
size and would just copy one input to all out-
puts then an audio signal provided by the mas-
ter machine would appear on all 192 outputs at
exactly the same time. But even if the Jack pe-
riod sizes are the same, the period boundaries
on each machine are of course not synchronised,
and this has to be taken into account in the pro-
cessing code. This is discussed in section 4.1.

The MADI connections from the rendering
machines back to the master can be used to
monitor and measure the signals generated by
the rendering machines. They have proven to
be very useful for verifying the correct operation
of the signal processing algorithms running on
the rendering machines, but are not used during
normal operation.

3.1 Using network connections for
audio

At the time the system was designed (end of
2007 and early 2008), the use of a dedicated
gigabit network to transfer audio between the
master and rendering machines was considered,
but in the end this solution was rejected for sev-
eral reasons.

• It would require some solution to ensure
that audio signals would remain synchro-
nised. This was actually a minor problem.
By providing audio feedback paths for the
synchronisation signal described in section
4.1 from the renderers back to the master
the delays could be easily measured and au-
tomatically adjusted to be equal.

• While the capacity of a gigabit ethernet
would be sufficient for the amount of data
to be transferred, there were some serious
doubts regarding the performance of the
network adaptor drivers in a real-time sys-
tem.

• Using network connections for the audio
links would not permit significant savings
in the audio hardware. The MADI cards
and ADI648 units for the renderers would
still be required, as would be those for the
master machine (which has to provide a
multichannel audio access point). So the
only item saved would be the MADI ma-
trix, and that is actually one of the less
expensive units in the system.

In the best case the use of network connec-
tions for audio signals would have increased
the latency of the system by an unpredictable



Audio 

Audio timecode

Timestamped positions

Levels and status

Control

Positions

wfsmonitor

display and control

wfsmaster

synchronisation
wfsrender

signal processing

Figure 3: WFS processing structure

amount. The risk of doing this was deemed to
be too high at the time. Today the picture could
look different, but at least the third point men-
tioned above remains valid - there would not be
any significant savings.

4 The WFS processing architecture

Figure 3 shows the basic WFS processing sys-
tem which consists of 3 applications which com-
municate with each other using network mes-
sages. All of these command and monitoring
messages use the OSC format.

The main function of the wfsmaster is to
provide a single access point for controlling the
WFS rendering system. Apart from generating
the synchronisation signal (discussed in section
4.1), this program does not perform any audio
processing. It receives commands from exter-
nal programs specifying the position and move-
ments of each virtual source (more on this in
section 5), and transforms these in the format
required by the rendering engines.

One instance of wfsrender runs on each of
the rendering machines. It performs all the sig-
nal processing required for the set of speakers
controlled by its host. Its inputs are the audio
signals - one for each virtual source - from the
MADI interface, and the processing parameters
transmitted by the wfsmaster. The details of
the DSP algorithms used are discussed in sec-
tion 6. It also transmits monitoring messages
containing e.g. the levels of all its output sig-
nals along with its internal state and any errors.

The wfsmonitor is the only program having
a graphical user interface. It shows the current
position of all virtual sources, the levels of all
189 speaker outputs, and error and status info
from the two others. It can also be used to ’solo’

a single speaker, or to send signals directly to
a speaker for testing and alignment. There can
be any number of instances of wfsmonitor - it
can be run e.g. on portable PC inside the Sala
Bianca, but the system will also run perfectly
without it.

4.1 Synchronisation issues

As mentioned already in section 3 the basic
audio architecture ensures that all outputs of
the rendering machines will be exactly synchro-
nised. If the system would provide only static
virtual sources that would be all that is re-
quired. But to support moving sources also the
application of the position parameters must be
synchronised to sample accuracy on all outputs.

With its standard configuration wfsmaster
will update and transmit all the source positions
every 1024 frames. This is synchronised to (but
independent of) the Jack period on the master
machine. To allow the renderers to apply this
information to the correct audio samples a sep-
arate synchronisation signal is generated by the
master, and transmitted to the renderers follow-
ing the same path as the source audio signals. It
is similar to the one used by jack delay to mea-
sure latency, and consists of a mix of six sine
tones with frequencies that are chosen such that
their phases encode the current position in a se-
quence that repeats exactly every 220 samples
(around 22s). So every sample has an implicit
timestamp in the range 0 . . . 220 − 1 that can
be recovered easily by any application receiving
the signal.

The timestamp corresponding to the first
frame of the current position update period is
included in the messages transmitted by the
master program. A fixed offset (currently 800



LADSPA plugin

Supercollider

Csound

Puredata

wfsmixer

Ardour

Python

Audio 

wfsmaster

shared

memory

OSC/UDP

 OSC to renderers

 Audio to renderers

dummy Jack connection

Figure 4: External application interfaces

frames) is added to allow for the worst case ex-
pected network latency. The rendering applica-
tions use the timestamp and the decoded syn-
chronisation signal to re-align audio and data.
They also check the arrival time and integrity
of the position messages and the presence of a
valid audio time code, and report these in their
monitoring messages. An occasional ’late’ po-
sition message is reported but ignored, as is a
short interruption of the time code. Consistent
errors will make the renderers mute their output
until the situation returns to normal.

4.2 The structure of wfsrender

The wfsrender application is the most compli-
cated one in the system. It has two basic func-
tions: compute the internal WFS processing
parameters in function of source position and
movement, and perform the actual DSP work.

In order to make this application more easily
adaptable it uses two plugins to perform most
of this work. Both are loaded at runtime (as
specified by a global configuration file), and can
be replaced without recompiling the whole ap-
plication.

The layout plugin defines the complete ge-
ometry of the installation. It provides meth-
ods to e.g. find out the exact position of each
speaker, to which channel on which host it is
connected, etc. It also performs some specific
calculations, such as determining if a given x, y
coordinate is internal or external and finding its
distance to the line of speakers.

The engine plugin performs the computation
of all required internal parameters and the ac-
tual DSP work, i.e. it defines the WFS algo-
rithm used.

The interfaces to these plugins are defined as
abstract C++ classes. The ’host’ program takes
care of the audio and network interfaces, OSC

encoding and decoding, the synchronisation sig-
nal, status reporting etc. In principle any C++
programmer who understands the required al-
gorithms could create the plugins without being
distracted by the system level aspects.

Another feature added recently is multi-
threaded audio processing in order to use SMP
systems more efficiently (the machines used are
dual-core). This divides the DSP work over a
configurable number of threads, each of them
handling a subset of the output channels. This
multithreading is transparent to the plugins.

5 External application interfaces

The system described so far just implements
the basic WFS algorithm for up to 48 moving
sources. To create content, spatialisation, room
simulation etc. it depends on external applica-
tions supplying both the audio and source po-
sition and/or movement information. Figure 4
shows some possibilities.

Audio signals can originate or be processed
on the master machine which has almost no
CPU load due the WFS system itself. External
sources can be connected via MADI, ADAT, or
analog inputs. In all cases the signals to be used
as WFS sources are just sent to the first 48 out-
puts of the MADI interface. Time code and test
signals typically use channels 49-56, while the
last eight channels are normally used for con-
trol room monitoring or for providing external
analog signals (e.g. for driving subwoofers).

The wfsmaster program has two interfaces for
source position data.

The shared memory interface can be used
locally only, but permits sample-accurate con-
trol if the position data is generated by a Jack
client. A dummy Jack connection to the mas-
ter program will ensure correct order of execu-
tion in that case. This interface is also used by



+3db/oct

-6db/oct

delay line

delay line

gain1 (t)

gain2 (t)

delay (t)

other sources

out to speaker

to other speakers

to other speakers

input

Figure 5: The basic DSP operation

some LADSPA plugins that allow source posi-
tions and movements to be encoded as automa-
tion data in Ardour. The wfsmixer application
provides a graphical tool to control source posi-
tions. It also allows basic room simulation using
Ambisonic convolution reverbs.

The OSC/UDP interface can be used from
all the standard synthesis programs, from
Python (scripts or interactive), or other lan-
guages and applications, and from any PC on
the local network. The position commands al-
low a source to move at a controlled speed, with
the master program interpolating the movement
if it takes longer than one update period.

Both interfaces also include a per-source gain
factor which is applied at the end of the DSP
processing. This is necessary to still allow full
level for a source positioned at a large distance,
for example when simulating virtual speaker
sets for Ambisonics.

6 The DSP algorithms

The processing required for WFS is not really
very complex, but it has to be repeated Nin ×
Nout times, or around half that number for a
’surround’ layout such as the Sala Bianca.

6.1 The basic real-time processing

The form used in the wfsrender application is
based on equation (29) in Sascha Spor’s very
practical summary of WFS theory [Spors et al.,
2008], which shows the driving function for a
spherical wave reproduced by a linear array.
This translates in to the diagram shown in fig.
5. For each single source, and for each speaker
reproducing that source, the two filtered signals
are delayed by a time delay and then combined
using gain factors gain1 and gain2. Using two
delay lines allows the second filter to be shared

for all outputs, as are the delay lines them-
selves. The three parameters are computed
from the source position and the system geom-
etry. The wfsrender code performs this com-
putation at every position update (i.e. every
1024 frames) and interpolates them linearly in
between. Some optimisations are applied in the
actual code for cases where one or more of the
three parameters remain fixed.

Since the system allows for moving sources
and uses the the actual delays corresponding to
the postion of a primary source (which means
it will reproduce the Doppler effect exactly), it
can’t handle the case of plane waves, as these
would correspond to infinite distance and delay.
It would be easy to add these as a special case,
but so far there has been no need to do this.

6.2 Handling sources near the speakers

The equation cited above is an approximation
that is valid only for primary sources that are
not too close to the line of speakers. This is be-
cause its derivation assumes a continuous dis-
tribution of the secondary sources. Since the
system supports arbitraty movements and vir-
tual sources can cross the line of speakers with-
out restriction these cases have to be handled
separately.

The exact solution becomes quite complex,
and it can’t be derived as a limit case of the
standard equation. To find it one has to go back
to the full three-dimensional case, apply the sec-
ondary source quantisation there, and then re-
duce the result to a linear array.

The wfsrender code uses a pragmatic ap-
proach to handle this situation. If a primary
source comes too close to the secondary ones,
two parameter sets are computed: one for a
source at a fixed distance (for which the nor-
mal equation is still valid) behind the speakers,



and one for the same distance in front. The
two parameter sets are then combined accord-
ing to the actual source position. The result
is an approximation of the exact solution, but
works well in practice.

7 System organisation and use

All source code, scripts, data files etc. required
to install the system are kept on an NFS share
available on all machines. A single click on a
desktop menu will install or update all neces-
sary components system-wide. Compilation is
always on the target machines, i.e. everything
gets installed from source.

Binaries, plugins and most scripts are kept in
the standard places under /usr/local. The only
exceptions would be experimental versions that
would be installed per-user.

The basic setup of wfsmaster, wfsrender and
wfsmonitor is defined in a global configuration
file. ’Technical’ users would normally just run
wfsmonitor which then permits to run and con-
trol the others without having to use remote lo-
gins, set up Jack servers, etc. They would then
add anything else they require on the master
machine manually. Alternatively the Python
components described below provide an easy
way to create sessions that need to be recreated
automatically many times, and have in fact be-
come the preferred way to use the system.

7.1 Automatic configuration

For the ’museum’ user the situation is quite dif-
ferent. A single click on a desktop icon launches
the complete system under the control of a
Python program that configures everything and
that acts as a server to a remote control appli-
cation. The remote control looks like a typi-
cal desktop audio player, with stop/start/loop
buttons, volume control, a playlist etc. It runs
locally on the master machine and also on one
or more ’EEE’ notebooks with wireless network
access, used by the museum staff. Selecting an
item from the playlist reconfigures the complete
system according to the requirements for that
item.

Apart from the components that implement
the remote control server and the playlist, the
Python program has classes for all required au-
dio applications, each new instance of them be-
coming a separate Jack client. These include
py jackctl, py jplayer, py ambdec, py jconvolver
and some others. More will be added in the
future.

8 Acknowledgements

I’d like to thank Prof. Angelo. Farina (Uni-
versity of Parma) and the direction of La Casa
della Musica for having provided the opportu-
nity to create the system described in this pa-
per. A warm thanks also to Stefano Cantadori
and to all my former colleagues at Audio Link
and AIDA.

The realisation of this project would not have
been possible without the work of all the devel-
opers who have created Linux and its audio sys-
tem. An uncountable number of people on the
Linux Audio mailing lists have provided valu-
able and often essential help and hints. My sin-
cere thanks go to all of them.

References

Marije Baalman, Torben Hohn, Simon
Schampijer, and Thilo Koch. 2007. Renewed
architecture of the swonder software for wave
field synthesis on large scale systems. In Pro-
ceedings of the 6th Linux Audio Convention,
Berlin, Germany.

Marije Baalman. 2008. On Wave Field Syn-
thesis and Electro-acoustic Music. VDM Ver-
lag Dr. Mueller AG, Saarbruecken, Germany.

Sacha Spors, Rudolf Rabenstein, and Jens
Ahrens. 2008. The theory of wave field syn-
thesis revisited. In Proceedings of the 124th
AES Convention, Amsterdam, The Nether-
lands. Audio Engineering Society.

Edwin Verheyen. 1998. Sound Reproduction
by Wave Field Synthesis. Technische Univer-
siteit Delft, Delft, The Netherlands. Doctoral
thesis.


