
.

FHist

Reference Manual

Peter Miller
millerp@canb.auug.org.au

.

This document describes FHist version 1.10
and was prepared 9 July 2002.

This document describing the FHist package, and the FHist package itself, are
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002 Peter
Miller; All rights reserved.

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICU-
LAR PURPOSE.See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if
not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111,
USA.

0

ReadMe(FHist) ReadMe(FHist)

NAME
fhist − file history and comparison tools
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002 Peter Miller;
All rights reserved.

Portions of this program are
Copyright © 1990 David I. Bell.

The fhist package is distributed under the terms of the GNU General Public License, see theLICENSEsec-
tion, below, for more information.

DESCRIPTION
The FHist package contains 3 utilities, a file history tool ‘‘ fhist’’ , a file comparison tool ‘‘ fcomp’’ , and a file
merging tool ‘‘ fmerge’. All three are bundled together, because they all use the same minimal-difference
algorithm.

fhist
Keeps track of versions of a file.It works correctly when given binary files as input.Seefhist(1)
for more information.

fcomp
Compares two versions of a file, usually line-for-line textual comparison.It is capable of com-
paring two binary files byte-for-byte. Seefcomp(1) for more information.

fmerge
Merges together edits from two descendants of a file.Seefmerge(1) for more information.

The history tool presented here, fhist, is aminimalhistory tool. It provides no locking or branching.This
can be useful in contexts where the configuration management or change control be being provided by
some other tool.

REFERENCES
This program is based on the algorithm in

An O(ND) Difference Algorithm and Its Variations, Eugene W. Myers, TR 85-6, 10-April-1985,
Department of Computer Science, The University of Arizona, Tuscon, Arizona 85721.

See also:
A File Comparison Program, Webb Miller and Eugene W. Myers, Software Practice and Experi-
ence, Volume 15, No. 11, November 1985.

BUILDING
For complete instructions for host to build these programs, see theBUILDING file included in this distribu-
tion.

ARCHIVE SITE
The latest version offhist is available on the Web from:

URL: http://www.canb.auug.org.au/˜millerp/
File: fhist.html # The FHist page.
File: fhist-1.10.README # Description, from the tar file
File: fhist-1.10.lsm # Description, in LSM format
File: fhist-1.10.spec # RedHat package spec
File: fhist-1.10.tar.Z #The complete source.

FHist is also carried by sunsite.unc.edu in its Linux archives. You will be able to find FHist on any of i ts
mirrors.

URL: ftp://sunsite.unc.edu/pub/Linux/devel/vc/
File: fhist-1.10.README # Description, from the tar file
File: fhist-1.10.lsm # Description, in LSM format
File: fhist-1.10.spec # RedHat package spec
File: fhist-1.10.tar.Z #The complete source.

This site is extensively mirrored around the world, so look for a copy near you (you will get much better
response).

Reference Manual FHist 1

ReadMe(FHist) ReadMe(FHist)

COPYRIGHT
fhist version 1.10.D001
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002 Peter Miller;
All rights reserved.

This program is derived from a work
Copyright © 1990 David I. Bell.

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
ev en the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.See
the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write
to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA.

AUTHORS
Peter Miller Web: http://www.canb.auug.org.au/˜millerp
/\/* E-Mail: millerp@canb.auug.org.au

David I. Bell Web: http://www.canb.auug.org.au/˜dbell
E-Mail: dbell@canb.auug.org.au

Reference Manual FHist 2

ReadMe(FHist) ReadMe(FHist)

RELEASE NOTES
For excruciating detail, and also acknowledgements of those who generously sent me feedback, please see
theetc/CHANGES.1.10file included in this distribution.

A number of features and bug fixes have been added tofhist with this release.A few of them are detailed
here:

Version 1.10
• Interrupt handling has been improved.

• There is a new fhist -No_Keywordsoption, used to completely disable keyword substitution.

• Sev eral build problems have been fixed.

Version 1.9
No public release.

Version 1.8
• There is a new −BINary option for thefcomp(1) program, which compares binary files a byte at time,
printing the results in hexadecimal.

• Thefcomp(1) program now silently copes with CRLF line terminations.

Version 1.7
• Thefhist(1) command now has a--binary option, which may be used to store the history of binary files.

• The fhist(1) command has a new --make-path option, which requests that the history directory be created
if necessary.

• A bug in fhist(1) wich caused a SEGFAULT when you used the-t option (extract to terminal) has been
fixed.

Version 1.6
• An RPM spec file has been added to the distribution.

• The code is now more robust about what various UNIX systems return from pathconf().

• A bug with the ‘‘ fcomp -blank’’ option has been fixed.

Version 1.5
• Binary files are now detected on input, and the utilities file gracefully with a warning or error message, as
appropriate.

• Some buffer over-run bugs have been fixed.

• Sev eral improvements have been made to the portability.

Version 1.4

Reference Manual FHist 3

ReadMe(FHist) ReadMe(FHist)

• The install and build procedures have been made more robust, and they take note of more of the informa-
tion provided by GNU Autoconf.

• The error messages have been internationalized, so it is now possible to obtain error messages in your
native language. (Ifyou would like to contribute with error message translations, please contact the
author.)

• An LSM description has been added, along with a HTML page to present it all nicely at the archive site.

• A RedHat Package Manager spec file has been added, so that a RedHat package can be created.The spec
file is in the standard distribution.

Version 1.3
This version was not distributed atall.

Version 1.2
This version was not distributed very widely.

• The non-standard isblank function is no longer used, it cause too many portability problems.

• The use of pathconf is not more robust for more operating systems.

Version 1.1
• The fhist package now uses a shell script calledconfigure to configure itself.This script is generated
using theGNU Autoconfutility. This should make fhist significantly easier to configure, and significantly
more portable.

• A bug has been fixed in the conflict reporting of thefmergeprogram. Itnow correctly opens the conflicts
file.

• Thefhist program now usespathconf(2) to determine file name length limits.

Reference Manual FHist 4

Building(FHist) Building(FHist)

NAME
fhist − file history and comparison tools
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002 Peter Miller;
All rights reserved.

Portions of this program are
Copyright © 1990 David I. Bell.

The fhist package is distrributed under the terms of the GNU General Public License, see theLICENSEsec-
tion, below, for more information.

SPACE REQUIREMENTS
You will need about 600K to unpack and build the fhist package. (Thisis the worst case seen so far, most
systems have binaries about 60% as big as this, 400K is more typical.)Your mileage may vary.

BEFORE YOU START
There are a few pieces of software you may want to fetch and install before you proceed with your installa-
tion of cook.

GNU Gettext
The fhist package has been internationalized.It can now print error messages in any of the sup-
ported languages.In order to do this, the GNU Gettext package must be installedbefore you run
the configure script as detailed in the next section. This is because the configure script looks for
it. On systems which use the GNU C library, version 2.0 or later, there is no need to explictly do
this as GNU Gettext is included.Remember to use the GNU Gettext configure--with-gnu-gettext
option if your system has native gettext tools.

GNU Groff
The documentation for thefhist package was prepared using the GNU Groff package. Thisdistri-
bution includes full documentation, which may be processed into PostScript or DVI files at install
time − if GNU Groff has been installed.

GNU Groff patch
There is a patch for GNU Groff available, which gives groff (1) andgsoelim(1) a−Bpathoption.
This adds an include file search path, similar tocpp(1). TheMakefile assumes this is available.
The patch is athttp://www.canb.auug.org.au/˜millerp/groff-1.11a.patch
or its mirrors.

Bison If your operating system does not have a native yacc(1) you will need to fetch and install GNU
Bison in order to build thefhist package.

GCC You may also want to consider fetching and installing the GNU C Compiler if you have not done
so already. This is not essential.

The GNU FTP archives may be found atprep.ai.mit.edu , and are mirrored around the world.

SITE CONFIGURATION
Thefhist package is configured using theconfigureshell script included in this distribution.

Theconfigure shell script attempts to guess correct values for various system-dependent variables used dur-
ing compilation, and creates theMakefileandcommon/config.h files. It also creates a shell scriptconfig.sta-
tusthat you can run in the future to recreate the current configuration.

Normally, you justcd to the directory containingfhist’s source code and type
% ./configure
...lots of output...
%

If you’re usingcshon an old version of System V, you might need to type
% sh configure
...lots of output...
%

instead to prevent cshfrom trying to executeconfigure itself.

Reference Manual FHist 5

Building(FHist) Building(FHist)

Runningconfigure takes a minute or two. While it is running, it prints some messages that tell what it is
doing. If you don’t want to see the messages, runconfigure with its standard output redirected to/dev/null;
for example,

% ./configure > /dev/null
%

By default, configure will arrange for themake install command to install thefhist package’s files in
/usr/local/bin and /usr/local/man. You can specify an installation prefix other than/usr/local by giving
configure the option--prefix= PA TH.

You can specify separate installation prefixes for architecture-specific files and architecture-independent
files. If you give configure the option--exec-prefix= PA TH the fhist package will usePA TH as the
prefix for installing programs and libraries.Data files and documentation will still use the regular prefix.
Normally, all files are installed using the same prefix.

configure ignores any other arguments that you give it.

On systems that require unusual options for compilation or linking that thefhist package’s configure script
does not know about, you can give configure initial values for variables by setting them in the environment.
In Bourne-compatible shells, you can do that on the command line like this:

$ CC=’gcc -traditional’ LIBS=-lposix ./configure
...lots of output...
$

Here are themake variables that you might want to override with environment variables when runningcon-
figure.

Variable: CC
C compiler program.The default iscc.

Variable: INSTALL
Program to use to install files.The default isinstall if you have it, cpotherwise.

Variable: LIBS
Libraries to link with, in the form-l foo -l bar. The configure script will append to this, rather
than replace it.

If you need to do unusual things to compile the package, the author encourages you to figure out how con-
figure could check whether to do them, and mail diffs or instructions to the author so that they can be
included in the next release.

BUILDING FHIST
All you should need to do is use the

% make
...lots of output...
%

command and wait. Whenthis finishes you should see a directory calledbin containing four files:fcomp,
fhist, fmergeandtxt2c.

fcomp Thefcompprogram is user to compare two text files.

fhist Thefhist program is used to maintain and edit history of a text file.

fmerge Thefmergeprogram is used to merge together edits from two descendants of a file.

txt2c The txt2cprogram is a utility used to build thefhist package; it is not intended for general use and
should not be installed.

You can remove the program binaries and object files from the source directory by using the
% make clean
...lots of output...
%

command. To remove all of the above files, and also remove the Makefile andcommon/config.h andcon-
fig.statusfiles, use the

Reference Manual FHist 6

Building(FHist) Building(FHist)

% make distclean
...lots of output...
%

command.

The fileetc/configure.in is used to createconfigure by a GNU program calledautoconf. You only need to
know this if you want to regenerateconfigureusing a newer version ofautoconf.

TESTING FHIST
Thefhist package is accompanied by a test suite.To run this test suite, use the following command:

% make sure
...lots of output...
%

This is successful if the last line of the test output reads "Passed All Tests".

Please let the author know if any of the tests fail, and why if you can work that out.

INSTALLING FHIST
As explained in theSITE CONFIGURATION section, above, the fhist package is installed under the
/usr/localtree by default. Usethe--prefix= PA TH option toconfigure if you want some other path.

All that is required to install thefhist package is to use the
% make install
...lots of output...
%

command. Controlof the directories used may be found in the first few lines of theMakefile file if you
want to bypass theconfigurescript.

The above procedure assumes that thesoelim(1) command is somewhere in the command searchPA TH .
The soelim(1) command is available as part of theGNU Roff package, mentioned previously in the
PRINTED MANUALSsection. Ifyou don’t hav e it, but you do have the cookpackage, then a link from
roffpp to soelimwill also work.

The above procedure also assumes that the$(prefix)/man/man1and$(prefix)/man/man5directories already
exist. If they do not, you will need tomkdir them manually.

PRINTED MANU ALS
The easiest way to get copies of the manuals is to get thefhist.1.10.pdffile from the archive site. Thisis an
Adobe AcroRead file containing the Reference Manual, which contains the README file, the BUILDING
file and internationalization notes, as well as all of the manual pages for all of the commands.

This distribution contains the sources to all of the documentation forfhist. The author used the GNU groff
package and a postscript printer to prepare the documentation.If you do not have this software, you will
need to substitute commands appropriate to your site.

If you have the GNU Groff package installedbefore you run theconfigure script, theMakefilewill contain
instructions for constructing the documentation.If you already used themake command, above, this has
already been done.The following command

% make doc
...lots of output...
%

can be used to do this explicitly, if you managed to get to this point without doing it.Please note that there
may be some warnings from groff, particularly about missing fonts, particularly for the.txt files; this is
normal.

Once the documents have been formatted, you only need to print them.The following command
% lpr lib/en/reference.ps
%

will print the English PostScript version of the Reference Manual.Watch themake output to see what other
versions are available.

Reference Manual FHist 7

Building(FHist) Building(FHist)

COPYRIGHT
fhist version 1.10.D001
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002 Peter Miller;
All rights reserved.

This program is derived from a work
Copyright © 1990 David I. Bell.

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
ev en the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.See
the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write
to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA.

AUTHORS
Peter Miller Web: http://www.canb.auug.org.au/˜millerp
/\/* E-Mail: millerp@canb.auug.org.au

David I. Bell Web: http://www.canb.auug.org.au/˜dbell
E-Mail: dbell@canb.auug.org.au

Reference Manual FHist 8

Internationalization(FHist) Internationalization(FHist)

NAME
Internationalization

DESCRIPTION
The FHist package has gone international; it can now speak many languages. Thisis accomplished by
using the GNU Gettext library and utilities.In order to do this, is is necessary to install GNU Gettext prior
to configuring, making and installing the FHist package, as described in theBUILDING file.

Inter nationalization
This is the process of identifying all of the error messages in the source code, and providing error message
catalogues in a variety of languages.The error message identification was performed by the FHist pack-
age’s author, and the various GNU translation teams provided the translations.Users of the FHist package
do not need to do anything to internationalize it, this has already been done.

Localization
The programs in the FHist package are "localizable" when properly installed; the programs they contain
can be made to speak your own native language.

By default, the FHist package will be installed to allow translation of messages.It will automatically detect
whether the system provides a usable ‘gettext’ function.

INSTRUCTIONS FOR USERS
As a user, if your language has been installed for this package, you only have to set the ‘LANG’ environ-
ment variable to the appropriate ISO 639 two-letter code prior to using the programs in the package.For
example, let’s suppose that you speak German.At the shell prompt, merely execute

setenv LANG de
(in ‘csh’), or

LANG=de; export LANG
(in ‘sh’). This can be done from your.cshrc or .profilefile, setting this automatically each time you login.

An operating system might already offer message localization for many of i ts programs, while other pro-
grams have been installed locally with the full capabilities of GNU Gettext. Using the GNU Gettext
extended syntax for the ‘LANG’ environment variable may break the localization of already available
through the operating system.In this case, users should set both the ‘LANGUAGE’ and ‘LANG’ environ-
ment variables, as programs using GNU Gettext give preference to the ‘LANGUAGE’ environment vari-
able.

For example, some Swedish users would rather read translations in German when Swedish is not available.
This is easily accomplished by setting ‘LANGUAGE’ to ‘sv:de’ while leaving ‘LANG’ set to ‘sv’.

DIRECT ORY STRUCTURE
All files which may require translation are located below the lib directory of the source distribution. It is
organized as one directory below lib for each localization.Localizations include all documentation as well
as the error messages.

Localization Directory Names
Each localization is contained in a sub-directory of thelib directory, with a unique name.Each localization
sub-directory has a name of the form:

localization
language

- territory . codeset

language is one of the 2-letter names from the ISO 639 standard.Seehttp://www.ics.uci.edu/pub/ietf/-
http/related/iso639.txtfor a list.

territory is one of the 2-letter country codes from the ISO 3166 standard.See ftp://rs.internic.net/-
netinfo/iso3166-countrycodesfor a list.

codeset is one of the codeset names defined in RFC 1345.This simplifies the task of moving localiza-
tions between charsets, because GNU Recode understands them.See

Reference Manual FHist 9

Internationalization(FHist) Internationalization(FHist)

http://info.internet.isi.edu/1s/in-notes/rfc/files/rfc1345.txtfor a list.

Here are some examples of localization names:

Name Description

en.ascii English,ASCII encoding
en_us.ascii Englishwith US spelling
de.latin1 German,Latin-1 encoding

Localization Directory Contents
Each localization sub-directory in turn contains sub-directories.These are:

Directory Contents

LC_MESSAGES Theerror message (PO) files
building TheBUILDING file
man1 Thesection 1 manual entries
readme TheREADME file
building TheBUILDING file
reference TheReference Manual

The structure is identical below each of the localization directories.The sub-directories of all localizations
will have the same names.

INSTRUCTIONS FOR TRANSLATORS
When translating the error messages, all of the substitutions described incook_sub(5) are also available.
Substitution variable names and function names may be abbreviated, in the same way that command line
options are abbreviated, but abbreviation should probably be avoided. Substitutionnames willnever be
internationalized, otherwise the substitutions will stop working, Catch-22.

While FHist was written by an English speaker, the English localization is necessary, to translate the ‘‘terse
programmer’’ style error messages into something more user friendly.

Messages which include command line options need to leave the command line options untranslated,
because they are not yet internationalized, though they may be one day.

Each LC_MESSAGES directory within each localization contains a number of PO files.There is one for
each program in the FHist package, plus one calledcommon.po containing messages common to all of
them. TheMO file for each program is generated by naming the program specific PO file and also the com-
mon PO file.

Reference Manual FHist 10

fcomp(1) fcomp(1)

NAME
fcomp − file compare

SYNOPSIS
fcomp [option...] filename1 filename2

fcomp -Help

fcomp -VERSion

DESCRIPTION
The fcompprogram is used to compare text files, similar to thediff (1) program. Its advantage is that it
always produces minimal differences, and so will never mis-sync when comparing files.Its disadvantage is
that it runs slower due to the extra work required to produce optimal differences. However, for files differ-
ing by less than a few thousand lines, its performance is adequate.The algorithms used by this utility are
also used by thefhist(1) program in order to produce the edit history.

To compare fileold to file new, the command:
fcomp old new

would be used.This gives the differences involved in converting fr om file old to file new. This is analo-
gous to the use of thecp(1) command.Either theold or new file may be a directory, in which case the com-
parison is done to the file in the directory with the same name as the other file.An error is given if old and
new are both directories.

OPTIONS
The following options are understood:

-BINary
This option may be used to compare binary files on a byte-for-byte basis.(Each byte is treated as
a ‘‘line’ ’ by the algorithm.)Byte values are displayed in hexadecimal, as are the addresses.Note:
this is different behaviour to thefhist(1) option of the same name.

-Blank
Ignore blank lines in the input files.

-Context number
This specifies the number of lines of "context" which is displayed.This shows the specified num-
ber of lines before and after the actual lines being changed.This is useful to locate and identify
the line which is actually being changed, when there are many identical copies of the line in the
file.

-Edit
Output an edit script which is machine readable.

-Failur esnumber
This stops the comparison if the number of changes exceeds the specified number. Each change
is a delete or insert of a single line.This is useful when you are not interested in the results when
the files are totally different. Anotheruse is a quick check to see if two files are identical, by
using a value of zero.

-Help
Give some help on how to use thefcompprogram.

-Join number
This merges together lines which have changed, if they are separated by up to the specified num-
ber of unchanged lines.This makes a change look bigger, but reduces the "choppiness" of the
output by showing fewer regions being changed.This is particularly effective to suppress worth-
less matchings of single blank lines or comment beginning and ending lines.A useful value for
this option is 3 or so.

Reference Manual FHist 11

fcomp(1) fcomp(1)

-Matching
Output matching lines, rather then changed lines.

-Number
This outputs the line numbers at the left edge of the output.This isn’t normally needed, since the
line numbers are displayed in the comment line preceding the lines being displayed.Not out-
putting the line numbers prevents the terminal from needlessly scrolling for long lines.

-Output filename
Send the output to this file, rather than the standard output.

-Quiet
Output only a quick summary of changes needed.

-Spaces
This option ignores differences in the number of spaces in the two lines. Thatis, two or more
adjacent spaces are handled as a single space.Spaces at the beginning or end of a line are totally
ignored.

-Upcase
Uppercase lines before comparing.

-VERSion
Show what version offcompis running.

-What
This outputs all of both files together, showing what happened to each line of the first file in order
to change to the line in the second file.This output is in "change bar" format, where inserted
lines begin with |+, deleted lines begin with |-, and unchanged lines begin with spaces.The pres-
ence of the vertical bar makes it easy to search for the changed lines.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional.You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments "-help, "-HELP" and "-h" are all interpreted to mean the-Help option. The
argument "-hlp" will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line.

The GNU long option names are understood.Since all option names forfcompare long, this means ignor-
ing the extra leading ’-’. The "--option=value" convention is also understood.

FILE N AME EXPANSION
As a convenience, if a pathname begins with a period and a environment variable exists with that name,
then the value of the environment variable will be used as the actual pathname.For example, if a environ-
ment variable of.FOOhas the valuethis.is.a.long.name, then the command

fcomp -o .FOO
is actually equivilant to the command

fcomp -o this.is.a.long.name
If you want to prevent the expansion of a pathname which begins with a period, then you can use an alter-
nate form for the pathname, as in:

fcomp -o ./.FOO

Reference Manual FHist 12

fcomp(1) fcomp(1)

BINARY FILES
In general, fcomp can handle all text files you throw at it, even international text with unusual encodings.
However, fcomp isunableto cope elegantly with files which contain the NUL character.

The fcomp(1) program simply prints a warning, and continues, you need to know that it converts NUL char-
acters into an 0x80 value before performing the comparison.

The fmerge(1) program also converts the NUL character to an 0x80 value before merging, after a warning,
and any output file will contain this value, rather than the original NUL character.

The fhist(1) program, however, generates a fatal error if any input file contains NUL characters.This is
intended to protect your source files for unintentional corruption.Use--BINary for files which absolutely
must contain NUL characters.

EXIT STATUS
The fcompprogram will exit with a status of 1 on any error. The fcompprogram will only exit with a status
of 0 if there are no errors.

REFERENCES
This program is based on the algorithm in

An O(ND) Difference Algorithm and Its Variations, Eugene W. Myers, TR 85-6, 10-April-1985,
Department of Computer Science, The University of Arizona, Tuscon, Arizona 85721.

See also:
A File Comparison Program, Webb Miller and Eugene W. Myers, Software Practice and Experi-
ence, Volume 15, No. 11, November 1985.

COPYRIGHT
fcomp version 1.10.D001
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002 Peter Miller;
All rights reserved.

This program is derived from a work
Copyright © 1990 David I. Bell.

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
ev en the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.See
the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write
to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA.

AUTHORS
Peter Miller Web: http://www.canb.auug.org.au/˜millerp
/\/* E-Mail: millerp@canb.auug.org.au

David I. Bell Web: http://www.canb.auug.org.au/˜dbell
E-Mail: dbell@canb.auug.org.au

Reference Manual FHist 13

fhist(1) fhist(1)

NAME
fhist − file history

SYNOPSIS
fhist filename... option...

fhist -Help

fhist -VERSion

DESCRIPTION
The fhist program is used to keep track of the successive versions of a file.Using this program, you can
remember all of your changes to a file, and get back any one of the old versions. Theuses of this ability
are:

1. You can make a series of tentative edits to the file, and if necessary back up to the last "good"
edit.

2. You can delete old subroutines and code from your file which are obsolete, but still be able to get
them back in the future in case a need for them arises.

3. You can compare two versions of the file to see how you fixed some old problem, so that you can
check up on the correctness of the fix at a later date.

4. You get a record of your remarks for each version, so that you can quickly know what bugs were
fixed, and what features were implemented.

5. Thedate the file was last edited can be automatically stored in the file.

The fhist program manipulates modules.A module is simply any text file that you are interested in keeping
versions of. For example, a source filedoit.c is a module, and so is a documentation filehowto.doc. The
module name includes the suffix of the file (as in the above examples). However, pathnames are not part of
a module name, so that/usr/dbell/bar.c cannot be a legal module name.A module name is limited to 12
characters since thefhist program needs two extra characters for its own purpose.

Keyword Substitution
It is possible to have information about the state of the file inserted into the file.See the−Modify and−No-
Keywords options, below, for more infromation.

OPTIONS
The following options are understood:

-Path pathname
Modules are stored in a directory, called the module storage directory. The default directory is
FHIST, and therefore is located relative to your current directory. This is convenient when you
are in a directory containing many modules, and you want a local storage directory to contain just
those modules.If you use the-p option, then you can locate the storage directory anywhere you
choose. Thisis useful if you choose to have a common storage directory for all of your files,
independent of where they actually are used.

The files inside of the storage directory should not be changed by you.Doing so will probably
corrupt your edit history, causing errors when you extract old revisions. For your information,
though, each module is stored as two files in the directory. The one with the.ssuffix is a copy of
the newest version of the module, with one extra line at the beginning. Theone with the.esuffix
is the edit history of the module, and contains the information needed to extract previous revi-
sions of the module.Thus if the edit history is ever corrupted, you will at least have the most
recent version of the module.

-MaK e_Path
This option may be used to request that the path directory be created automatically if it does not
yet exist. This works for both the directory specified by the -Path option, and for the default.
Intermediate directories will also be created if necessary.

Reference Manual FHist 14

fhist(1) fhist(1)

-BINary
This option may be used to specify that the file is binary, that it may contain NUL characters.It
is essential that you have consistent presence or absence of the-BINary option for each file when
combined with the-CReate, -Update, -Conditional_Updateand-Extract options. Failure to do
so will produce inconsistent results.Note: this is different behaviour to thefcomp(1) option of
the same name.Note: the−BINary option doesnot imply the−No-Keywords option.

-CReate
To use thefhist program for the first time, you need to create your storage directory. Therefore,
cd to the directory where you want it to be, which is probably the directory containing the mod-
ules you want to save the revisions of. Then create the directoryFHIST (or some other name if
you don’t want to use the default name).

To start using a module underfhist, you must first use the-CReateoption. Thiscreates the initial
edit for that module in the storage directory, with the contents of the specified module as the ini-
tial edit. Thus, if you have a source fileprog.c, then the command:

fhist prog.c -create
creates the initial edit of the module.As part of this process, you are asked to provide remarks
about the file.These remarks can be seen later using the-List option (described below). After
the remarks have been typed, the contents of the file are then saved. You can then delete the file
prog.c if desired, andfhist would be able to recreate it later. Or you can leave it there as the
working copy of the module.

The-CReateoption may be combined with the-Update or -Conditional_Update options to cre-
ate the file if required.

-Update
To sav eanother revision of the module, you use the-Update option. Thisupdates the files in the
storage directory to include the latest changes.Remarks are again asked for so that you can docu-
ment why you made this edit.Thus, to continue the example, after editingprog.c, the command:

fhist prog.c -u
will save the changes as a new edit. Thiscommand compares the newest version of the module to
the previous version, saves the differences in the.e file, and copies the new source to the.s file.
At this point, you can once again delete theprog.c file if desired, and later get back either of the
two versions of the program.

The fhist program handles quota or disk full problems during a create or update operation without
damage occurring to the edit history files.If an edit cannot be completed because of such prob-
lems, the edit is backed out completely, and you will get an error message about the disk problem.
There is no need for any error recovery in this case, other than retrying the update when more
disk space is available. Thefhist program also disables signals during the critical file operations,
so you do not have to worry about damaging the edit history files because of attempts to quit out
of the program.

The-CReateoption may be combined with the-Update or -Conditional_Update options to cre-
ate the file if required.

-Input filename
In either the-CReate or -Update options, the file containing the new version of the module
defaults to the same name as the module.In the example, the moduleprog.c was created and
updated from the data in the fileprog.c. When you wish the data to come from some other file,
you can use the-Input option, which specifies the input file to use for the data.For example, if
you wanted to updateprog.c, but from a filename callednewprog.c, then the command:

fhist prog.c -u -i newprog.c
would save a new revision of moduleprog.c, but with the data that was in the filenewprog.c. In
this case, the fileprog.c does not have to exist, and isn’t referenced even if i t did exist. Again,
once the update is complete, you could delete thenewprog.c file if desired and then later you can
retrieve its contents.

Reference Manual FHist 15

fhist(1) fhist(1)

-Remarks
Remarks can be read from a file instead of from the terminal.The -Remarks option can be used
to specify a file name containing the remarks.If there is no file name following the-Remarks
option, then no remarks at all are used.The command:

fhist prog.c -u -r
would create a new revision ofprog.c without asking for or saving any remarks about the edit.

-Extract [edit]
To retrieve a previous revision of a module, you specify the name of the module and use the
-Extract option to specify the edit number you want retrieved. Edit numbers are assigned
sequentially starting with 1.Thus the initial version of the module has edit number 1, the first
revision has edit number 2, and so on until the latest revision. If the -Extract option is not used,
or if no edit number is supplied for it, then the latest edit number is extracted. Therefore,this is
the default action if no options at all are specified.

Edit numbers can also be zero, negative, or be a name with an optional offset. Thenumber zero
represents the latest edit number, and negative numbers indicate edit numbers backwards from the
latest edit number. Edit names represent edit numbers whose name had been set by using the
-Name option. For example, if edit number 10 was associated with the namefoo, then the edit
namefoo represents 10,foo-4 represents edit number6, andfoo+2 represents edit number 12.
The special reserved namesoldestandnewestrefer to the oldest and newest versions of the mod-
ule in the edit history.

As an example of retrievals, assume that you have sav ed ten versions of the moduleprog.c. The
following commands will then extract the versions of the file with the specified edit numbers:

fhist prog.c
version 10 (the latest)

fhist prog.c -e 9
version 9 (the version just prior)

fhist prog.c -e oldest
version 1 (the oldest version)

fhist prog.c -e -2
version 8 (latest version - 2)

The output filename is again defaulted to the module name.So when the moduleprog.c is
extracted, the specified version of the module is written to theprog.c file.

In order to prevent accidental overwriting of a file, thefhist program will by default ask you if
overwriting is permitted if that would occur. A common mistake is to edit prog.c, and then try to
update the module, but forget to specify the-u option. Thenthe fhist program would try to
extract the newest version of the module, and thus overwrite the file with the new changes. Ask-
ing the question allows you to notice your mistake, and prevent the overwriting.

-Output filename
You can change the output filename using the-Output option. Thus,the command:

fhist prog.c -o newprog.c
will extract the latest version of the moduleprog.c, and put it into the filenewprog.c. Once again,
the file "prog.c" is ignored, whether or not it existed.

-Force_Write
This option will force overwriting of the file, thus never asking you if overwriting is permitted.
This is often useful in shell scripts, or when you aresure that you want to overwrite any existing
file.

-No_Write
This option is the no-overwrite option, and will cause any existing files tonot be overwritten,
again without asking you.This is useful if you already have some of the modules in your direc-
tory, and you want to extract the rest of the modules without overwriting the ones you already

Reference Manual FHist 16

fhist(1) fhist(1)

have. Specifying both-Fore_Write and-No_Write is an error.

-Terminal [edit]
This option is used to output an extracted module to the standard output, instead of writing it to a
file. This is useful in order to view the beginning of a version of the file.This can be interrupted
if you do not want to see the whole file.

-Modify number
When extracting a file, thefhist program looks for and updates special character sequences in the
first few lines of the file.These special sequences are used for documentation purposes, such as
describing the edit number the file is from.For speed of extraction and updating, these sequences
are usually limited to the first 25 lines of the file, since thefhist program then does not have to
examine the entire file.The -Modify option can be used to change the number of lines to be
modified from the default value of 25. Specifying zero totally disables the special character
sequences, whereas specifying a very large number will cause the sequences to be checked for
each line of the file (and thus slow thefhist program down).

Each special sequence is of the form[# keyword value, keyword value, ..., keyword value #] ,
where eachkeyword describes an item, and eachvalue is the value for the preceding keyword.
The keywords can be in upper or lower case, or both.The single space following the[#, follow-
ing each comma, and preceding the#] must be present.If the sequence is wrong, an unknown
keyword is used, the line is longer than 200 characters, or more than four keywords are used, then
the whole line will not be changed.The current keywords which can be used are the following:

edit Theedit number

date Thedate that the edit was created

user Theuser name of the user who created the edit

module Themodule name

In order to use this special character sequence, you simply insert it into your module inside of a
comment (within the first few lines). Whenthis is done, the value parts of the sequence can be
null. For example, if you want to put a special sequence into a program calleddelete.c, then you
could edit the first few lines as follows:

/*
* Delete - program to delete files
* [# Edit, Date #]
*/

When an extract is done, the proper edit number and date are automatically inserted as the new
values. Thus,if you extract edit 23 of the moduledelete.c which had been created on 8 August
89, then the resulting file would begin:

/*
* Delete - program to delete files
* [# Edit 23, Date 8-Aug-89 #]
*/

When updating a module, it is never necessary to edit these sequences, as any old values will be
removed and replaced with the new ones. Also,when using the-d or -du options (described
below), lines with these sequences compare as if the values were null, and thus will not cause
spurious differences.

During an update, the special character sequences are read and any edit value found is compared
against the current edit number of the module.If they differ, then the update fails. Thisprovides
an interlock check for the case of two users extracting the same version of a file, editing it, and
then both updating it without knowledge of each other. In this case, the second user would fail,
and then he can merge his edits with the previous user’s edit and then retry the update.This
checking is disabled if there is no special character sequence containing the edit keyword, the edit
number value is null, or if the-Forced_Updateoption is used to indicate that the check is not

Reference Manual FHist 17

fhist(1) fhist(1)

needed.

−No_Keywords
This option may be used to disable the use of the keyword special character sequences described
above. Text containing keyword sequences is treated as plain text. Note: the −No_Keywords
option doesnot imply the−BINary option.

-Namestring
This option is used to associate a name for the newest version of a module.It can be given along
with the -CReate, -Update, or -Differ ence_Updateoptions, to specify a name for the new ver-
sion of the module.It can also be given by itself in order to specify a name for the newest version
of a module.Each edit number can have many names associated with it, so this will not remove
any previously defined name for the edit.This option is useful to correlate many modules
together. For example, when a new version of a program is ready to be released, you could give
each module of the program the same namerelease1. Then in the future, you can recreate the
sources making up that release by extracting the edits with the namerelease1for every module.
Edit names cannot begin with a digit, and cannot contain plus or minus signs.These rules pre-
vent ambiguous parsing of edit numbers for the-Extract , -Terminal, -ALL , and -List options.

-List [edit1[edit2]]
This option prints a list of edits for the module, giving the user name, date, user remarks, and
names specified for the edits.If no edit number is supplied, then all edits are printed in reverse
order. If a single edit number is supplied, then only that edit number is printed.If two edit num-
bers are supplied, then all edits in the specified range are printed.The output from this option
defaults to the terminal.You can use the-Output option to save the results to a file.

-Differ ence[edit1[edit2]]
This option is used to display the differences between two versions of a module, or a file and a
version of a module.There are three modes for this action, depending on how many edit numbers
are supplied.These modes are illustrated by the following examples:

fhist foo.c -d
Compare latest version against file "foo.c"

fhist foo.c -d 3
Compare version 3 against file "foo.c"

fhist foo.c -d 3 4
Compare version 3 against version 4

This option accepts the-Input option to specify the file to be compared.When using the-Differ -
enceoption, the output defaults to the terminal.Therefore, you must use-Output if you wish the
differences saved to a file. Using-Quick with -Differ encewill only output a quick summary of
the changes, instead of the detailed changes.This summary only supplies the number of lines
inserted, deleted, and unchanged between the files.Using -What with -Differ encewill display
all of both files, showing in detail what the differences are using change bars.

The -Differ enceoption may need to write one or two temporary files in order to extract old ver-
sions of a module to be compared.These files have names like T$n_nnn .They are deleted again
just before differences are output, so that stopping the output before it is complete will not leave
these files around.The temporary files are usually written to the current directory. If this is not
reasonable because of permission or quota problems, then you can specify the directory for writ-
ing the temporary files into.This is done by defining theTMPDIRenvironment variable to be the
path of the directory.

-Differ ence_Update
This option combines the effects of the-Differ enceand-Update options. Itdisplays the differ-
ences between a file and the latest version of a module.If there are any differences, it then pro-
ceeds to perform an update of the module with that file, asking for remarks as usual.This option
is very useful when used with wildcarded module names.Then you can update just those

Reference Manual FHist 18

fhist(1) fhist(1)

modules which were changed by an edit session, and see the changes for each module before typ-
ing the appropriate remark for each module.

You may specify both of the-Differ enceand-Update options, or you may use this option.The
results are identical.

-Conditional_Update
This option conditionally updates a module.That is, it will only do an update if there are any dif-
ferences between a file and the latest version of a module.This is convenient when related
changes are made to many modules in a directory, and one command using wildcards can update
just those modules that were changed.

The-CReateoption may be combined with the-Update or -Conditional_Update options to cre-
ate the file if required.

-CLean
This option is used to remove files which match the newest versions of modules.If a file exists
which matches the newest version of a module, then the file is deleted, otherwise it is kept. This
option is used to clean up a work directory after building a new version of a product.This option
is especially useful when used with the-ALL option. It will also accept the-Input option to
specify a directory containing the files to be cleaned.

-CHeck
This option is used to find out if a file does not match the latest version of a module.If so, a mes-
sage is given. If the file does match, no output occurs.This option is thus useful to determine
which files have been modified and in need of updating.The -ALL option is defaulted for this
option, since it is usually used for all modules.For example,

fhist -CHeck
will report on all files which are different than the latest modules.If -Quick is specified, then the
output will consist of the module names with no other output.This is useful for the backquote
operator in shell scripts for referencing the modules which are out of date.The -CHeck option
will also accept the-Input option.

-PRuneedit
This option is used to permanently remove early edits from an edit history. This is useful if you
wish to cut down on the amount of disk space taken by an edit history file, or when you want to
start another release of a file, and want a copy of the edit history file for that new release. The
option takes an edit number to preserve, and all edits in the edit history file before that edit are
deleted, and can no longer be referenced.For example, to keep only the current edit plus the pre-
vious 10 edits of the modulefile, you could use the command:

fhist file -prune -10
Since the-PRune option is unrecoverable (unless backup files are available), thefhist program
asks the user to verify that the prune is really wanted. The-Forced_Updateoption can be used
to bypass this verification.

-ALL
This option can be used with any of the action options.It means perform the operation for all
modules in the module storage directory. Alternatively, you can specify multiple module names
on the command line, and the actions will be performed with those modules.You cannot specify
both-ALL and module names.

When using multiple modules or the-ALL option, the-Input and -Output options have a
slightly different meaning.In these cases, the-Input and -Output arguments are a directory
name which contains filenames with the same name as the module names.If the argument is not
a directory, then an error is given. Thisfeature is useful for example, to extract all the modules
and place them into some remote directory, as in:

fhist -all -e -o tempdir

You should be careful when specifying numeric edit numbers for multiple modules.Most proba-
bly, a particular edit number is not appropriate for multiple modules, since changes corresponding

Reference Manual FHist 19

fhist(1) fhist(1)

to a particular edit number are not usually related.Using named edits avoids these problems.As
an example, if you wanted to extract every module which had an edit that was namedre v3, then
you could use the command:

fhist -all -e rev3

Some other useful examples of commands which use multiple modules are:
fhist *.c -create
fhist -check -all
fhist -cu -all

-Verbose
This option can be specified with any other action, and outputs status information about the
progress of the action.This is useful for debugging of problems, or just for amusement when the
system is slow or a large file is being processed.It accepts a numeric argument to indicate the
verbosity for output.The levels are as follows:

0 No output at all (except for errors).

1 Single-line output describing action (default).

2 Detailed status as action proceeds.

-Help
Give some help on how to use thefhist program.

-VERSion
Show what version offhist is running.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional.You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments "-help, "-HELP" and "-h" are all interpreted to mean the-Help option. The
argument "-hlp" will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line.

The GNU long option names are understood.Since all option names forfhist are long, this means ignoring
the extra leading ’-’. The "--option=value" convention is also understood.

FILE N AME EXPANSION
As a convenience, if a pathname begins with a period and a environment variable exists with that name,
then the value of the environment variable will be used as the actual pathname.For example, if a environ-
ment variable of.FOOhas the valuethis.is.a.long.name, then the command

fhist -o .FOO
is actually equivilant to the command

fhist -o this.is.a.long.name
If you want to prevent the expansion of a pathname which begins with a period, then you can use an alter-
nate form for the pathname, as in:

fhist -o ./.FOO

Reference Manual FHist 20

fhist(1) fhist(1)

BINARY FILES
In general, fhist can handle all text files you throw at it, even international text with unusual encodings.
However, fhist isunableto cope elegantly with files which contain the NUL character.

The fcomp(1) program simply prints a warning, and continues, you need to know that it converts NUL char-
acters into an 0x80 value before performing the comparison.

The fmerge(1) program also converts the NUL character to an 0x80 value before merging, after a warning,
and any output file will contain this value, rather than the original NUL character.

The fhist(1) program, however, generates a fatal error if any input file contains NUL characters.This is
intended to protect your source files for unintentional corruption.Use--BINary for files which absolutely
must contain NUL characters.

EXIT STATUS
The fhist program will exit with a status of 1 on any error. The fhist program will only exit with a status of
0 if there are no errors.

REFERENCES
This program is based on the algorithm in

An O(ND) Difference Algorithm and Its Variations, Eugene W. Myers, TR 85-6, 10-April-1985,
Department of Computer Science, The University of Arizona, Tuscon, Arizona 85721.

See also:
A File Comparison Program, Webb Miller and Eugene W. Myers, Software Practice and Experi-
ence, Volume 15, No. 11, November 1985.

COPYRIGHT
fhist version 1.10.D001
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002 Peter Miller;
All rights reserved.

This program is derived from a work
Copyright © 1990 David I. Bell.

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
ev en the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.See
the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write
to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA.

AUTHORS
Peter Miller Web: http://www.canb.auug.org.au/˜millerp
/\/* E-Mail: millerp@canb.auug.org.au

David I. Bell Web: http://www.canb.auug.org.au/˜dbell
E-Mail: dbell@canb.auug.org.au

Reference Manual FHist 21

GPL(GNU) FreeSoftware Foundation GPL(GNU)

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111, USA
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is
not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it.By contrast,
the GNU General Public License is intended to guarantee your freedom to share and change free soft-
ware--to make sure the software is free for all its users.This General Public License applies to most of the
Free Software Foundation’s software and to any other program whose authors commit to using it.(Some
other Free Software Foundation software is covered by the GNU Library General Public License instead.)
You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price.Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for this
service if you wish), that you receive source code or can get it if you want it, that you can change the soft-
ware or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask
you to surrender the rights.These restrictions translate to certain responsibilities for you if you distribute
copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source
code. Andyou must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives
you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands that there is
no warranty for this free software. If the software is modified by someone else and passed on, we want its
recipients to know that what they hav eis not the original, so that any problems introduced by others will
not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents.We wish to avoid the danger that
redistributors of a free program will individually obtain patent licenses, in effect making the program pro-
prietary. To prevent this, we have made it clear that any patent must be licensed for everyone’s free use or
not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

GNU GPL 22

GPL(GNU) FreeSoftware Foundation GPL(GNU)

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright
holder saying it may be distributed under the terms of this General Public License.The "Program", below,
refers to any such program or work, and a "work based on the Program" means either the Program or any
derivative work under copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language.(Hereinafter, translation is included
without limitation in the term "modification".)Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this License; they are out-
side its scope.The act of running the Program is not restricted, and the output from the Program is covered
only if its contents constitute a work based on the Program (independent of having been made by running
the Program).Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright
notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of
any warranty; and give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty
protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on
the Program, and copy and distribute such modifications or work under the terms of Section 1 above, pro-
vided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you changed the files and the
date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived
from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under
the terms of this License.

c) If the modified program normally reads commands interactively when run, you must cause it, when
started running for such interactive use in the most ordinary way, to print or display an announcement
including an appropriate copyright notice and a notice that there is no warranty (or else, saying that
you provide a warranty) and that users may redistribute the program under these conditions, and
telling the user how to view a copy of this License.(Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on the Program is not required to
print an announcement.)

These requirements apply to the modified work as a whole.If identifiable sections of that work are not
derived from the Program, and can be reasonably considered independent and separate works in them-
selves, then this License, and its terms, do not apply to those sections when you distribute them as separate
works. Butwhen you distribute the same sections as part of a whole which is a work based on the Pro-
gram, the distribution of the whole must be on the terms of this License, whose permissions for other
licensees extend to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you;
rather, the intent is to exercise the right to control the distribution of derivative or collective works based on
the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work
based on the Program) on a volume of a storage or distribution medium does not bring the other work under
the scope of this License.

GNU GPL 23

GPL(GNU) FreeSoftware Foundation GPL(GNU)

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable source code, which must be dis-
tributed under the terms of Sections 1 and 2 above on a medium customarily used for software inter-
change; or,

b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no
more than your cost of physically performing source distribution, a complete machine-readable copy
of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer to distribute corresponding source
code. (Thisalternative is allowed only for noncommercial distribution and only if you received the
program in object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it.For an
executable work, complete source code means all the source code for all modules it contains, plus any asso-
ciated interface definition files, plus the scripts used to control compilation and installation of the
executable. However, as a special exception, the source code distributed need not include anything that is
normally distributed (in either source or binary form) with the major components (compiler, kernel, and so
on) of the operating system on which the executable runs, unless that component itself accompanies the
executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then
offering equivalent access to copy the source code from the same place counts as distribution of the source
code, even though third parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this
License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will
automatically terminate your rights under this License.However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain in
full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else grants
you permission to modify or distribute the Program or its derivative works. Theseactions are prohibited by
law if you do not accept this License.Therefore, by modifying or distributing the Program (or any work
based on the Program), you indicate your acceptance of this License to do so, and all its terms and condi-
tions for copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically
receives a license from the original licensor to copy, distribute or modify the Program subject to these terms
and conditions.You may not impose any further restrictions on the recipients’ exercise of the rights
granted herein.You are not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not
limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise)
that contradict the conditions of this License, they do not excuse you from the conditions of this License.If
you cannot distribute so as to satisfy simultaneously your obligations under this License and any other per-
tinent obligations, then as a consequence you may not distribute the Program at all.For example, if a
patent license would not permit royalty-free redistribution of the Program by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance
of the section is intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to
contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free
software distribution system, which is implemented by public license practices.Many people have made
generous contributions to the wide range of software distributed through that system in reliance on

GNU GPL 24

GPL(GNU) FreeSoftware Foundation GPL(GNU)

consistent application of that system; it is up to the author/donor to decide if he or she is willing to dis-
tribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be aconsequence of the rest of this
License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by copy-
righted interfaces, the original copyright holder who places the Program under this License may add an
explicit geographical distribution limitation excluding those countries, so that distribution is permitted only
in or among countries not thus excluded. Insuch case, this License incorporates the limitation as if written
in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License
from time to time.Such new versions will be similar in spirit to the present version, but may differ in detail
to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of this
License which applies to it and "any later version", you have the option of following the terms and condi-
tions either of that version or of any later version published by the Free Software Foundation. Ifthe Pro-
gram does not specify a version number of this License, you may choose any version ever published by the
Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions
are different, write to the author to ask for permission.For software which is copyrighted by the Free Soft-
ware Foundation, write to the Free Software Foundation; we sometimes make exceptions for this.Our
decision will be guided by the two goals of preserving the free status of all derivatives of our free software
and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR
THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHER-
WISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.THE ENTIRE RISK AS TO THE
QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARIS-
ING OUT OF THE USE OR INABILITY T O USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DAT A OR DAT A BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

GNU GPL 25

GPL(GNU) FreeSoftware Foundation GPL(GNU)

Appendix: How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way
to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program.It is safest to attach them to the start of each source
file to most effectively convey the exclusion of warranty; and each file should have at least the "copyright"
line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) 19yyname of author

This program is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. Seethe GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not,
write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’. This is free
software, and you are welcome to redistribute it under certain conditions; type ‘show c’ f or details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of the General Public
License. Ofcourse, the commands you use may be called something other than ‘show w’ and ‘show c’;
they could even be mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copy-
right disclaimer" for the program, if necessary. Here is a sample; alter the names:

Yo yodyne, Inc., hereby disclaims all copyright interest in the program ‘Gnomovision’ (which makes
passes at compilers) written by James Hacker.

signature of Ty Coon,1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs.If
your program is a subroutine library, you may consider it more useful to permit linking proprietary applica-
tions with the library. If this is what you want to do, use the GNU Library General Public License instead
of this License.

GNU GPL 26

fmerge(1) fmerge(1)

NAME
fmerge − merge files

SYNOPSIS
fmerge[option...] basefile fileA fileB

fmerge -Help

fmerge -VERSion

DESCRIPTION
The fmerge program is used to compare the changes between two different descendants of a base file, and
creates an output file which contains both sets of changes.This is useful when two users both take the
same version of a file and make independent edits to it, and then later want to create a file which contains
both sets of edits.In such a use, the original file that both sets of edits is derived from is called thebase
file. The two files containing the edits are calledfile Aandfile B.

The command:
fmerge basefile fileA fileB -o outputfile

produces the output file which contains the edits contained infile Aandfile B, based on thebase file .If the
-Output option was not used, or if no outputfile is specified, then the merged lines are typed to the standard
output. Theorder of specifyingfile A and file Bis usually unimportant.

The fmergeprogram can also be used to remove earlier edits made to a module.To do this, make the ver-
sion containing the edits you want to delete be the basefile.Make the version previous to the edit you want
deleted be file A.Finally, make the most recent version of the file which contains the other edits (including
the one you want deleted) be file B.Then the result of merging will be the newest version of the module
minus the changes made by the edit you wanted removed. For example, if three successive versions of
some module have the namesedit10, edit11andedit12, and you want the changes done byedit11 to be
undone, but still want the changes done byedit12, then you use the command:

fmerge edit11 edit10 edit12 -o outputfile

While merging the two sets of edits, fmerge may discover conflicts. Aconflict occurs when the same line
of the base file is changed by both of the two sets of edits.The change can be due to new lines being
inserted, lines being deleted, or both.When conflicts occur, the output file contains conflict identification
lines, which are lines containing the string’/-/-/-/’ . These lines indicate the region where the two sets of
edits are incompatible.You must then edit the output file and remove these lines, and in addition correct
the conflicts manually in order to produce the correct result.

OPTIONS
The following options are understood:

-Conflicts [conflictfile]
Since conflicts due to deletions are invisible in the output file, and inserts do not specify which of
the two edits inserted the lines, there is an alternative output format from thefmerge program.
This output format describes what happens to each line of the base file, so that conflicts are easier
to detect and fix.The command:

fmerge basefile fileA fileB -c conflictfile
produces the file describing the results of the merge in detail. If the -Conflicts option is specified
without any conflictfile name, then the conflicts are send to the standard output.

If there are conflicts, and the-Conflicts options is not specified, thefmergeprogram will exit with
a status of 1.

The conflict file contains lines which contain three characters and then some text. Thefirst three
characters describe what is happening to the base file at that point.These characters are the fol-
lowing:

IA This line was inserted by file A.

Reference Manual FHist 27

fmerge(1) fmerge(1)

DA This line was deleted by file A.

IB This line was inserted by file B.

DB This line was deleted by file B.

<blanks>
This line is unchanged.

X This is a conflict identification line.

U There are unspecified unchanged lines here.

Each set of conflicts is flagged by three identification lines.The first line indicates the beginning
of the conflict, and specifies the line numbers for the base file and two div ergent files. The sec-
ond conflict identification line separates lines changed by file A from lines changed by file B.
The third conflict identification indicates the end of the conflict.

You can edit this conflict file to remove the conflicts.This involves deleting the conflict identifi-
cation lines, and changing the conflicting lines as necessary to fix the conflict.While doing this,
remember to leave three blank characters at the front of any new lines you insert while correcting
the conflicts.When you are done, there should be no lines which begin with an ’X’ in the file.
All other lines can remain.Then you can use the command:

fmerge conflictfile -o outputfile
to create the new output file which has the desired data.Once again, if no-Output option or out-
putfile is used, the output is send to the standard output.

-Unchangednumber
Besides physical conflicts, there can be logical conflicts.These are changes made to different
lines in the base file such that the program is no longer correct.Such conflicts cannot be detected
by a program, and so these must be checked manually. In order to make this process easier, the
-Unchangedoption can be used to reduce the size of the conflict file to only include regions near
changed lines.This file can then be examined in order to detect possible logical conflicts.As an
example, the command:

fmerge basefile fileA fileB -c -u 3
will send to the standard output all changes made by either sets of edits, with only three
unchanged lines surrounding each edit.

When using the-Unchangedoption, the conflict file will contain lines starting with ’U’.These
represent unchanged lines, and the number following the letter is the number of unchanged lines.
The resulting conflict file cannot be read to produce an output file because of the missing lines.If
this is attempted, an error will be generated.

It is possible to use both-Output and-Conflicts in the same command.Thus you can produce
the output file which you hope is correct, and also produce the conflict file which you can use to
check for logical conflicts.

-Verbose[number]
This option can be specified with any other action, and outputs status information about the
progress of the action.This is useful for debugging of problems, or just for amusement when the
system is slow or a large file is being processed.It accepts a numeric argument to indicate the
verbosity for output.The levels are as follows:

0 No output at all (except for errors).

1 Single-line output describing action (default).

2 Detailed status as action proceeds.

-Failur esnumber
This option restricts the number of physical conflicts that are allowed before failing. Thisis used
if you are not interested in the results if there are too many conflicts.

Reference Manual FHist 28

fmerge(1) fmerge(1)

-Help
Give some help on how to use thefmergeprogram.

-Ignore
Ignore conflicts.

-VERSion
Show what version offmerge is running.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional.You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments "-help, "-HELP" and "-h" are all interpreted to mean the-Help option. The
argument "-hlp" will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line.

The GNU long option names are understood.Since all option names forfmergeare long, this means ignor-
ing the extra leading ’-’. The "--option=value" convention is also understood.

FILE N AME EXPANSION
As a convenience, if a pathname begins with a period and a environment variable exists with that name,
then the value of the environment variable will be used as the actual pathname.For example, if a environ-
ment variable of.FOOhas the valuethis.is.a.long.name, then the command

fmerge -o .FOO
is actually equivilant to the command

fmerge -o this.is.a.long.name
If you want to prevent the expansion of a pathname which begins with a period, then you can use an alter-
nate form for the pathname, as in:

fmerge -o ./.FOO

BINARY FILES
In general, fmerge can handle all text files you throw at it, even international text with unusual encodings.
However, fmerge isunableto cope elegantly with files which contain the NUL character.

The fcomp(1) program simply prints a warning, and continues, you need to know that it converts NUL char-
acters into an 0x80 value before performing the comparison.

The fmerge(1) program also converts the NUL character to an 0x80 value before merging, after a warning,
and any output file will contain this value, rather than the original NUL character.

The fhist(1) program, however, generates a fatal error if any input file contains NUL characters.This is
intended to protect your source files for unintentional corruption.Use--BINary for files which absolutely
must contain NUL characters.

EXIT STATUS
The fmergeprogram will exit with a status of 1 on any error. The fmergeprogram will only exit with a sta-
tus of 0 if there are no errors.

REFERENCES
This program is based on the algorithm in

An O(ND) Difference Algorithm and Its Variations, Eugene W. Myers, TR 85-6, 10-April-1985,
Department of Computer Science, The University of Arizona, Tuscon, Arizona 85721.

See also:
A File Comparison Program, Webb Miller and Eugene W. Myers, Software Practice and Experi-
ence, Volume 15, No. 11, November 1985.

Reference Manual FHist 29

fmerge(1) fmerge(1)

COPYRIGHT
fmerge version 1.10.D001
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002 Peter Miller;
All rights reserved.

This program is derived from a work
Copyright © 1990 David I. Bell.

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
ev en the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.See
the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write
to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA.

AUTHORS
Peter Miller Web: http://www.canb.auug.org.au/˜millerp
/\/* E-Mail: millerp@canb.auug.org.au

David I. Bell Web: http://www.canb.auug.org.au/˜dbell
E-Mail: dbell@canb.auug.org.au

Reference Manual FHist 30

Table of Contents(FHist) Table of Contents(FHist)

The README File . 1
Release Notes. 3
How to Build the Sources . 5
Internationalization . 9

fcomp(1) comparetwo files . 11
fhist(1) recordfile modification history . 14
fhist_lic(1) GNUGeneral Public License. 22
fmerge(1) merge competing file edits. 27

Reference Manual FHist iii

Permuted Index(FHist) PermutedIndex(FHist)

fcomp(1) 11 fcomp - file compare
fcomp(1) 11 fcomp - file compare
fhist(1) 14 fhist - file history
fcomp(1) 11 fcomp - file compare
fhist(1) 14 fhist - file history
fmerge(1) 27 fmerge - merge files
fmerge(1) 27 fmerge - merge files
fhist(1) 14 fhist - file history
fmerge(1) 27 fmerge - merge files

Reference Manual FHist iv

