Audio Measurements Workshop

Fons Adriaensen Casa della Musica, Parma

Linux Audio Conference 2014 ZKM Karlsruhe, Germany

- Techniques and tools to measure
 - * Soundcards
 - * Analog hardware
 - * DSP software
- Theory
 - * Levels, decibels, noise, calibration,...
- Tools
 - * jaaa, jnoisemeter, jsignal,...
- Practice

- Why measure things ?
 - * Verify your design and programming.
 - * Have you been ripped off ?
 - * To know limits and create a level of confidence.
 - * Curiosity.
- Always expect the unexpected. It happens. If your measurements are exactly as you imagined they would be, then
 - * Congratulations !
 - * It's time to verify things and ask some questions.
- Audio measurements often involve a mix of electrical and acoustic units as well as purely numerical values, and conversions between them. This can be very confusing unless you have a solid grip on the basics.

- Signals
 - * Levels, power, impedance, balancing, ...
 - * Measurement methods.
- Decibels.
 - * Reference levels, ...
- Acoustic units and levels.
- Noise.
 - * Distribution, spectrum, density.
 - * Measurement methods and standards.
 - * Thermal noise.
 - * Equivalent input noise.
- Understanding audio specs.
 - * Microphones.
- Calibration.

- Measured in Volts (V).
 - * Rough levels: mics: 1 mV, consumer: 100 mV, pro: 1 V.
 - * Current: i = u/Z (A).
 - * Power: $P = i * u = u^2/Z = i^2 * Z$ (W).
- Analog audio connections are almost always voltage driven.
 - * Input impedance is much higher than output impedance.
 - * Allows splitting the signal without level changes.
 - * Exception: long analog lines (rarely used today).
- For numerical signals (no physical units), 'power' means the square of amplitude.
- The 'gain' of AD and DA converters requires some care to define without ambiguity as one side uses physical units and the other not.

- Balanced connections:
 - * Inputs take difference of two signals, cancels interference.
 - * Different kinds of outputs and inputs are not always compatible.
- Outputs
 - * Impedance balanced very common.
 - * Antiphase outputs different variations.
 - * Differential rare.
 - * Floating requires transformer.
- Inputs:
 - * Differential with unbalanced impedance very common.
 - * Differential with balanced impedance.
 - * Floating requires transformer.
 - * Common mode rejection of input defines performance.

- A 'perfect' differential input ignores the common signal.
- Real-life balanced inputs are not perfect.
- The Common Mode Rejection Ratio indicates by how much the common signal is attenuated.
- CMRR is usually a function of frequency.
- Typical figures:
 - * Cheap: 20...25 dB
 - * Reasonable: 40 dB
 - * Transformer balanced: 80...90 dB
- Common mode signals can be the source of large errors.
- Common mode input or output impedances are usually not the same as the differential impedance.

CMRR = Common Mode Rejection Ratio = Gd / abs (Gc)

Unbalanced signal with balanced attenuator. If M is not connected to ground the common mode signal is not attenuated.

- Defined by filter, detector, ballistics.
- Filter: flat, lowpass, A, C, ITU 468,...
- Detector: what is measured.
 - * Peak or pseudo peak value.
 - * Average of absolute value.
 - * RMS.
- Ballistics: response to level variations.
 - * Rise and fallback times.
 - * Burst response, can be different from rise time.

- RMS = Root Mean Square =
 - * The square root of the average value of the square of the signal.
 - * The average power expressed as an amplitude.
- The RMS value is independent of the relative phases of the different frequencies in a signal.
- 'Mean' or 'average' means some form of lowpass filter:
 - * Rectangular window.
 - * First or second order IIR, which is an exponential window.
- AC voltages are always shown as an RMS value, even if the meter is not an RMS one. In that case the measured value is correct only when the signal is a sine wave (e.g. almost all multimeters, VU, ...)

- Logarithmic unit used to indicate ratios.
- $\bullet~1~\text{dB}=0.1$ Bell. One Bell is a ratio of 10 to 1.
- Always a ratio of powers or something proportional to power.

10 * log10 (ratio of powers)

- 20 * log10 (ratio of amplitudes)
- Absolute measurements require a reference value.
- Memo trick: the 1/3 octave band frequencies: 1, 1.25, 1.6, 2, 2.5, 3.16, 4, 5, 6.3, 8, 10. Each step is 1 dB for powers or 2 dB for amplitudes.

• 0 dBm = a power of 1 mW. A standard impedance is assumed.

* Audio: usually 600 ohm

* RF: 50 or 75 ohm.

- 0 dBu = 0.7746 Volt, the voltage corresponding to 1 mW in 600 ohm. Quite often 'dBm' is used when 'dBu' is meant.
- 0 dBV = 1 Volt. Simple and easy. 0 dBV = +2.22 dBu.
- 0 dB FS = the amplitude of a maximum level sine wave in a digital system.

If this is RMS, and the range is ± 1 , then the actual RMS amplitude of a sine wave at 0 dB FS is not 1 but sqrt (0.5) = 0.7071.

- Sound Pressure Level (SPL) is measured in Pascal (Pa).
- 0 dB SPL = an RMS sound pressure of 2 * 10^{-5} Pascal.

* This is the threshold of human hearing at 1 kHz.

- * A sound pressure of 1 Pa is +94 dB SPL.
- For electrical signals we have i = u/R and $P = u * i = u^2/R$.
- For acoustic signals we have v = p/Z and $I = p * v = p^2/Z$.
 - * p =sound pressure (Pa)
 - * v = particle velocity (m / s)
 - * $Z = \text{acoustic impedance (N s / m^3)}$
 - * $I = \text{acoustic intensity} (W / m^2)$
- The acoustic impedance of air at 20 degrees Celsius is 413.3 N s / m^3 .
- Note: electrical current and power are scalars, but particale velocity and intensity are vectors they have a direction.

We have a sound source with an acoustic power of 1 Watt. What is the SPL at a distance of 3 meters ?

- The power is spread over the surface of a sphere with radius 3 m.
- This surface is $4 * \pi * R^2$ or 113.1 m².
- So the intensity I is 1 W / 113.1 m², or 8.842e-3 W / m².
- Now $I = p^2/Z$, or $p = \sqrt{I * Z}$.
- Hence the pressure is sqrt (8.842e-3 * 413.3) = 1.91 Pa.
- 1.91 Pa = 20 * log10 (1.91) + 94 = 99.6 dB SPL.

We have an SPL of 1 Pa (+94 dB) and a microphone with a membrane of 5 cm² (1 inch diameter). How much acoustic power does the mic receive ?

- $I = p^2/Z = 1 / 413.3 \text{ W} / \text{m}^2$.
- P = I * S (S =surface area) so
- Power = 5e-4 / 413.3 = 1.21e-6 Watt
- This should be compared to thermal noise power (later).

- A random or pseudo random signal.
- Probabilty distribution
 - Rectangular, Gaussian,...
 - We normally don't hear differences in distribution.
 - A sum of many independent random values will have a Gaussian distribution.
 - Filtered noise tends to have a Gaussian distribution.
- Density spectrum
 - Noise density N_0 = power per Hz.
 - At any particular frequency there is zero power.
 - White noise: constant density. $P = B * N_0$
 - Pink noise: density proportional to 1/F.
 - White and pink noise must be limited in bandwidth, or they would have either infinite power or zero density.

- Requires either a true RMS meter, or one that is very tightly specified.
- Meter ballistics must be slow to have a stable value.
- Usually weighted using a standard frequency response.
- If no other filter is used the bandwidth must be defined.
- A number without specified measurement method is meaningless.
- Standard methods
 - * 20 kHz equivalent bandwidth + RMS dB(20kHz)
 - * IEC-A filter + RMS dB(A)
 - * IEC-C filter + RMS dB(C).
 - * ITU468 filter and pseudo-peak meter dB(ITU468)
- dB(A) is typically 1.9 dB lower than 20 kHz equivalent BW.

- The 'best' method for measuring mics and mic preamps.
- Originally developed to measure noise on long analog audio lines.
- Filter emphasizes the most critical frequency region.
- Pseudo-peak meter having
 - * a very slow response, as required for noise,
 - * but very sensitive to short bursts and impulsive noise e.g. from a switching power supply or digital electronics.
- Typical measured values are around 9 dB higher than A-weighted.
- Used mostly in Europe, Americans use dB(A) because it looks better.
- The 'Dolby variant' uses lower gain and an average meter, but it is not and official standard.

- Aka Johnson or Nyquist noise. Generated by thermal motion of electric charge carriers in all conductors.
- Essentially white (up to very high frequencies).
- Power density is proportional to absolute temperature.
- Power P = 4kBT
 - $k = \mathsf{Boltzmann's}$ constant, 1.381 * 10⁻²³ Joule / Kelvin
 - $-B = \mathsf{Bandwidth} \ \mathsf{in} \ \mathsf{Hz}$
 - -T =Temperature in Kelvin.
- At room temperature and a BW of 20 kHz this means
 - * Power $P = 3.24 * 10^{-16}$ Watt
 - * RMS voltage $v_n = 18 \text{ nV} * \sqrt{R}$
 - * For R = 150 ohm v_n is 220 nV = -133.1 dBV = -130.9 dBu
- Other noise sources are present in real-life electronics, but mostly at low frequencies (below 100 Hz).

- All components of an electronic circuit generate thermal noise.
- It is always possible to model an amplifier or an AD converter as a 'perfect' noiseless one with a single noise source at the input.
- EIN = noise measured at the output / gain.
- The noise generated near the input will contribute most, as it is amplified.
- For a well-designed amplifier, EIN will be independent of gain as long as the gain is high.
- Other low level signals may be present (e.g. 50 or 60 Hz and harmonics).

- The EIN of mic preamps is usually measured with at maximum gain with a source impedance of 150 ohm.
- Some preamps can be a dB or so less noisy when measured with a lower impedance source or short-circuit.
- The EIN can be compared to the self-noise of the mic to find out which generates most noise.
- Some example values: note: 150 ohm generates -135 dBV(A)

Preamp	EIN dBV(A)
RME Micstasy	-131.2
Aphex 1788A	-129.0
Sony SPR-V110	-133.5
Behringer PRO8	-132.9
Edirol UA5	-122.2

- $E_n =$ thermal noise due to R1 || R2
 - $+ \quad \text{amplifier input noise voltage} \\$
 - +~ amplifier input noise current $~\times$ R1 \parallel R2
- \bullet Except at low gains, R2 \ll R1 and R1||R2 \simeq R2.
- A: For lower gain R2 increases and E_n increases.
- B: R2 is fixed and E_n is almost constant.

- Very few manufacturers of 'prosumer' HW provide specs that have any real meaning, or that can be compared to others. This is of course entirely intentional.
- Example: M-Audio 'octane technology' mic inputs. All you are supposed to know about those is: signal/noise ratio = 97 dB.
- Specs that don't define measurement conditions are completely useless.
- Even levels are ambiguous. In pro audio +4 dBu is the 'work level', peak level is at least 15 dB higher. Yet cards that can be switched between a peak output of -10 dBu and +4 dBu are presented as supporting pro signal levels.
- Most equipment reviews that can be found on the web don't verify or even mention any technical specs. They are at best useless, if not completely bogus (the author got a free sample).
- If specs are not completely unambiguous, the only sane reaction is to mistrust them, and spend your money on something else.

- When recording low-level signal (acoustic instruments, voice, natural sounds, ...) the combination of microphone and preamp will determine performance.
- The important values are sensitivity and self-noise.
- Sensitivity is usually specified as the output for 1 Pa (+94 dB) SPL.
- Self noise is the acoustic level corresponding to the noise generated by the microphone, usually dB(A) or dB(ITU468).
- Comparing specs for dynamic and condensor mics may require some calculations.

- Sensitivity and impedance are specified. Self noise is thermal noise corresponding to impedance. Given sensitiviy, this can be converted to SPL.
- Example: Beyer M160: 1.0 mV/Pa, 200 ohm.

 $1.0\mbox{ mV}=$ -60 dBV.

Thermal noise is 18 nV * $\sqrt{200} = 254$ nV = -131.9 dBV. Self noise is -131.9 + 94 + 60 dB = 22.1 dB = 20.2 dB(A).

• Example: Shure SM58: 1.85 mV/Pa, 300 ohm.

1.85 mV = -54.7 dBV Thermal noise is 18 nV * $\sqrt{300}$ = 312 nV = -130.1 dBV. Self noise is -130.1 + 94 + 54.7 dB = 18.6 dB = 16.7 dB(A).

• To use the full dynamic range a preamp with an EIN better than -130 dBV is required.

- Sensitivity and self noise and/or S/N ratio are specified. S/N ratio is relative to 1 Pa, so self noise + S/N ratio = +94 dB. Given sensitivity, either can be converted to noise voltage.
- Example: Neumann KM184: 15 mV/Pa, self noise 13 dB(A).

15 mV = -36.5 dBV.Noise voltage = 13 - 36.5 - 94 dBV(A) = -117.5 dBV(A).

- Example: Neumann TLM103: 23 mV/Pa, self noise 7 dB(A).
 23 mV = -32.8 dBV.
 Noise voltage = 7 32.8 94 dBV(A) = -119.8 dBV(A).
- A preamp with an EIN of around -122 dBV(A) or better will allow the full dynamic range of these mics to be used.

Questions and answers, hands-on practice.