
.

Cook
A File Construction Tool

User Guide

Peter Miller
millerp@canb.auug.org.au

.

This document describes Cook version 2.25
and was prepared 17 July 2004.

This document describing the Cook program, and the Cook program itself, are
Copyright © 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
2000, 2001, 2002, 2003, 2004 Peter Miller; All rights reserved.

This program is free software; you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details.

You should have received a copy of the GNU General Public License along with this
program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111, USA.

CONTENTS

1. Introduction .. 1
1.1 Why You Want To Use Cook .. 1
1.2 How to Use this Manual ... 2
1.3 Ancient History ... 2

2. Cook from the Outside ... 3
2.1 What can cook do for me? .. 3
2.2 What is cook doing? ... 3
2.3 What can cook always do? .. 3
2.4 If something goes wrong .. 3
2.5 The Reference Manual .. 4

3. Cook from a Cookbook ... 5
3.1 What does Cook do? ... 5
3.2 How do I tell Cook what to do? .. 5
3.3 Creating a Cookbook .. 6

4. Cooking in Parallel .. 8
4.1 Command Line Option ... 8
4.2 Cookbook Variable ... 8
4.3 Recipe Writing .. 8
4.4 File Locking .. 9
4.5 Virtual Machine .. 9
4.6 Virtual Machine, Revisited ... 11

5. Include File Dependencies ... 13
5.1 The Manual Method ... 13
5.2 Debugging Cookbooks ... 13
5.3 Tools .. 14
5.4 The Small Method .. 14
5.5 The Large Method .. 15
5.6 The Cascade Method .. 16
5.7 Dependencies on Derived Files .. 17
5.8 Renaming Include Files .. 17

6. Building Large Projects ... 18
6.1 Whole Project Build ... 18
6.2 Private Work Areas ... 22
6.3 Whole Project Build Advantages .. 24
6.4 Heterogenous Build .. 25
6.5 Installing Things ... 26
6.6 Miscellaneous ... 27
6.7 File Fingerprints .. 28
6.8 Coping with Links .. 30
6.9 Coping with Version Stamps .. 30

7. Cookbook Language Definition ... 31
7.1 Lexical Analysis ... 31

7.1.1 Words and Keywords .. 31
7.1.2 Escape Sequences ... 31
7.1.3 Quoting ... 31
7.1.4 Comments ... 32

i

7.2 Preprocessor .. 32
7.2.1 include ... 32
7.2.2 include-cooked .. 32
7.2.3 include-cooked-nowarn .. 33
7.2.4 if .. 33
7.2.5 ifdef ... 33
7.2.6 ifndef ... 33
7.2.7 pragma .. 34

7.3 Syntax and Semantics ... 35
7.3.1 Overall Structure ... 35
7.3.2 The Compound Statement .. 35
7.3.3 Variables and Expressions .. 35
7.3.4 Recipes .. 37
7.3.5 The Explicit Recipe Statement ... 37
7.3.6 The Implicit Recipe Statement ... 41
7.3.7 The Ingredients Recipe Statement .. 42
7.3.8 The Cascade Recipe Statement ... 42
7.3.9 Commands .. 42
7.3.10 The Simple Command Statement ... 43
7.3.11 The Data Command Statement ... 43
7.3.12 The Set Statement ... 44
7.3.13 The Fail Statement .. 44
7.3.14 The If Statement ... 45
7.3.15 The Loop and Loopend Statements .. 45
7.3.16 Functions ... 46

8. Built-In Functions .. 48
8.1 addprefix ... 48
8.2 addsuffix .. 48
8.3 and ... 48
8.4 basename ... 49
8.5 cando ... 49
8.6 catenate ... 49
8.7 collect_lines .. 50
8.8 collect .. 50
8.9 cook ... 50
8.10 count ... 51
8.11 defined ... 51
8.12 dirname ... 51
8.13 dir .. 52
8.14 dos-path ... 52
8.15 downcase ... 52
8.16 entryname ... 53
8.17 execute .. 53
8.18 exists ... 53
8.19 exists-symlink ... 54
8.20 expr ... 54
8.21 filter_out .. 55
8.22 filter ... 55
8.23 find_command .. 55
8.24 findstring ... 56
8.25 firstword .. 56
8.26 fromto ... 57

ii

8.27 getenv .. 57
8.28 glob ... 57
8.29 head ... 58
8.30 home ... 58
8.31 if .. 58
8.32 in ... 59
8.33 interior_files .. 59
8.34 join .. 59
8.35 leaf_files .. 60
8.36 matches ... 60
8.37 match_mask .. 60
8.38 mtime .. 61
8.39 mtime-seconds .. 61
8.40 notdir ... 61
8.41 not ... 61
8.42 operating_system .. 62
8.43 options ... 63
8.44 or ... 64
8.45 pathname ... 64
8.46 patsubst ... 64
8.47 prepost ... 64
8.48 print ... 65
8.49 quote ... 65
8.50 read_lines .. 65
8.51 readlink ... 65
8.52 read ... 65
8.53 relative_dirname ... 66
8.54 resolve ... 66
8.55 shell ... 66
8.56 sort_newest ... 67
8.57 sort .. 67
8.58 split ... 67
8.59 stringset ... 68
8.60 stripdot .. 68
8.61 strip ... 68
8.62 substr ... 69
8.63 subst .. 69
8.64 suffix ... 69
8.65 tail ... 70
8.66 un-dos-path ... 70
8.67 unsplit ... 70
8.68 upcase ... 71
8.69 uptodate ... 71
8.70 wildcard .. 71
8.71 word .. 72
8.72 words ... 73
8.73 write .. 73

9. Predefined Variables .. 74
9.1 arg ... 74
9.2 command-line-goals ... 74
9.3 __FILE__ .. 74
9.4 __FUNCTION__ .. 74

iii

9.5 graph_leaf_file .. 74
9.6 graph_exterior_file .. 74
9.7 graph_interior_file .. 74
9.8 graph_leaf_pattern .. 74
9.9 graph_exterior_pattern .. 74
9.10 graph_interior_pattern .. 74
9.11 __LINE__ ... 74
9.12 need ... 74
9.13 parallel_hosts .. 75
9.14 parallel_jobs .. 75
9.15 parallel_rsh ... 75
9.16 search_list ... 75
9.17 self ... 75
9.18 target ... 75
9.19 targets .. 75
9.20 thread-id .. 75
9.21 younger ... 75
9.22 version ... 75

10. Functions Library ... 76
10.1 capitalize ... 76
10.2 defined-or-null .. 76
10.3 defined-or-default .. 76
10.4 repeat ... 76
10.5 variable_by_path ... 76

11. Actions when Cooking .. 77
11.1 Scan the COOK Environment Variable .. 77
11.2 Scan the Command Line ... 77
11.3 Locate the Cookbook .. 77
11.4 Form the Listing Filename .. 77
11.5 Create the Listing file .. 77
11.6 Scan the Cookbook ... 77
11.7 Determine targets to cook ... 77
11.8 Cooking a Target ... 77
11.9 The Dependency Graph .. 79
11.10 File Status ... 80

12. Option Precedence ... 82

13. File name patterns .. 83
13.1 Cook Patterns .. 83
13.2 Regular Expressions ... 85

14. Supplied Cookbooks .. 87
14.1 as ... 87
14.2 c ... 87
14.3 f77 ... 88
14.4 g77 .. 89
14.5 gcc ... 89
14.6 home ... 89
14.7 lex ... 89
14.8 library .. 90
14.9 print ... 90
14.10 program ... 91

iv

14.11 rcs .. 91
14.12 recursive .. 92
14.13 sccs .. 92
14.14 text .. 92
14.15 usr.local ... 93
14.16 usr ... 93
14.17 yacc_many .. 93
14.18 yacc ... 93

15. Glossary ... 94

v

vi

Cook User Guide

1. Introduction
This document describes cook, a maintenance tool designed to construct files. Cook may be used to
maintain consistency between executable files and the associated source files that are used to generate them.
The consistency is designated by the relative last-modified times of files and is thus automatically adjusted
each time a file is edited, compiled or otherwise modified. Cook validates the consistency of a system of
files and executes all commands necessary to maintain that consistency.

Cook is a tool for constructing files. It is given a set of files to create, and instructions detailing how to
construct them. In any non-trivial program there will be prerequisites to performing the actions necessary
to creating any file, such as extraction from a source-control system. Cook provides a mechanism to define
these.

When a program is being developed or maintained, the programmer will typically change one file of several
which comprise the program. Cook examines the last-modified times of the files to see when the
prerequisites of a file have changed, implying that the file needs to be recreated as it is logically out of date.

Cook also provides a facility for implicit recipes, allowing users to specify how to form a file with a given
suffix from a file with a different suffix. For example, to create filename.o from filename.c

1.1 Why You Want To Use Cook
• Cook is a replacement for the traditional make(1) tool.

• There is a make2cook utility included in the distribution to help convert makefiles into cookbooks.

• Cook is more powerful than the traditional make tool.

• Cook has true variables, not simple macros.

• Cook has a simple but powerful string-based description language with many built-in functions. This
allows sophisticated filename specification and manipulation without loss of readability or
performance.

• Cook has user defined functions.

• Cook can build in parallel.

• Cook can distribute builds across your LAN.

• Cook is able to build your project with multiple parallel threads, with support for rules which must be
single threaded. It is possible to distribute parallel builds over your LAN, allowing you to turn your
network into a virtual parallel build engine.

• Cook is able to use fingerprints to supplement file modification times. This allows build optimization
without contorted rules.

• Cook can be configured with an explicit list of primary source files. This allow the dependency
graph to be constructed faster by not going down dead ends, and also allows better error messages
when the graph can’t be constructed. This requires an accurate source file manifest.

• In addition to walking the dependency graph, Cook can turn the input rules into a shell script, or a
web page.

• Cook has special cascade dependencies, allowing powerful include dependency specification,
amongst other things.

• And Cook doesn’t interpret tab differently to 8 space characters!

If you are putting together a source-code distribution and planning to write a makefile, consider writing a
cookbook instead. Although Cook takes a day or two to learn, it is much more powerful and a bit more
intuitive than the traditional make(1) tool.

Peter Miller Page 1

Cook User Guide

1.2 How to Use this Manual
This manual is divided into two parts.

The first part is tutorial introduction to cook. This part runs from chapter 4 to chapter 5.

The second part is for reference and details precisely how cook works. This part runs from chapter 6 to
chapter 14.

Users familiar with other programs similar to cook are advised to skim the tutorial part before diving into
the reference part.

1.3 Ancient Histor y
Cook was originally developed because I was marooned on an operating system without anything even
vaguely resembling make(1). This was in 1988. Since I had to write my own, I added a few improvements.
When I finally escaped back to UNIX, in 1990, it took only two days to port cook to SystemV. I have since
deleted all code for that original operating system, although clues to its identity are still present.

After I had cook up on UNIX, the progress the world had made caught up with me. It was gratifying that
many of the features other make-oid authors had thought necessary were either already present, or easily
and seamlessly added.

Cook was written with portability in mind. This does not means it is entirely portable, but it comes close.
Cook has been tested on numerous UNIX flavors. This was made much simpler in 1994 when I started using
the GNU Autoconf utility. This means that when you obtain the sources for Cook, all you have to do is run
the configure script included in the distribution and Cook will be configured for your system. See the
BUILDING file in the source distribution for more information.

In 1996 Cook had internationalization support added, so that users could have error messages and other
warning and informational messages printed in their native language. This was made possible by the GNU
Gettext utilities.

In 1997 Cook had a major re-write of significant portions of its inference engine. This enabled the addition
of parallel processing support, and simplified adding user-defined functions to the cookbook language.

Peter Miller Page 2

Cook User Guide

2. Cook from the Outside
This chapter is part of the tutorial on how to use the cook program. It focuses on how to use cook, without
needing to know how cook works internally.

2.1 What can cook do for me?
By far the most common use of cook, by experts and beginners alike, is to issue the command

cook
and cook will consult its cookbook to see what needs to be done.

In general, cook is used to take a set of files and chew on them in some way to produce another set of files;
such as the source files for a program, and how to turn them into the executable program file. In order for
cook to do anything useful, it needs to know what to do. "What to do" is contained in a file called
Howto.cook in the same directory as the files it is going to work on. You need to execute the cook
command in the same directory as all of the files.

2.2 What is cook doing?
The Howto.cook file was written by the same person who wrote the source files. It contains a set of recipes;
each of which, among other things, contain commands for how to manipulate the files. The cook program
echos each of the commands it is about to execute, so that you can watch what it is doing as it goes.

If the Howto.cook file contained only commands, you would be better off using a shell script. In addition to
the commands is information telling cook which files need to be constructed before other files can be, and
from this information cook determines the order in which to execute the commands. Also, cook examines
other information to determine which commands it need not do, because the associated files are already up-
to-date.

2.3 What can cook always do?
If you are in a directory with a Howto.cook file, you can expect a few common requests to work

cook clobber This command can be expected to remove any files from the directory which
cook is able to reconstruct.

cook all This is the default action, and so can be obtained by a simple cook request. It
causes cook to construct some specific file or set of files.

cook clean This is similar to "cook clobber" above, but it only removes intermediate files,
and not not the final file or files which "cook all" constructs.

In addition to the above, many Howto.cook files will also define

cook install If a program or library or document is constructed in the directory, the this
command will install it into the correct place in the system.

cook uninstall The reverse of the above, it removes something from the system.

2.4 If something goes wrong
Most errors while cook is constructing file are caused by errors in the source files, and not the Howto.cook
file. In general, you can fix the problems in the source files, and execute the cook command again, and
cook will resume from the command which incurred the error.

To help you while editing the files with the errors, cook keeps a listing file of all the commands it executed,
and any output of those commands, in a file called Howto.list in the current directory.

You may want cook to find all the errors it can before you do any editing, do do this, use the -Continue
option (it may be abbreviated to -c for convenience).

Peter Miller Page 3

Cook User Guide

2.5 The Reference Manual
For more information about the command line arguments and options of the various commands mentioned,
you should consult the on-line manual pages. The Cook Reference Manual is also a good source of this
information, and is available from the same place as you obtained this manual.

Peter Miller Page 4

Cook User Guide

3. Cook from a Cookbook
This chapter describes the contents and meaning of a cookbook, a file which contains information cook
needs to do its job. It focuses on what a cookbook looks like, and touches on a few areas of how cook
works does its job.

3.1 What does Cook do?
The basic building block for cook is the concept of a recipe. A recipe has three parts:

1. one or more files which the recipe constructs, known as the targets of the recipe

2. zero or more files which are used by the recipe to construct the target, known as the ingredients of
the recipe

3. one or more commands to execute which construct the targets from the ingredients, known as the
body of the recipe.

When a number of recipes are given, some recipes may describe how to cook the ingredients of other
recipes. When cook is asked to construct a particular target it automatically determines the correct order to
perform the recipe bodies to cook the requested target.

Cook would not be especially useful if you had to give explicit recipes for how to cook every little thing.
As a result, cook has the concept of an implicit recipe. An implicit recipe is very similar to an explicit
recipe, except that the targets and ingredients of the recipe are patterns to be matched to file names, rather
than explicit file names. This means it is possible to write a recipe, for example which constructs a files
with a name ending in ‘.o’ from a file of the same name, but ending in ‘.c’ rather than ‘.o’.

In addition to recipes, cook needs to know when to construct targets from ingredients. Cook has been
designed to cook as little as possible. "As little as possible" is determined by examining when each file was
last modified, and only constructing targets when that are out of date with the ingredients.

3.1.1 When is Cook useful?
From the above description, cook may be described as a tool for maintaining consistency of sets of files.

3.1.2 When is Cook not useful?
Cook is not useful for maintaining consistency of sets of things which are within files and thus cook is
unable to determine when they were modified. For example, cook is not useful for maintaining consistency
of sets of records within a database.

3.2 How do I tell Cook what to do?
Sets of recipes are gathered together into cookbooks. When cook is executed it looks for a cookbook of the
name Howto.cook in the current directory. If you did not name a file to be constructed on the command
line, the first target in the cookbook will be constructed.

The best way to understand how to write recipes is an example. In this example, a program, prog, is
composed of three files: foo.c, bar.c and baz.c. To inform cook of this, the cookbook

#include "c"

prog: foo.o bar.o baz.o
{

cc -o prog foo.o bar.o baz.o;
}

is sufficient for prog to be constructed.

This cookbook has two parts. The line

Peter Miller Page 5

Cook User Guide

#include "c"
tells cook to refer to a system cookbook which tells it, among other things, how to construct a something.o
file from a something.c file.

The second part is a recipe. The first line of this recipe
prog: foo.o bar.o baz.o

...
names the target, prog, and the ingredients, foo.o, bar.o and baz.o.

The next three lines
...
{

cc -o prog foo.o bar.o baz.o;
}

are the recipe body, which consists of a single cc(1) command to be executed. Recipe bodies are always
within { curly braces }, and commands always end with a semicolon (;).

Thus, to update prog after any of the source files have been edited, it is only necessary to issue the
command

cook prog
This could be simplified further, because cook will cook the targets of the first recipe by default; in this
case, prog.

The power of cook becomes more apparent when include files are considered. If the files foo.c and baz.c
include the file defs.h, this would automatically be detected by cook. If defs.h were to be edited, and cook
re-executed, this would cause cook to recompile both foo.c and baz.c, and relink prog. The information
about how to turn .c files into .o files came from the ‘‘#include "c"’’ line, which read in the C recipes
distributed with Cook.

3.2.1 The common program case
The above example may be simplified even further. If the four files foo.c, bar.c, baz.c and defs.h all resided
in a directory with a path of /some/where/prog, then the Howto.cook file in that directory need only contain

#include "c"
#include "program"

for prog to be cooked. This is because the "program" cookbook looks for all of the something.c files in
the current directory, compiles them all, and links them into a program named after the current directory.

The default target in the "program" cookbook is called all. The ingredient of all is the program named
after the current directory. Two other targets are supplied by this cookbook:

clean removes all of the something.o files from the current directory.

clobber removes the program named after the current directory, and also removes all of the something.o
files from the current directory.

3.3 Creating a Cookbook
To use cook you will usually need to define a cookbook, by creating a file, usually called Howto.cook in the
current directory, with your favorite text editor.

This file has a specific format. The format has been designed to be easy to learn, even for the casual user.
Much of the power of cook is contained in how it works, without complicating the format of the cookbook.

Peter Miller Page 6

Cook User Guide

Example of what a cookbook looks like are scattered throughout this document. The following example is
the entire cookbook for many programs, some quite large:

#include "c"
#include "yacc"
#include "usr.local"
#include "program"

As you can see, even for many complex programs, the cookbook is remarkably simple.

Peter Miller Page 7

Cook User Guide

4. Cooking in Parallel
Cook is able to use the dependency information in the cookbook to schedule more than one recipe body at
once, where they are independent. In large projects this is almost always possible.

Parallel processing is of most use on multi-processor systems. There are cases, however, when running two
jobs at once on a workstation can take advantage of disk or network latencies.

Parallel processing requires more resources than the simple case. Because more commands are running,
more CPU is required, but also more virtual memory and more temporary file space. You need to be sure
that cooking in parallel is a sensible thing to be doing.

4.1 Command Line Option
The -PARallel option is used to tell Cook to run the recipe bodies in parallel. By default, 4 jobs run in
parallel. You may specify the number of jobs after the option (e.g. --par=2) if you wish.

4.2 Cookbook Variable
It is also possible to set the number of jobs from within the cookbook by using the parallel_jobs
variable. This can be used to automate the selection of the number of jobs, based on the current host name:

if [not [defined parallel_jobs]] then
{

host = [os node];
if [in [host] cerberus] then

parallel_jobs = 3;
else if [in [host] zaphod] then

parallel_jobs = 2;
else if [in [host] hydra] then

parallel_jobs = 8;
}

In this way, the number of jobs will be set appropriately for each machine, provided the number of jobs was
not already set by the command line option.

4.3 Recipe Wr iting
Most recipes run in parallel without difficulty, howev er some will require special treatment. The problems
arise from conflict for resources − usually temporary files.

The simplest example of this is yacc(1). The output filenames are hard-coded, even when you write a more
general recipe:

%.c: %.y
single-thread yy.tab.c

{
[yacc] [yacc_flags] %.y;
sed "’s/[yY][yY]/%_/g’" yy.tab.c > [target];
rm yy.tab.c;

}
Replacing the YY is a common method for getting more than one yacc grammar into a program. We run
into trouble with the yy.tab.c file because every one of the yacc grammars will need to use the same
temporary file name.

The single-thread clause tells cook to find something else to do if it discovers that it wants do two of
these at the same time.

Peter Miller Page 8

Cook User Guide

The temporary file name may not be so evident as in the yacc case. The GNU Autoconf utilities use a
number of temporary files in the current directory, but none of them appear in the text of the recipes.

%: %.in: config.status
single-thread conftest.subs

{
CONFIG_FILES\=[target] CONFIG_HEADERS\= config.status;

}
It is common, if your project uses GNU Autoconf, to generate several files in this way. Once the
config.status script is produced, all of these files will then be candidates for cook to generate − but
they can only be done one at a time.

Other resources, such as tape drives, can also be described in the single-thread clause. You can do
this by device name (e.g. /dev/rmt/0) or by some descriptive string. The single threading is performed
by mutually exclusive string sets, not by inode.

4.3.1 Concurrent Execution Threads
Each recipe, when its actions are executed, is executed within an execution thread. Execution threads share
almost everything in common; this includes all of the variables, the state of the ‘‘set’’ statement, the stat
cache, etc.

If you need to create variable names, or temporary file names, which are unique to a thread, use the
[thread-id] variable. This variable has a unique value for the life of a thread. No other concurrent
thread will have the same value.

Note, however, that the [thread-id] values of completed threads will be re-used; this ensures that when
it is used to construct variable names, the variables will be re-used. This prevents memory bloat when
cooking large projects.

4.4 File Locking
The above discussion applies to utilities which perform no file locking, and thus cannot detect or sequence
multiple accesses to a resource. Other programs, such as those which access databases, may have quite
capable file locking mechanisms and are able to manage multiple parallel updates on their own, obviating
the need for the single-thread clause.

4.5 Virtual Machine
It is possible to simulate a parallel machine if you are on a network. Cook is able to distribute tasks to
computers on a network, if it is given sufficient information.

The first information Cook requires is the list of machines. This is done using the parallel_hosts
variable. Note: The tasks will be distributed amongst these machines independent of the setting of the
parallel_jobs variable. i.e. ev en if you are not doing parallel processing.

parallel_hosts = larry curly moe;
If you want to give one machine more wieghting than the others (say, because it is twice as fast) you simply
name it more than once. Cook will use these names in round-robin fashion.

4.5.1 Remote Shell Command
Cook uses the Berkeley rsh(1) command to invoke the remote command. You can set the command, or the
command and some options, using the parallel_rsh variable. The default value is

parallel_rsh = rsh;
In order to work in a useful way, Cook makes some assumptions about your environment and your account:

• That your system administrators allow rsh(1) to be used on your network.

• That your account name is the same on all machines (otherwise not even the rsh -l login-name
option will help).

Peter Miller Page 9

Cook User Guide

• That the /etc/hosts.equiv file, or your ˜/.rhosts file, is set on all machines so that you
don’t need to give a password.

• That all of the necessary files and directories are mounted in exactly the same place on all of the
machines; and that they are the same files on all machines, via NFS or similar. Automounters can
make this especially messy.

• That your account start-up scripts set the necessary environment settings, e.g. command search
PATH, without any intervention required.

• That all of the machines are of the same architecture, or that the architecture doesn’t matter.

• That the system time is synchronised on all machines, using rdate(1) from cron(8), or using NTP, or
similar.

4.5.2 Limitations
There are some inherent limitations in the rsh(1) protocol.

• Your current environment variable settings are not transferred across. Neither are ulimit settings, etc.
If any are important, you need to write the cookbook to explicitly replicate them.

• The exit status of the remote command is not reported in the exit status of the rsh(1) command1.
There are internal contortions used by Cook to obtain the exit status; error about mysteriously named
files usually indicate that one or more of the above assumptions is being broken.

4.5.3 Secure Shell
It is possible to use the Secure Shell (ssh) instead of Remote Shell (rsh). This gives you fully authenticated,
fully encrypted sessions, both over your intranet and even over the Internet. Once you have it installed and
configured correctly, you simply replace the rsh command in the above examples with the ssh command.

This is accomplised by setting
parallel_rsh = "ssh";

Somewhere near the top of your cookbook.

4.5.4 Host Binding
In some cases, such as licensing conditions, some commands will only run on a limited set of hosts. Rather
than perform all commands on those hosts, it is possible to bind recipes to specific hosts. This binding
overrides the parallel_hosts variable.

%.c: %.esql
host-binding shylock

{
esql %.esql > [target];

}
This example says that the embedded SQL preprocessor is only to be run on the database server called
‘‘shylock’’, probably due to usurious licensing fees. However, you may want to perform your other
development activities on more lightly loaded machines; this clause only applies to this one recipe, other
recipes behave as normal.

The host-binding clause may have more than one host named, and they will be used in round-robin
fashion. This is a recipe-level variant of the parallel_hosts variable.

The host-binding clause will apply independent of the setting of the settings parallel_jobs and
parallel_hosts variables.

The recipe level host-binding overrides the cookbook level parallel_hosts when determining
which remote hosts should be used.

If the list of hosts given to the host-binding clause is empty, the local host will be used (normal recipe
execution will occur).

1. The Berkeley sources certainly don’t contain code to do this. Do any other vendors have a more useful implementation?

Peter Miller Page 10

Cook User Guide

If you need to include the local host in the round robin, use localhost or [os node], howev er this
will behave exactly the same as for a remote host. You should also consider hard coding the name, that
way you get the same behavior no mater which of the machines in the rond robin the Cook command is
executed on.

4.5.5 Load Balancing
It is possible to use host-binding to perform load balancing. This is accomplished by using rup(1) to
discover which hosts are least busy, and then using this information to invoke the system’s rsh(1).

This may be accomplished by using
parallel_rsh = "cook_rsh";

somewhere near the top of your cookbook (or cook_rsh −s for secure shell). You then give classes of hosts
to the host-binding clause of the recipes, rather than specific host names. See cook_rsh(1) for more
information about setting up classes of hosts.

If you still need to give specific host names to some recipes, cook_rsh(1) will cope with this, too.

4.6 Virtual Machine, Revisited
It is also possible to have Cook run multiple processes in parallel without having to know what machines
are available. This method puts control of the network resources in the hands of an external program, one
example of which is cook_rsh, distributed with Cook.

Once you have such a virtual network defined it becomes very easy to build projects for multiple platforms
or architectures in the same build. It also allows easily adding new machines, or disabling machines for
maintenance. The virtual network can be changed at any time without disturbing ongoing development.

The following examples will have the form allowing multiple architecture builds, but of course they will
work for single architecture as well.

4.6.1 cook_rsh
The cook_rsh system is just one way of defining the capabilities of a given network in a way that a single
program can make the best choice of machine for a given job. It does so in a way that is reliable and does a
decent job of balancing loads across available machines, even with multiple developers doing builds at the
same time.

Each job that requested via cook_rsh picks the appropriate machine from those able to do the job at that
instant in time. In contrast to parallel_hosts or host-binding hostA hostB etc, it does not
work from a list which was current at the time a cook process was started. Thus it is less vulnerable to
machines going off line or becoming overloaded as time passes.

Currently cook_rsh uses rsh to actually execute the job, so requires the same network setup. The next
version may use multicast instead for even finer control and reliability.

There are minor differences in the setup to use cook_rsh control. The first is that Cook no longer
requires a list of machines. It is not necessary to set the parallel_hosts variable. The
parallel_rsh variable is set as:

parallel_rsh = cook_rsh -v;
The -v option produces information as to what machine was actually picked for each job.

4.6.2 Host Binding
All recipe bodies which should run in parallel need a host-binding setting. Rather than list the hosts to
be used we form a name which is used by cook_rsh to select an appropriate machine. This name may
include an architecture component and a operation component.

%1/%.o: %.c
host-binding %1_C

{
[%1_cc] -o [target] -c [resolve %.c];

}

Peter Miller Page 11

Cook User Guide

%1/%2: [addprefix %1/ [%2_objs]]
host-binding %1_L

{
[%1_ld] -o [target] [resolve [need]];

}
This example says that the compiles for a certain architecture should take place on any machine designated
as a compile host for that architecture. And linking jobs should go to machines designated as a link host for
that architecture. Of course the same machine could probably do both jobs, but you get to define it as you
see fit, and change the designations from moment to moment. Current designations per architecture are:

_C Compile (Compile source code)
_L Link (link binary programs)
_T Test (run automatic tests)
_B Build (including cooking, or generic jobs)
And others may be added if necessary by simple extension.

4.6.3 Administration of cook_rsh
The definition of the virtual network used by cook_rsh is contained in just a two configuration files. One
file lists designations, and lists machines belonging to each designation. The other is an exclude file, which
lists machines which should not be used for whatever reason.

The designations file may be created by hand if desired but a utility called rate_hosts is provided that
can generate the host_lists.pl file, possibly after being customized for the particular requirements of
a giv en environment.

The exclusion file lists machines that should never be selected. The exclusion file can be edited at any time
and adding a machine will prevent any further jobs from going its way. Removing the name will again
allow selection of that machine. How soon a job actually goes there depends greatly on the network
utilization. The exclude_hosts file contains machine names and optional comments. An example
exclude_hosts file might contain:

list of hosts to exclude from arch_hosts lists
for whatever reason.
monolith # not a development machine - the ftp host
namshub # developer test station
tiamat # unreliable configuration
locutus # Being upgraded

This is handy for maintenance on machines. If a particular machine needs to be brought down you simply
add its name to the exclusion file. Checking its process list will tell when any currently running remove
jobs are done. After that it can safely be brought down without affecting any active builds.

Peter Miller Page 12

Cook User Guide

5. Include File Dependencies
A significant factor in a cookbook accurately describing the dependencies in a program are the include file
dependencies. There are three methods for doing this in Cook. The first is easily understandable but is too
slow to use on large projects, the second is a little harder to understand, but works well for large projects.
The third method is rather convoluted, but works well for projects with many thousands of source files and
multiple simultaneous architectures built within the same source tree.

The recipes here are merely examples and starting points; you will almost certainly need to enhance them
to suit the needs of your projects. Areas you will need to address include (a) the existence of cc -Ipath
options, (b) the use of search_list variable and the [resolve] function, and (c) heterogeneous
development. The techniques also apply to other languages, such as Fortran, Pascal and Roff, but each
requires a language-specific include scanning program2.

5.1 The Manual Method
Well, actually there are four methods, if you count maintaining the dependencies manually. This has the
serious defect that humans tend to forget to update the cookbook. On a large project not all developers are
familiar with the workings of Cook, and so they shy away from updating the cookbook. By finding ways to
automate include dependency processing, we reduce the risk that a developer will forget to update the
cookbook, and we reduce the risk that the cookbook’s dependency information is out-of-date.

Automatic include dependency methods described below hav e flaws, and can never replace a human for
flexibility and domain knowledge. On the other hand, humans have better things to do with their time than
grope files for include file dependencies (like write neat software).

5.2 Debugging Cookbooks
Before we proceed further, it is worth spending some time covering some of the methods for debugging
your cookbook, because small mistakes in implementing the methods below can become quite difficult to
locate.

5.2.1 Command Locations
Usually Cook will echo all the commands it executes, just before executing them. If you add the line

set tell-position;
near the top of your cookbook, Cook will add the filename and line number within the cookbook to each
command it echoes. This can be useful in figuring out which recipe Cook actually chose to execute.

5.2.2 Printing Stuff
Often you will want to have Cook print various pieces of information. The wrong way to do it is with the
shell’s "echo" command

echo variable "=" [variable];
because this invokes another process (which can make debugging parallel cookbooks harder) and because
of the optional data ... dataend which can follow commands (see the command statement in the language
definition, below). The correct method is to call the "print" function, like this

function print [__FILE__]: [__LINE__]: variable "=" [variable];
Note the use of the __FILE__ and __LINE__ builtins, which provide you with cookbook position
information.

5.2.3 Trigger Ingredients
Another useful piece of information is the ingredients which caused Cook to invoke a particular recipe
body. The following function

function say-why =
{

if [count [@1]] then

2. The c_incl program understands Roff, you just need to use the −r option.

Peter Miller Page 13

Cook User Guide

@1 = [@1];
if [count [@2]] then

@2 = [@2];
local tt = [target];
if [defined targets] then

tt = [targets];
local t = ;
if [in [count [younger]] 0 1 2 3] then
{

function print [@1] [@2]
Building [target]
because of [younger];

}
else
{

function print [@1] [@2]
Building [target] because of
[wordlist 1 3 [younger]] et al;

}
}

can be inserted at the beginning of a recipe
%.o: %.c
{

function say-why [__FILE__] [__LINE__];
cc -c %.c;

}
to say why the recipe was invoked. This will even include dependencies automatically determined by all of
the methods which follow, not just those named on the right-hand-side of the recipe itself.

5.3 Tools
All of the automated include file dependency methods described below use the c_incl(1) program included
in the Cook distribution. It has a number of options tailored for use with Cook. For exact information
about the c_incl command, consult the on-line man(1) system (it should have been installed) or the Cook
Reference Manual.

Other tools are available. The commonest is to use the gcc -M option, which produces a list of include
files on the standard output. Because the gcc -M output is aimed at GNU Make, you will need an awk(1)
or sed(1) script to massage the output into a format suitable for Cook.

5.4 The Small Method
The easiest way to determine a file’s include dependencies is within the recipe’s ingredients.

%.o: %.c: [collect c_incl -api %.c]
{

cc -c %.c;
}

Note the second colon − the second set of dependencies are only evaluated after Cook has chosen to
activate the recipe (based on the first set). This does not guarantee that the file exists yet (it may have to be
generated by lex or yacc), which is why the --Absent-Program-Ignore option is required.

This method has the advantage of simplicity. It uses a single recipe which reads the way recipes usually
read, and does not contain any unusual constructs.

There are two problems with this method. The first is that it doesn’t scale well. When there are only a few
source files, the processing burden of running c_incl for every .c file every time Cook is invoked is hardly
noticeable. The c_incl program caches the results of its scans, so that is can minimize the length of time

Peter Miller Page 14

Cook User Guide

taken, and this does help a little. However projects with hundreds or thousands of files find even the cached
performance an unreasonable burden; it is constantly re-calculating something which has not changed from
one run to the next.

The second problem is that the c_incl program is run when the dependency graph is being built, not when it
is being walked. This means that the .c file (or a subordinate .h file) may have been out-of-date at the time.
When the graph is walked, it will have been regenerated, and the two sets of include files, those determined
by c_incl at graph building time, and those seen by cc at graph walking time, may not agree − which may
result in compile-time errors.

5.5 The Large Method
For projects with large numbers of files, hundreds or even thousands, it is necessary to re-calculate the
include file dependencies only when a .c file changes, or a subordinate .h file. Ideally, Cook should access
this information directly, rather than running a program to determine it or to fetch it.

The first task is to move the information which c_incl caches into a format that Cook can access directly;
Cook can then read in this information as it scans the cookbook. By making a separate ‘‘dependency’’ file
for each .c file, we can use existing Cook mechanisms to describe how to keep this file up-to-date.

The dependency file is generated and maintained as follows:
%.c.d: %.c
{

c_incl --no-cache %.c
"--prefix=’%.o "[target]": %.c’"
"--suffix=’set nodefault;’"
-o [target];

}

This recipe generates a file which contains a mini-cookbook describing the ingredients of the object file.
The dependencies are in terms of the object file because if any of the .h files change, it is the object file
which is out-of-date, not the .c file. The mini-cookbook itself is also described, so that if any of the source
files change, the mini-cookbook can be brought up-to-date again.

The recipe for the object file is less complicated than in the previous section, because the mini-cookbooks
supplement it:

%.o: %.c
{

cc -c %.c;
}

The only thing missing is how to get the information in the mini-cookbooks into the main cookbook. This
is done with an include directive in the cookbook itself, but a special form of it. The names of the mini-
cookbooks can be determined the same way as the names of the object files, and this allows the cookbook
fragments such as the following to be written:

object_files = [fromto %.c %.o [source_files]];
dependency_files = [fromto %.c %.c.d [source_files]];

#include-cooked [dependency_files]

The #include-cooked directive says to include the named files (there may be more than one) if the file
exist. Once the cookbook (and its includes) have been read in, the files included with this directive are
checked to see if they are up-to-date. If they are not, then they are re-cooked, and then Cook starts over
again; this time with up-to-date include dependencies.

The advantage of the method is that if the source files don’t change, the dependency information is not
recalculated, this can result in significant savings. Also, no processes are invoked if nothing has changed,
Cook reads the information directly. Because file opens are significantly cheaper than process invocations,
this results in a significant performance improvement.

Peter Miller Page 15

Cook User Guide

The disadvantage of this method is that it is harder to describe and harder to implement. To the uninitiated
the cookbook looks incomplete and overly complex.

Another problem is that if you delete an include file, Cook will complain that it is unable to derive the
dependency file because the include file is not present. Simply delete the dependency file and start again.
To avoid the problem, remove references to include files, and re-build, before deleting the include files.
This problem is seen from time to time, but does not present a huge problem in normal practice.

5.6 The Cascade Method
When large numbers of files are involved, it becomes clear that the more popular include files are being
scanned repeatedly. This can be un-necessarily time-consuming when a popular include file is touched, as
the dependency files of all .c files which reference it, even indirectly, must be re-calculated.

There is also a problem when you are attempting to perform heterogenous builds for multiple architectures
out of the same sources. This is typically done by inserting the architecture name into the object file path as
a directory. This presents another problem: nominating all of the architectures on the left-hand-side of the
regenerated dependency recipes. Especially if you add another one after the fact - now all the existing
dependency files must be recalculated, merely to add the new architecture.

An alternative is to scan each of the source files and include files once, and request cook to combine them
together at build time, rather than at dependence scan time. This is done using cascade recipes. These
recipes nominate additional ingredients (on their right-hand-size) if any of the files on their left-hand-size
appears in an ingredients list.

cascade foo.c = bar.h;
This recipe says that any recipe which has foo.c for an ingredient, also has bar.h for an ingredient.

This takes care of the heterogeneous case, because while the recipes remain specified in a simple manner,
viz:

%1/%0%.o: %0%.c
{

%1-gcc -o [target] -c %0%.c;
}

Any and all of them which compile foo.c will depend on bar.h from the cascade recipe. (This example
assumes that you are using gcc(1) in the usual way, and that your architecture names match the GNU target
names.)

The dependency files are generated and maintained in much the same way as before, except that you need
two: one for .c files and one for .h files:

%0%.c.d: %0%.c
set no-cascade

{
c_incl --no-cache --no-recurs %0%.c

"--prefix=’cascade %0%.c =’"
"--suffix=’;’"
-o [target];

}
%0%.h.d: %0%.h

set no-cascade
{

c_incl --no-cache --no-recurs %0%.h
"--prefix=’cascade %0%.h =’"
"--suffix=’;’"
-o [target];

}
You will also need to add the .h.d files to the #include-cooked lines, to ensure they are generated. If
there are any generated .c or .h files, you will need to mention these, too.

Peter Miller Page 16

Cook User Guide

5.7 Dependencies on Derived Files
If the relationship between a target and a derived ingredient appears only in a derived cookbook, it is likely
that a clean build (solely from primary source files) will fail. It is recommended that relationships such as
this be placed in a primary source cookbook. Cook looks for such dependencies, and will warn you about
them.

An example of this is commonly seen when using the -d option with yacc(1). If you have a separate
lexical analyzer (the usual reason for using -d) it will need to include the generated token definition file.

When you first add the yacc(1) grammar definition, Cook will generate both the .c and .h file from the
usual yacc recipes. It is only later, when you have cleaned out all derived files (including the dependency
files) that you may have problems. Where is it recorded that Cook needs to regenerate the token definition
file before it can determine the include dependencies of the lexical analyzer? (They were in a .d file which
was ‘‘cleaned’’ away.)

Cook will detect this situation at the first possible moment, and warn you. But placing the dependency in a
non-derived cookbook (e.g. Howto.cook) the warning will go away, and you will be able to do reliable
clean builds.

If you are convinced that Cook is always wrong in your case, it is possible to suppress this warning. Place
the line

set no-include-cooked-warning;
in your main cookbook, and the warning will not be issued.

Suppressing the warning could lead to problems. It is often better to add the ingredients recipe given in the
warning to the cookbook, even if you think it is redundant. This disables a single instance of the warning,
rather than all of them − subsequent valid instances will still be reported. (Implicit ingredients recipes,
rather than explicit ones, are a useful alternative if you have a consistent pattern.)

5.8 Renaming Include Files
A consistent problem when you have automatically generated include dependencies is that when you move
an include file, Cook complains that a required ingredient does not exist.

The easiest way to avoid this is to do a few things before you build again after moving the include file.

• Move the include file to the new name.

• Where the include file was from, put a file containing the line
#error "I’m not here"

to make Cook happy (the ingredient will exist), but also have the compiler generate an error if you
miss a reference to it.

• Edit all the references to the old include file name to reference the new name. Don’t worry if you
miss one or two, the previous step will catch it.

• Rebuild the program. Cook will automatically re-calculate all of the include dependences and then
recompile.

• If you missed one of the include file references, Cook will not complain, but the compiler will. (This
assumes you are using whole-project builds, as described in the Large Projects chapter.)

• Once the program builds cleanly, remove the fake old include file, because you know for certain that
there are no longer any references.

Peter Miller Page 17

Cook User Guide

6. Building Large Projects
This chapter covers some of the issues you may come across in building large projects. It gives a skeleton
for how you could use Cook to build a medium-to-large projects, and even covers some heterogenous build
issues. It is expected that you will use this chapter as a guide; your development environment, and the
shape of each individual project, mean that you will probably change this to suit your own needs.

The material in this chapter uses many, many features of Cook. If you are not familiar with Cook, you may
want to read the rest of this User Guide to get a good idea of Cook’s features and capabilities. Even if you
are familiar with Cook, you may need to refer to the language guide and built-in function descriptions from
time to time.

6.1 Whole Project Build
The skeleton given here builds the whole project as a single Cook invocation, even when the project
consists of tens thousands of individual source files. This is distinct from a build process which has Cook
recursively invoking itself in deeper directories, or a shell script doing much the same. Some of the
advantages of doing whole project builds will be discussed in a later section. For now it is sufficient to say
that experience has shown repeatedly that this method does scale to significant projects.

The first thing about a single build pass is that it happens relative to a single fixed place. The logical place
is the top of the project source tree3. This works well with the search_list functionality, mentioned below,
which simplifies the structure of private work areas.

6.1.1 Project Director y Str ucture
In the examples use in this chapter, the following directory structure is assumed:

Project
Howto.cook
library

source1.c
source2.c
etc...

include
api1.h
api2.h
etc...

program1
source3.c
source4.c
etc...

program2
source5.c
source6.c
etc...

Below the project directory is a library directory, which contains functions common to all of the
programs. All source files in this directory are to be compiled, and linked into a library. When the
programs are linked, they will all reference this library.

Next to the library directory is the include directory. This describes interfaces and data shared by the
project. Information which is private to the internals of the library or a programs belongs there, not in the
shared include space.

The rest of the directories below the project directory are programs to be built. The sources files in each are
to be compiled and linked, together with the common library, to form the programs. The name of the

3. If you ever want to use Aegis for configuration management, this is what Aegis expects.

Peter Miller Page 18

Cook User Guide

program will be taken from the directory.

This is a common enough picture, repeated for many projects. Your individual projects may vary in the
details; you may have more directory levels below the library directory, or all of your programs may be
below a single command directory. With simple changes to the examples given in this chapter, you will be
able to cope with just about any project structure.

6.1.2 File Manifest
There are many ways of discovering the source files you are working with. Many configuration
management systems are able to give you a list of them. For example, if you were using Aegis, you would
say

change_files =
[collect aegis -l cf -terse -p [project] -c [change]];

project_files =
[collect aegis -l pf -terse -p [project] -c [change]];

manifest =
[sort [change_files] [project_files]];

If you were using RCS, you could find all of the RCS files, and reconstruct the original filenames from
them, viz:

manifest =
[fromto ./%0RCS/%,v %0%

[collect find . -path "*/RCS/*,v" -print]
];

Or you could simply scan the directory tree:
manifest =

[fromto ./%0% %0%
[collect find . ! -type d -print]

];
This is will find too much, but what follows will not be altered by this. If you want to get more advanced,
however, it helps to have an accurate primary source file manifest.

6.1.3 Compiling C Sources
Recalling that the build will take place from the top of the source tree, this means that there it is going to
have to be directory components in the filenames in the command executed by Cook, and in the recipes
Cook is to use.

This chapter uses C examples, but the same techniques work just as will with Fortran or Groff, or anything
else. Most of it maps directly; you may need to adjust for your specific compiler behavior.

This chapter starts with the lowest level of building a project, the individual source files, and works its way
upwards, building on the examples until the whole project, including the library and all programs are linked
in a single pass.

So, when cooking C sources, you need recipes of the form
cc = gcc;
cc_flags = -g -Wall -O;

%0%.o: %0%.c
{

[cc] [cc_flags] -c %0%.c
-o [target];

}
The ‘‘%0’’ part of the patterns matches zero or more directory parts. If your compiler insists on putting the
output (.o) file into the current directory (the top level one) you will need to move it, after:

%0%.o: %0%.c
{

Peter Miller Page 19

Cook User Guide

[cc] [cc_flags] -c %0%.c;
mv %.o [target];

}
But, most existing sources will be assuming that most of their include files are in the same directory as the
source files. We need include options to indicate this. This is most easily done by using more pattern
elements

%1/%0%.o: %1/%0%.c
{

[cc] [cc_flags] -I%1 -c %0%.c
-o [target];

}
Or by using the dirname of the source file

%0%.o: %0%.c
{

[cc] [cc_flags] -I[dirname %0%.c] -c %0%.c
-o [target];

}
For structures more than 2 directories deep, these two produce different options. Depending on your
project structure, if you have deep directories, one will probably be more suitable than the other. One
elegant use for deeper directory structures is to reflect the C++ inheritance hierarchy directly in the
directory hierarchy.

The simple [cc_flags] variable is often not sufficient. Instead, you may want to replace it with
[variable_by_path "cc_flags" %0%.c] which will look for several variables (all prefixed with
"cc_flags") based on the name of the source file. See the Functions Library chapter for a description of this
function.

The common include file will also need to be searched. Because of where the command is issued, it is
rather simple to add the include directory, viz:

%0%.o: %0%.c
{

[cc] [cc_flags]
-I[dirname %0%.c] -Iinclude
-c %0%.c -o [target];

}
It is important to note that all of these recipes, and the commands they execute, are independent of the
location of the source file. It is possible to customize the cc-flags used, based on the target file, or even
the directory containing the file, without compromising the generality of the recipe4.

6.1.4 Tracking Include Dependencies
When it comes to tracking include dependencies using c_incl, you need to remember, again, that the Cook
happens from a single place. All of the recipes that c_incl writes for you must be relative to that place.

Continuing our example, and assuming we are using the cascade include method described in the previous
chapter, we need include dependency files which look similar to

cascade program1/source3.c =
include/api1.h
;

Working backwards, we need to create the dependency file using the following recipe:
%0%.c.d: %0%.c

set nocascade
{

c_incl -nc -ns -nrec
-I[dirname %0%.c] -Iinclude

4. Hint: use a function, and pass [target] as the argument.

Peter Miller Page 20

Cook User Guide

%0%.c
-prefix "’cascade %0%.c =’"
-suffix "’;’"
-o [target];

}
For other source languages, you will need to use the c_incl --language option.

The dependency files need to be included in the magic way so that Cook will build them again if they are
out of date. This method needs the source file manifest to know their names.

dep-files =
[addsuffix .d

[match_mask %0%.c [manifest]]
[match_mask %0%.h [manifest]]

];
#include-cooked [dep-files]

These files will only be re-calculated if they are out of date; they are small and often zero-length, and so are
usually very quick to read, adding little to the time it takes to read the cookbook.

Notice that adding a new source file will automatically cause it to be scanned for include dependencies,
without modification to the cookbook.

6.1.5 Linking Librar ies
To link libraries with a generic recipe, you need a generalized way of specifying their contents. A little
trickery with constructed variable names does the job:

%/lib%.a: [[target]_obj]
set unlink

{
ar cq [target] [[target]_obj];

}
The right-hand-side of recipes has late binding, and we use the name of the target to tell us the name of the
variable which holds all of the object files. Assigning this variable looks bizarre, but it looks more logical
as you have more and more of them...

library/liblibrary.a_obj =
[fromto %0%.c %0%.o

[match_mask "library/%0%.c" [manifest]]
];

The great thing about this construct is that you can build a loop, using Cook’s loop statement, that assigns a
variable for each of your libraries, if you have more than one.

Notice that adding a new library source file will automatically cause it to be compiled into the library,
without modification to the cookbook.

6.1.6 Linking Commands
We’ll use a similar trick for each of the programs you want to link... First the link line

bin/%: [[target]_obj]
set mkdir

{
[cc] -o [target] [[target]_obj];

}
Then the objects variable. Note how we add a library filename here, this will still only use the library
portions actually referenced, not the whole library, so it won’t bloat your programs.

bin/program_obj =
[fromto %0%.c %0%.o

[match_mask program/%0%.c [manifest]]
]
library/liblibrary.a
;

Peter Miller Page 21

Cook User Guide

Notice that adding a new program source file will automatically cause it to be compiled and linked into the
program, without modification to the cookbook.

The loop construct tends to obscure things, which is why the essential assignment was given first. This
next fragment shows the whole loop.

programs =
[fromto %/main.c %

[match_mask %/main.c [manifest]]
];

program_list = [programs];
loop
{

program = [head [program_list]];
if [not [count [program]]] then

loopstop;
program_list = [tail [program_list]];

bin/[program]_obj =
[fromto %0%.c %0%.o

[match_mask [program]/%0%.c
[manifest]

]
]
library/liblibrary.a
;

}
And now tell Cook you actually want it to do something, like build all of the programs...

all: [addprefix bin/ [programs]];

Notice they way the commands variable is constructed: just adding a new command (and its main.c file)
will automatically cause it to be built, without modification to the cookbook.

6.2 Private Wor k Areas
This chapter is about large projects, but large projects usually means large numbers of developers. The
directory structure and cookbook presented so far does not immediately lend itself to use by multiple
developers.

6.2.1 Directory Str ucture
The method suggested here uses Cook’s search_list functionality, which nominates a search list of
directories that Cook looks in to find the files named in the recipes. This can be used to overlay a private
work area on top of a master repository.

Repository
main.c
part1.c

Work Area
main.c

part2.c

Combined View
main.c
part1.c
part2.c

When recipes are run, the results are written into the work area, which means that the repository can be
completely read-only.

It follows from this, that the directory structure of the work area exactly parallels the directory structure of

Peter Miller Page 22

Cook User Guide

the repository. Except you only check out files into your work area that you actually need to change.

6.2.2 Finding the Cookbook
Setting the search list is done with a simple assignment. In your work area, create a simple Howto.cook
file, containing only 3 lines:

set mkdir;
search_list = . /project/repository ;
#include /project/repository/Howto.cook

You only use this file if you don’t need to modify the cookbook itself. You can make it work always, even
if you are modifying the cookbook, by giving the cookbook a different name (main.cook), and changing
Howto.cook to always read

set mkdir;
search_list = . /project/repository ;
#include [resolve main.cook]

The [resolve] function walks the search list, looking for the file5. This gives you access to Cook’s
internal search mechanism. However, we also need to modify each of the recipes to take the search list into
account.

The unexplained mkdir flag is used to request that directories be automatically created before recipe
bodies are run. This is common for large projects, where the source files are structured into several sub-
directories, rather than all lumped together in the one place. This may be necessary, for example, if a .c
file in the repository needs to be recompiled because a .h file in the work area has been changed.

6.2.3 File Manifest
The files could be in either of two places. You need to merge them. Most configuration management tools
do this for you; in this example we’ll scan the directory trees again. Fortunately, Cook comes with a tool to
do this efficiently.

all_files_in_. = ;
#include manifest.cook
manifest = [all_files_in_.];

/* This reduces re-scanning to a minimum. */
set fingerprint;

%0manifest.cook: ["if" [in "%0" ""] "then" "." "else" "%0"]
set mkdir

{
cook_bom /* Bill Of Materials */

[addprefix ’--dir=’ [search_list]]
[need] [target] ;

}
At the end of this fragment, the manifest variable contains a complete list of all files in the directory
tree(s). This variable may then be taken apart with the match_mask function to build ingredients lists.

The if function is different to the if statement. It allows you to select one of two values (the then part or
the else part) without creating a dummy variable. In this example, it would be impossible to create a
dummy variable. Remember to quote the if, then and else strings, otherwise Cook will think they are
if, then and else keywords, and give you a syntax error.

The constructed manifest.cook files work for both the top-level directory and individual sub-directories.

6.2.4 Compiling C Sources
The C compilation recipe needs to be changed to read...

%0%.o: %0%.c
{

5. The search list defaults to just dot (the current directory) if not set.

Peter Miller Page 23

Cook User Guide

[cc] [cc_flags]
[prepost "-I" /[dirname %0%.c] [search_list]]
[prepost "-I" "/include" [search_list]]
-c [resolve %0%.c]
-o [target];

}
This ensures that the rights places are searched for include files.

The prepost function is used to add a prefix and a suffix to each of the remaining strings. This is very
useful when constructing filenames, as are the addprefix and addsuffix functions.

6.2.5 Tracking Include Dependencies
A similar change needs to be made to the include dependencies recipe...

%0%.c.d: %0%.c
set nocascade

{
c_incl -nc -ns -nrec

[prepost "-I" /[dirname %0%.c] [search_list]]
[prepost "-I" "/include" [search_list]]
[resolve %0%.c]
-prefix "’cascade %0%.c =’"
-suffix "’;’"
[addsuffix "-rp=" [search_list]]
-o [target];

}
Note that the form of the output of this recipe does not change. This means that the recipes it writes work
ev en if you subsequently copy a file from the repository to the work area, or uncopy one.

6.2.6 Linking Librar ies
The library recipe needs few modifications.

%/lib%.a: [[target]_obj]
set unlink

{
ar cq [target] [resolve [[target]_obj]];

}
The variable assignment given above requires no modifications.

6.2.7 Linking Commands
The command linking recipe requires few modifications.

bin/%: [[target]_obj]
set mkdir

{
[cc] -o [target] [resolve [[target]_obj]];

}
The variable assignment needs no modifications.

6.3 Whole Project Build Advantages
The advantage of using a whole project build is that the dependency graph is complete, and the order of
traversal may be freely determined by Cook. Breaking the build into fractured segments denies Cook
access to the whole graph, and dictates the order of traversal to one which, in the light of the entire graph,
would be incorrect.

It greatly simplifies the creating of work areas for developers, by using Cook’s search_list functionality.

A whole project build also permits the cook -continue option to work in the presence of a wider range of
errors.

Peter Miller Page 24

Cook User Guide

The whole project build also permits the cook -parallel option to parallelize more operations.

6.4 Heterogenous Build
Large projects frequently involve numerous target architectures. This may be in the form a multiple native
compilations, performed in suitable hosts, or it may take the form of cross-compilation.

In this example, we assume that the GNU C Compiler (GCC) is being used. When GCC is installed as a
cross compiler, the command names (cc, as, ld, etc) are installed with the architecture name as a prefix.
For consistency, the native compiler is installed with its own architecture names as a prefix, in addition to
the more commonly used gcc command. This example will exploit this normal installation practice.

6.4.1 Cross Compiling C Sources
In order to support cross compiling, the C compilation recipe needs to be changed to read...

%1/%0%.o: %0%.c
host-binding [defined-or-null %1-hosts]

{
%1-gcc [cc_flags]

[prepost "-I" /[dirname %0%.c] [search_list]]
[prepost "-I" "/include" [search_list]]
-c [resolve %0%.c]
-o [target];

}
This uses the first directory element of the target to be the architecture name. This allows multiple
architectures to be compiled in the same source tree, simultaneously.

Because of the practice of installing a duplicate GCC in the same form as the cross compilers, this same
recipe continues to work for native builds.

The host-binding line tells Cook to run the command on one of the hosts nominated in a variable named for
the architecture (or as a native cross-compiler of no such variable exists). (The defined-or-null
function is available in the ‘‘functions’’ library distributed with Cook.)

Remembering these architectures follow the GNU convention, these lines could read
i386-linux-hosts = fast faster fastest ;

This will do two things for you: first, it will always execute linux compiles on linux hosts even when Cook
is not executed on one; second, it will use more than one of them when you use the --parallel option.

It is possible to use implicit ingredients recipes to say that all object of a given architecture depend on a
magic include file, e.g.

i386-linux/%0%.o: include/linux-special.h;
could be used to say that all Linux object files depend on this include file. (This is a sledge-hammer
approach, and a more subtle method is preferable, but it is sometimes required.)

6.4.2 Tracking Include Dependencies
Because of the cascade form of include dependency, there is no need to do anything different for include
dependencies, even if you add another architecture some time in the future.

6.4.3 Linking Librar ies
The library recipe needs few modifications.

%1/%/lib%.a: [%/lib%.a_obj]
set unlink

{
%1-ar cq [target] [resolve [%/lib%.a_obj]];

}
The variable assignment given above requires no modifications.

Peter Miller Page 25

Cook User Guide

6.4.4 Linking Commands
The command linking recipe requires few modifications.

%1/bin/%: [bin/%_obj]
set mkdir

{
%1-gcc -o [target] [resolve [bin/%_obj]];

}
The variable assignment needs no modifications.

6.4.5 What to Build
The list of what to build becomes more interesting. You can nominate any and all architectures for which
you have cross compilers, or native compilers and native hosts.

all:
[addprefix i386-linux/bin/ [commands]]
[addprefix sparc-linux/bin/ [commands]]
[addprefix sparc-solaris2.0/bin/ [commands]]
[addprefix m68k-sunos4.1.3/bin/ [commands]]
;

All of these architectures will be built in a single Cook invocation, on appropriate machines if necessary.
The use of --continue and --parallel work over the entire scope of the build.

6.5 Installing Things
The biggest hassle is that the install(1) command, which should know how to do most installation tasks, has
completely incompatible interfaces on the various platforms. This is why the GNU autoconf system comes
with an install-sh script, which faithfully emulates the BSD options. Once you have a reliable command
line interface to an install(1) program (be it perl or shell) you can then write sensible installation
cookbooks.

If we have a list of commands, we would install as follows:
prefix = /usr/local;
bindir = [prefix]/bin;
install = install;

install: [addprefix [bindir]/ [commands]];
[bindir]/%0%: bin/%0% bin/%0.mkdir
{

[install] -m 755 bin/%0% [bindir]/%0%;
}

That magic bin/%0.mkdir file is used to record that the destination directory exists. While you can
often assume this, it is not always true when you are building things like RPM packages.

bin/%0.mkdir:
{

[install] -d [bindir]/%0
set errok;

touch [target];
}

The alternative is to use
set mkdir;

at the top of your cookbook. This creates directories for targets before rules are run. The install recipe then
reads

set mkdir;

[bindir]/%0%: bin/%0%
{

Peter Miller Page 26

Cook User Guide

[install] -m 755 bin/%0% [bindir]/%0%;
}

because there is no need for the ‘‘.mkdir’’ recipe. This, however giv es you less crontrol over the
directories permission modes, and it doesn’t help when you want to create empty directories as part of the
install. Use the appropriate technique for your needs.

6.6 Miscellaneous
This section contains assorted material that covers a variety of topics. (As the manual expands, it will
probably be moved somewhere else.)

6.6.1 Lots of Dependencies
There are cases where you may want to nominate a whole category of files as depending on something else.
For example, you may want to say that all your fubar-language sources depend on your fubar compiler You
could say something such as

cascade [match_mask %0%.fubar [manifest]] = fubarcompiler;
but recall that everything which has a .fubar file as an ingredient will also have fubarcomplier as an
ingredient. This may not be what you wanted.

Recall, also, that compiler recipes carry specific information. You could more specifically nominate the
compiler by saying

%0%.o: %0%.fubar: fubarcompiler
{

fubarcompiler -c %0%.fubar -o [target];
}

which would be much more selective about which uses of .fubar files also depend on
fubarcompiler.

There are times when writing cross-compilation recipes when you want to nominate an operating-system-
specific include file for all of the object files:

%1/%0%.o: %0%.c
{

/* general cross compiler recipe */
%1-gcc -c %0%.c -o [target];

}
/* All windows NT objects depend on this include file */
i386-NT/%0%.o: winnt.h;

You can also use gates to make you recipes more selective. The gating expression may be just about
anything, but is often a pattern match or simple set membership.

%.o: %.c
if [in [target] foo.o bar.o]

{
/* foo.o and bar.o are magic */
cc -DMAGIC [cc_flags] -c %.c;

}
The gate is most easily read as ‘‘if (this condition) use this recipe’’.

6.6.2 Error Processing
Cook stops processing a recipe at the first error. If the error occurs when constructing a command to be
executed, the command is not executed. If a recipe body contains more than one command, and one of
them gets an error (and doesn’t hav e the errok flag set) the rest of the command will not be executed.

In addition, if an error occurs while executing a recipe body, the targets of the recipe will be deleted (on the
assumption that they are probably only partially completed, or otherwise defective). To override this
behavior, use the precious flag.

Peter Miller Page 27

Cook User Guide

6.6.3 NFS
A perennial problem for building projects over networks is that the clocks don’t match. If you use the time-
adjust flag, this problem is largely solved. The simplest method is to put

set time-adjust;
at the top of your cookbook.

File fingerprints, while not directly relevant to NFS, can offer significant performance improvements, as
they can eliminate many cases of unnecessary re-compilation. To turn them on, use

set fingerprint;
at the top of your cookbook. See below for more discussion of fingerprints.

6.6.4 Symbolic Links
Symbolic links are followed to the actual file, when determining file modification times. The modification
time of the symbolic link itself is not used. This means that ‘‘symlink farms’’ can be used when
constructing work areas, particularly when you want functionality more complex than search_list can
provide.

6.7 File Finger prints
Cook has the ability to supplement the last-modified time-stamps the operating system supplies for each file
with a ‘‘fingerprint’’. This is a cryptographically strong checksum, with an mind-bogglingly low
probability that two different files will have the same fingerprint.

When Cook needs to know if a file has changed, it looks at the last-modified time-stamp. If it has changed
since the last time the fingerprint was calculated, the fingerprint is re-calculated. If the fingerprints match,
Cook knows the file contents are unchanged, and uses the old time-stamp, and also suppress any recipe
actions which would otherwise happen if the file contents had actually changed. (Cook remembers the both
the new and old time-stamps, so that it can be efficient about re-calculating checksums and still use the old
time stamp for out-of-date calculations.)

When recipe bodies are run, Cook knows that the target(s) have been modified, so it doesn’t need to re-
examine the operating system’s idea of the last-modified time-stamp, it simply re-fingerprints.

It is tempting to try to achieve something similar by writing recipe bodies which only over-write their
targets if they actually changed. E.g.

%.o: %.c
{

if [exists [target]] then
{

[CC] -o %.tmp -c %.c;
if cmp %.tmp %.o\;
then mv %.tmp %.o\;
else rm %.tmp;

}
else

[CC] -o %.o -c %.c;
}

However, this will not work (whether or not you have fingerprints turned on). Largely as a defense against
NFS time synchronization problems and stupid systems with very coarse file time-stamps, Cook ‘‘knows’’
that because the recipe body was run the target ‘‘changed’’, causing all down stream dependencies to be
considered out-of-date.

In addition, this recipe would leave the last-modified time-stamp out-of-date if the file was unchanged.
This means the recipe would trigger again in the next Cook execution, negating many of the intended
savings.

Fingerprints are intended for this purpose, but have the advantage of leaving the last-modified time-stamps
correct, and they need to do half the I/O that the cmp(1) command does. Also, all down stream dependent

Peter Miller Page 28

Cook User Guide

files are touched, to ensure their last-modified time-stamps are also consistent. Naturally, if they needed to
be re-built for some other reason, then they would be re-built, not simply touched.

While there is some overhead in initially calculating the fingerprints for a new work area, they repay that
overhead many times over. This is especially true if your system has generated code in it, particularly
generated include files, but there are also savings for simpler, smaller projects.

6.7.1 Tur ning Finger prints On
To turn fingerprints on, you need to add the lines

set fingerprint;
set time-adjust;

to your cookbook. That second line is no essential, but it corrects last-modified time-stamps when NFS
time synchronization problems would otherwise cause inconsistent behavior.

While it is possible to turn fingerprints on for a subset of the files in your project, it is not as straightforward
as it may seem. There is no way to bind the fingerprint request to a single file, only to recipes, so you need
to use the ‘‘set fingerprint’’ recipe flag on all recipes between the relevant source file and the
ultimate target. This tends to be messy.

6.7.2 Vanishing Dependencies
It is quite common that you need to re-build a file if one of the dependencies is removed. Usually, this is
quite hard to detect, because Cook has trouble seeing something that isn’t there, compared to the previous
execution. However an ingenious method has been described by Gilles Lamiral <lamiral@mail.dotcom.fr>
which ‘‘remembers’’ though a file:

function contents-remember =
{

/* @1 = name of contents file */
/* @2..N = the value of [need] */
[write [args]];

}
function contents-changed =
{

/* @1 = name of contents file *
/* @2..N = the value of [need] */
if [not [exists [resolve [@1]]]] then

return 0;
local old-contents = [collect_lines cat [resolve [@1]]];
/* return 0 if nothing disappeared, >0 if did disappear */
return [count [stringset [old-contents] - [tail [arg]]]];

}
libfred.a libfred.contents: [fred_obj]

set ["if" [contents-changed libfred.contents [fred_obj]]
"then" forced]

unlink
{

ar cq [target] [resolve [fred_obj]];
[contents-remember libfred.contents [fred_obj]];

}

Note: because the set clause is evaluated when the target is evaluated, the [need] variable is not available.
In this example, you must have calculated the final value of [fred_obj] before the recipe appears in the
cookbook. The evaluation of the set clause also limits the application of this technique to explicit recipes; it
will not work for implicit (pattern) recipes, because the value of the pattern elements is not known at the
time the set clause is evaluated.

Peter Miller Page 29

Cook User Guide

6.8 Coping with Links
You will notice that the deafult operation of Cook copes with links (hard links and symbolic links) rather
poorly. For example, the recipe

two: one
{

ln one two;
}

will always conclude that file two is out-of-date. This is bacause files one and two have exactly the same
time stamp.

If you specify a weaker time constraint, Cook will allow this kind of recipe to be written, and not conclude
the files is always out of date:

two: one(weak)
{

ln one two;
}

The ‘‘(weak)’’ on the end of the ingredient name tells Cook to use the weak edge type, rather than the
strict edge type.

This technique is useful for symbolic links, too.

One other thing which can be very useful for both link types, but particularly symbolic links to directories,
is the ‘‘set unlink’’ recipe flag.

two: one(weak)
set unlink

{
ln -s one two;

}
This removes the target (if necessary) before the recipe body is run.

6.9 Coping with Version Stamps
In some systems, the version stamp is regenerated for every build, but you don’t want to relink zillions of
executables just becaise the version stamp has changed, but nothing else has.

By using the ‘‘(exists)’’ edge type, you can tell Cook that an ingredient is needed for a given target, but
that it should never be considered to make the target out-of-date. For example:

#include "c"
all: prog1 prog2;
version.c:

set forced
{

date "’+#define VERSION \"%C\"’" > [target];
}
prog1: prog1.o mylib.a version.o(exists)
{

gcc -o [target] [need];
}
prog2: prog2.o mylib.a version.o(exists)
{

gcc -o [target] [need];
}

This cookbook will generate a new version.c file every time that Cook is run, and thus a new version.o file.
However, the prog1 and prog2 files will not be re-linked unless something else changed as well.

Peter Miller Page 30

Cook User Guide

7. Cookbook Language Definition
This chapter defines that language which cookbooks are written in. While some of its properties are similar
to C, do not be misled.

A number of sections appear within this chapter.

1. The Lexical Analysis section describes what the words of the cookbook language look like.

2. The Preprocessor section describes the include mechanism and the conditional compilation
mechanism.

3. The Syntax and Semantics section describes how words in the cookbook may be combined to form
valid constructs (the syntax), and what these constructs mean (the semantics).

The sections are laid out in the recommended reading order.

7.1 Lexical Analysis
The cookbook is made of a number of recipes, which are in turn made of words. This section describes
what constitutes a word, and what does not.

7.1.1 Words and Keywords
Words are made of sequences of almost any character, and are separated by white space (including end-of-
line) or the special symbols. Cook is always case sensitive when reading cookbooks.

The characters :;={}[] are the special symbols, and are words in themselves, needing no delimiting.

In addition to the special symbols, some words, known as keywords, hav e special meaning to cook. The
keywords are:

else host-binding loopstop single-thread
fail if return then

function loop set unsetenv
You will meet the keywords in later sections.

7.1.2 Escape Sequences
The character \ is the escape character. If a character is preceded by a \ any specialness, if it had any, will
be removed. If it had no specialness it may have some added.

This means that, if you want to use if as a word, rather than a keyword, at least one of its characters needs
to be escaped, for example \if.

The escape sequences which are special are as follows.

\b The backspace character
\f The form feed character
\n The newline or linefeed character
\r The carriage return character
\t The horizontal tab character

\nnn A character with a value of nnn, where
nnn is an octal number of at most 3
digits.

An escaped end-of-line is totally ignored. It should be noted that a cookbook may not have any non-
printing ASCII characters in it other than space, tab and end-of-line.

7.1.3 Quoting
Words, and sections of words, may be quoted. If any part of a word is quoted it cannot be a keyword.

This means that, if you want to use if as a word, rather than a keyword, at least one of its characters needs
to be quoted, for example ’if ’.

Peter Miller Page 31

Cook User Guide

Both single (’) and double (") quotes are understood by cook, and one may enclose the other. If a quote is
escaped it does not open or close a quote as it usually would.

Cook does not like newlines within quotes. This is a generally good heuristic for catching unbalanced
quotes. If you really want a newline within a string, use the \n escape.

7.1.4 Comments
Comments are delimited on the left by /*, and on the right by */. If the / character has been escaped or
quoted, it doesn’t introduce a comment. Comments may be nested. Comments may span multiple lines.
Comments are replaced by one logical space.

7.2 Preprocessor
The preprocessor may be thought of as doing a little work before the Syntax and Semantics section has its
turn.

The preprocessor is driven by preprocessor directives. A preprocessor directive is a line which starts with a
hash (#) character. Each of the preprocessor directives is described below.

7.2.1 include
The most common preprocessor directive is

#include "filename"

This preprocessor directive is processed as if the contents of the named file had appeared in the cookbook,
rather than the preprocessor include directive.

The most common use of the #include directive is to include system cookbooks. For example, many small
programs can be developed using the following simple cookbook:

#include "c"
#include "program"

The standard places to search are first any path specified with the -Include command line option, and then
$HOME/.cook and then /usr/local/share/cook in that order.

7.2.2 include-cooked
This directive looks similar to the one above, but do not be deceived.

#include-cooked filename...
You may name several filenames on the line, and they may be expressions.

The search path used for these files is the same as that used for other cooked files, see the search_list
variable and the resolve built-in function for more information. The order in which you set the search_list
and the #include-cooked directives is important. Always set the search_list variable first, if you are going
to use it.

Files included in this way are checked, after they hav e been read, to make sure they are up-to-date. If they
are not, cook brings them up-to-date and then re-reads the cookbook and starts over.

You will only get a warning if the files are not found. Usually, cook will either succeed in constructing
them, in which case they will be present the second time around, or a fatal error will result from attempting
to construct them. Note that it is possible to go into an infinite loop, if the files are constantly out-of-date.

The commonest use of this construct is maintaining include file dependency lists for source files.
obj = [fromto %.c %.o [glob *.c]];

%.o: %.c
{

[cc] [cc_flags] -c %.c;
}

%.c.d: %.c
{

Peter Miller Page 32

Cook User Guide

c_incl -prefix "’%.o "[target]": %.c’" -suffix "’;’"
-no-cache %.c > [target];

}

#include-cooked [fromto %.o %.c.d [obj]]
This cookbook fragment shows how include file dependencies are maintained. Notice how the .d files have
a recipe to construct them, and that they are also included. Cook will bring them up-to-date if necessary,
and then re-read the cookbook, so that it is always working with the current include dependencies. (The
doubly nested quotes are to insulate the spaces and special characters from both cook and the shell.)

You could use gcc -MM if you prefer (you will need some extra shell script). The c_incl program
understands absent files better but doesn’t understand conditional compilation, and gcc understands
conditional compilation but gives fatal errors for absent include files. Warning: If you are using search_list
you must use c_incl. Gcc returns complete paths, which will result in cook failing to notice when an
include file is copied from later in the search list to earlier, and then modified.

There are times when you don’t want the #include-cooked directives to be acted upon. You can over-
ride it using the --no-include-cooked command line option, but it is often easier to use the
[command-line-goals] variable, and say something like

#if [not [match %1clean%2 [command-line-goals]]]
#include-cooked [fromto %.o %.c.d [obj]]
#endif

This construct means that whenever an explicit ‘‘clean’’ goal (or similar) is requested, the #include-
cooked lines will not be performed. This is sensible, because cleaning actions usually remove
dependency files; there is no point making sure they are up-to-date first.

7.2.3 include-cooked-nowarn
This directive is almost identical to the one above, but no warning is issued for absent files.

#include-cooked-nowarn filename...
You may name several filenames on the line, and they may be expressions.

7.2.4 if
The #if directive may be used to conditionally pass tokens to the syntax and semantics processing.
Directives take the form

#if expression1
something1
#elif expression2
something2
#else
something3
#endif

There may be any number of elif clauses, and the else clause is optional. Only one of the somethings
will be passed through.

7.2.5 ifdef
This directive takes a similar form to the if directive, but with a different first line:

#ifdef variable
This is syntactic sugar for

#if [defined variable]
This is of most use in bracketing #include directives.

7.2.6 ifndef
This directive takes a similar form to the if directive, but with a different first line:

#ifndef variable
This is syntactic sugar for

#if [not [defined variable]]
This is of most use in bracketing #include directives.

Peter Miller Page 33

Cook User Guide

7.2.7 pragma
This is for the addition of extensions.

7.2.7.1 once
This directive is to ensure that include files in which it appears are included exactly once.

This directive has the form
#pragma once

7.2.7.2 unknown extensions
Any pragma extensions not recognized will be ignored.

Peter Miller Page 34

Cook User Guide

7.3 Syntax and Semantics
The syntax is described using ‘‘train track’’ diagrams, with prose descriptions of the related semantics.

7.3.1 Overall Structure
The general form of the cookbook is defined as

cookbook

stmt

function

A cookbook is defined as a sequence of statements. Each statement statement is executed. For a definition
of what it means when a statement is executed, see the individual statement definitions.

The nonterminal symbol statement will be defined in the sections below.

Please note that a statement is not always evaluated when is is read, but at specific, well defined times.

7.3.2 The Compound Statement
A nonterminal symbol which will be referred to below is the compound_statement symbol, defined as
follows:

cstmt
{

stmt

}

The compound statement may be used anywhere a statement may be, and in particular

stmt
cstmt

7.3.3 Var iables and Expressions
Cook provides variables to the user to simplify things.

7.3.3.1 The Assignment Statement
It is possible to assign to variables with the following statement.

stmt
expr = exprs ;

When this statement is executed, the variable whose name the left hand expression evaluates to will be
assigned the value that the right hand expression list evaluates to.

For example:
program_obj = foo.o bar.o baz.o;

Note: It is possible to over-ride the value of built-in functions and variables with this statement. This will
not produce an error message, however it is usually not desirable as it will change the meaning of the rest of
your cookbook.

7.3.3.2 The Assign-Append Statement
It is possible to append to the value of variables with the following statement.

Peter Miller Page 35

Cook User Guide

stmt
expr += exprs ;

When this statement is executed, the variable whose name the left hand expression evaluates to will have its
value appended by the value that the right hand expression list evaluates to. Expression values are lists of
words, appending means to append to the word list; it does not mean appending to the last string of the
value.

For example:
program_obj += [glob "deeper/*.o"];

Note: It is possible to over-ride the value of built-in functions and variables with this statement. This will
not produce an error message (unless evaluating them with no arguments is an error), however it is usually
not desirable as it will change the meaning of the rest of your cookbook.

7.3.3.3 The Setenv Statement
It is possible to assign to environment variables with the following statement.

stmt
setenv expr = exprs ;

When this statement is executed, the environment variable whose name the left hand expression evaluates
to will be assigned the value that the right hand expression list evaluates to. It is an error if the variable
does not already exist.

For example:
setenv PATH = [getenv PATH]":"[getenv HOME]/more-bin;

7.3.3.4 The Setenv-Append Statement
It is possible to append to the value of an environment variables with the following statement.

stmt
setenv expr += exprs ;

When this statement is executed, the environment variable whose name the left hand expression evaluates
to will have its value appended by the value that the right hand expression list evaluates to. Evaluation is
analogous to the assign-append statement.

For example:
setenv FRED += nurk;

7.3.3.5 Expressions
Many definitions make reference to the expr, elist and exprs nonterminal symbols. These are defined as
follows.

The elist is a list of at least one expression,

elist
expr

whereas the exprs is a list of zero or more expressions.

exprs

elist

An expression is composed of words, variable references, function invocations, or concatenation of
expressions. The concatenation is implied by abutting the two parts of the expression together, e.g.:

Peter Miller Page 36

Cook User Guide

"[fred]>thing" is an indirection on fred concatenated with the literal word ">thing".

expr
word

[elist]

expr cat expr

When an [elist] expression is evaluated, the elist is evaluated first. If the result is a single word, then a
variable of that name is searched for. If found the value of an expression of this form is the value of the
variable.

If there is no variable of the given name, or the elist evaluated to more than one word, the first word is taken
to be a built-in function name. If there is no function of this name it is an error.

The cat operator works as one would expect, joining the last word of the left expression and the first word
of the right expression together, and otherwise leaving the order of the expressions alone. One usually uses
the trivial case of single word expressions. For more complex concatenations, see the [catenate] and [join]
built-in functions.

7.3.4 Recipes
A number of forms of statement are concerned with telling cook how to cook things. There are three
forms, the explicit recipe, the implicit recipe, and the ingredients recipe.

7.3.5 The Explicit Recipe Statement
The explicit recipe has the form

stmt
elist : exprs flags gate cstmt use

The target(s) of the recipe are to the left of the colon, and the ingredients, if any, are to the right. The
statements, usually commands, which are to be performed to (re)construct the target(s) are contained in the
compound statement. The expressions are only evaluated into words when the recipe is executed. Recipe
bodies may have local variables.

For example:
program: [program_obj]
{

/* use [need] rather than [program_obj] in case
there are additional ingredients recipes
(see below). */

cc -o program [need];
}

The target expressions and recipe flags are evaluated when the recipe is instantiated. The ingredients
expressions and the recipe gate are evaluated at graph building time. The body and use statements are
executed at graph walking time.

The recipes also take a ‘‘host-binding’’ attribute. See the chapter on Cooking in Parallel for how this is
attribute is written and used. If the host binding flag is given, it is always used, even when not cooking in
parallel. If it is not given and you are cooking in parallel, it will default to the contents of the
[parallel_hosts] variable.

7.3.5.1 Recipe Flags
The flags are defined as follows.

Peter Miller Page 37

Cook User Guide

flags

set exprs

Recipe flags are evaluated when the recipe targets are evaluated. At this time, none of the [target], [targets],
[need] or [younger] variables are set, and neither are any of the pattern matches (%, %1, etc) available.

A number of flags may be used

clearstat The last-modified time of the files named in executed commands will be removed from
the last-modified time cache. This is essential for commands such as rm(1) and mv(1).

noclearstat Do not clear entries from the last-modified time cache. This is usually the default.

default If no targets are specified on the command line, the first recipe with the default flag will
be used. Not meaningful for implicit recipes.

nodefault If no targets are specified on the command line, and there are no recipes with the default
flag set, the first recipe without the nodefault flag will be used. Not meaningful for
implicit recipes.

errok Exit status from commands will be ignored.

noerrok If the noerrok flag is specified, the commands within the actions bound to the recipe must
always be successful. This is usually the default.

fingerprint File fingerprints are used to supplement last-modified time information about files, which
is how cook determines if a file is out-of-date and needs to be cooked. If a file appears to
have changed, from the last-modified time, it is fingerprinted, and the fingerprint
compared with what it was in the past. The file has changed if and only if the fingerprint
has also changed. A cryptographically strong hash is used, so the chance of a file edit
producing an identical fingerprint is less than 1 in 2**200. Fingerprinting is disabled by
default.

nofingerprint Do not use file fingerprinting. This is usually the default.

forced If the forced flag is specified, the actions bound to the recipe will always be evaluated.

noforced If the noforced flag is specified, the actions bound to the recipe will be evaluated when
the recipe is logically out-of-date. This is usually the default.

gate-after-ingredients This flags causes the recipe gate to be evaluated after the ingredients have been
evaluated and determined to be cookable. This is usually the default.

gate-before-ingredients This flag causes the recipe gate to be applied before the ingredients are evaluated
and determined to be cookable. This is useful if the ingredients evaluation itself needs to
be conditional.

implicit-ingredients
This flag may be used to specify that a recipe’s ingredients may be satisfied by implicit
recipes. This is usually the default.

no-implicit-ingredients
This flag may be used to specify that a recipe’s ingredients may not be satisfied by
implicit recipes; this is of most use with utilities such as RCS where the recipe writer
knows that the ingredients cannot be constructed.

include-cooked-warning This flag may be used to enable warnings when the relationship between a target
and a derived ingredient appears only in a derived cookbook. This is usually the default.
This flag is only meaningful at the cookbook level, it is not meaningful for individial
recipes or commands.

Peter Miller Page 38

Cook User Guide

no-include-cooked-warning This flag may be used to disable warnings when the relationship between a
target and a derived ingredient appears only in a derived cookbook. This flag is only
meaningful at the cookbook level, it is not meaningful for individial recipes or
commands.

ingredients-fingerprint This flag may be used to cause recipes to re-trigger when their ingredients list
chages in any way. This is especially useful, for example, in causing libraries to be
rebuilt when a content source file is removed.

no-ingredients-fingerprint Cancel any active ingredients-fingerprint setting.

match-mode-cook Use native Cook pattern matching.

match-mode-regex Use POSIX regular expression pattern matching.

meter If the meter flag is specified, a summary of the CPU usage by the commands within this
recipe will be printed after each command. The silent options override this option.

nometer Do not meter commands. This is usually the default.

mkdir If the mkdir flag is specified, the directories of any targets will be created before the
actions bound to the recipe are evaluated.

nomkdir If the nomkdir flag is specified, the directories of any targets will need to be created by
the actions bound to the recipe. This is usually the default.

precious If the precious flag is specified, if the actions bound to the recipe fail, the targets of the
recipe will not be deleted.

noprecious If the noprecious flag is specified, if the actions bound to the recipe fail, the targets of the
recipe will be deleted. This is usually the default, so that erroneous targets will be re-
cooked.

recurse If this flag is specified, recipes will recurse upon themselves if one of their ingredients
matches one of their targets. This can cause problems, and so it is not the default.

norecurse If this flag is specified, the recipe will not recurse if one of its ingredients matches one of
its targets. This is the default.

silent If the silent flag is specified, the commands within the actions bound to the recipe will not
be echoed.

nosilent Commands will be echoed. This is usually the default.

stripdot This option causes cook to remove leading "./" prefixes from filenames. This is usually
the default.

nostripdot This option causes cook to leave leading "./" prefixes on filenames.

tell-position This option causes the filename and line number to be printed when echoing commands
just before they are executed, in addition to the command itself.

no-tell-position This option supresses the printing of the filename and line number when echoing
commands just before they are executed. This is usually the default.

time-adjust This option causes cook to check the last-modified time of the targets of recipes, and
adjust them if necessary, to make sure they are consistent with (younger than) the last-
modified times of the ingredients. This usually adjusts the file time into the (near) future.
A warning message will be printed, telling you how many seconds the file was adjusted.
This results in more system calls, and can slow things down on some systems6.

6. This flag was once named the ‘‘update’’ flag. The name was changed to more closely reflect its function. The old name
continues to work.

Peter Miller Page 39

Cook User Guide

no-time-adjust Do not adjust the file last-modified times after performing the body of a recipe. This is
usually the default.

time-adjust-back This option causes cook to force the last-modified time of the targets of recipes to be
exactly one (1) second younger than their youngest ingredient. This usually adjusts the
file time into the (recent) past. A warning message will be printed, telling you how many
seconds the file was adjusted. This results in more system calls, and can slow things
down on some systems. This is primarily useful when some later process is going to
compress file modification times; this provides smarter compression.

unlink If the unlink flag is specified, of any targets will be unlinked before the actions bound to
the recipe are performed.

nounlink If the nounlink flag is specified, the recipe targets are not removed before the actions
bound to the recipe are performed. This is usually the default.

Each flag may also be specified in the negative, by adding a "no" prefix, to override any existing positive
default setting. There is a strict precedence defined for the various levels of flag setting, see the end of the
"How Cook Works" chapter for details.

7.3.5.2 Recipe Gate
Each recipe may have a gate. The gate is a way of specifying a conditional recipe; if the condition is not
true, the recipe is not used. The condition is in addition to the condition that the ingredients are cookable.

gate

if expr

For example:
program: [program_obj]

if [not [in horrible.o [program_obj]]]
{

cc -o program [program_obj];
}

7.3.5.3 Then Clause
There are times when it is necessary to know that a recipe has been applied, but because the recipe was up-
to-date, the recipe body was not run.

use

then cstmt

The then-clause is run every time the recipe is applied, even if the recipe is up-to-date. It will be run after
the recipe body, if the recipe body is run. All of the usual percent (%) substitutions and automatic variables
will apply. Recipe then-clauses may have local variables.

For example:
program: [program_obj]
{

cc -o program [program_obj];
}
then
{

install-set += program;
}

Peter Miller Page 40

Cook User Guide

7.3.5.4 Double Colon
Most cookbooks are constructed so that if cook finds a suitable recipe for the target it is currently
constructing, it will apply the recipe and then conclude that it has finished constructing the target. In some
rare cases you will want cook to keep going after applying a recipe. To specify this use a ‘‘double colon’’
construction:

stmt
elist :: exprs flags gate cstmt use

This operates like a normal explicit recipe, but cook will continue on looking for recipes after applying this
one. As soon as an applicable ‘‘single colon’’ recipe is found and applied, cook will conclude that it has
finished constructing the target.

For example:
all:: programs
{

[print "all programs done"];
}
all:: libraries
{

[print "all libraries done"];
}

7.3.6 The Implicit Recipe Statement
Implicit recipes are distinguished from explicit recipes in that and implicit recipe has a target with a ’%’
character in it.

7.3.6.1 Simple Form

In general the user will rarely need to use the implicit recipe form, as there are a huge range of implicit
recipes already defined in the system default recipes.

An example of this recipe form is
%: %.gz
{

gzcat %.gz > %;
}

This recipe tells cook how to use the gzcat(1) program.

7.3.6.2 Complex For m
The implicit recipe recipe has a second form where there are two sets of ingredients, separated by another
colon. In this form, the ingredients specified in the first ingredients list are used to determine the
applicability of the recipe; if these are all constructible then the recipe will be applied, if any are not
constructible then the recipe will not be applied. If the recipe is applied, the ingredients specified in the
second ingredients list are required to be constructible. The the second ingredients list section is known as
the forced ingredients section.

Note: if you want the first ingredients list to be empty you must separate the two colons with a space,
otherwise cook will think this is a ‘‘double colon’’ recipe.

An example of this is the C recipe
%.o: %.c: [collect c_incl -api %.c]
{

cc -c %.c;
}

This recipe is applied if the %.c file can be constructed, and is not applied if it cannot be constructed. The
include dependencies are only expressed if the recipe is going to be applied; but if they are expressed, they
must be constructible. This means that absent include files generate an error7.

Peter Miller Page 41

Cook User Guide

The naive form of this recipe
%.o: %.c [collect c_incl -api %.c]
{

cc -c %.c;
}

will attempt to apply the c_incl command before the %.c file is guaranteed to exist. This is because the
exprs2 is performed after the exprs1 all exist (because they are constructible, they hav e been constructed).
In this naive form, absent include files result in the recipe not being applied.

7.3.6.3 Double Colon
Just as explicit recipes have a ‘‘double colon’’ form, so do both types of implicit recipes. The semantics are
identical, with cook looking for more than one applicable implicit recipe, but stopping if it finds an
applicable ‘‘single colon’’ implicit recipe.

As stated earlier in this manual, cook first scans for explicit recipes before scanning for implicit recipes. If
an explicit recipe has been applied, cook will not also look for applicable implicit recipes, even if all the
applicable explicit recipes were double colon recipes.

7.3.7 The Ingredients Recipe Statement
The ingredients recipe has the form

stmt
elist : exprs flags gate ;

The target(s) of the recipe are to the left of the colon, and the prerequisites are to the right. There are no
statements to perform to cook the targets of this recipe, it is simply supplementary to any other recipe,
usually an implicit recipe.

For example:
program: batman.o robin.o;

The right-hand-side expressions are only evaluated into words when the recipe is instantiated.

Ingredients recipes are usually explicit, but it is also valid to use implicit ingredients recipes.

For example:
some-%-program: %.o;

7.3.8 The Cascade Recipe Statement
The cascade recipe statement has the form

stmt cascade elist = elist ;

This recipe specifies on its right-hand-side additional ingredients for any recipe which has ingredients
mentioned on the left-hand-side of this cascade recipe.

Unlike all other recipe forms, both the left-hand-side and the right-hand-side are evaluated when the recipe
is instantiated.

For example:
cascade batman.c = robin.h;
cascade somelib.a = some-deeper-lib.a;

7.3.9 Commands
Commands may take sev eral forms in cook. They all have one thing in common; they execute a command.

7. This is not the recommended way of determining C include dependencies, see the ‘‘Include Dependencies’’ chapter for more
information.

Peter Miller Page 42

Cook User Guide

7.3.10 The Simple Command Statement
The simplest command form is

stmt
elist flags ;

When executed, the elist is evaluated into a word list and used as a command to be passed to the operating
system. On UNIX this usually means that a shell is invoked to run the command, unless the string contains
no shell meta-characters.

The flags are those which may be specified in the explicit recipe statement. They hav e a higher precedence
than either the set statement or the recipe flags.

Some characters in commands are special both to the shell and to cook. You will need to quote or escape
these characters. Each command is executed in a separate process, so the cd command will not work, you
will need to combine it with the relevant commands, not forgetting to escape the semicolon (;) characters.

When Cook needs to invoke a shell to execute a command, it uses the shell named in the SHELL
environment variable. If the cookbook is to be used by a variety of users, each with a different shell setting,
it may be useful to add a

setenv SHELL = /bin/sh;
line at the top of your cookbook.

It is also important to note that unless the errok flag has been specified, the shell will be given the -e
option, which will cause it to exit immediately after the first command
which returns a non-zero exit status. This can be important when
commands in the .profile or .bashrc (or similar) file fails.

7.3.11 The Data Command Statement
For programs which require stdin to be supplied by cook to perform their functions, the data command
statement has been provided.

stmt
elist flags ; data expr dataend

In this form, the expr is evaluated and used as input to the command. Between the data and dataend
keywords the definition of the special symbols and whitespace change. There are only two special
symbols, [and], to allow functions and variable references to appear in the expression. In addition,
whitespace ceases to have its usual specialness; it is handed to the command, instead.

For those of you familiar with writing shell scripts, this is analogous to here documents. It allows you to
create an input file without creating an explicit temporary file. It also allows you to create files that you
could not create using echo redirected into the file8.

The data keyword must be the last on a line, whitespace after the data keyword up to and including end-of-
line, will not be given to the command.

The dataend keyword must appear alone on a line, optionally surrounded by whitespace; if it is not alone,
it is not a dataend keyword and will not terminate the expression.

An example of this may be useful.
/usr/fred/%: %
{

newgrp fred;
data
cp % /usr/fred/%
dataend
}

8. For example, Windows NT has a ludicrously small command line length limit.

Peter Miller Page 43

Cook User Guide

The newgrp(1) command is used to change the default group of a process, and then throw a shell; so the
‘‘cp’’ is executed by this sub-shell when it reads its standard input. If the directory /usr/fred has read-only
permissions for others, and group write permissions, and belonged to group fred , and you were a member
of group fred , the above implicit recipe could be used to copy the file.

Here is an example of how to cope with stupidly short NT command lines:
%.LIB: [%_obj]
{

cat > %.contents;
data
[unsplit "\n" [unix-to-dos [need]]]
dataend

link -lib "/out:"[unix-to-dos [target]] @%.contents;
rm %.contents;

}
The ‘‘@something’’ means the linker should read file names from the something file.

This technique will also work with Unix if you have more then 5MB of command line arguments and the
program is written to have an option something like this (many hav e a -f option).

7.3.12 The Set Statement
It is possible to override the defaults used by cook or even those specified by the COOK environment
variable, by using the set statement.

stmt
set exprs ;

The flag values are those mentioned in the flags clause of the explicit recipe statement. Many command-
line options have equivalent flag settings. There is no ‘‘unset’’ statement, to restore the default settings, but
it is possible to set flags the other way, by adding or removing the ‘‘no’’ prefix.

To set flags for individual recipes, use the flags clause of the recipe statements.

To set flags for individual commands, use the flags clause of the command statements.

7.3.12.1 Examples
Fingerprinting is not used by default, because it can cause a few surprises, and takes a little more CPU. To
enable fingerprinting for you project, place the statement

set fingerprint;
somewhere near the start of your Howto.cook file. The -No_FingerPrint command line option can still
override this, but the default behavior will be to use fingerprints.

To prevent echoing of commands as they are executed, place
set silent;

somewhere in your Howto.cook file. The -NoSilent command line option can still override this, but the
default behavior will be not to echo commands.

7.3.13 The Fail Statement
Cook can be forced to think that a recipe has failed by the uses of the fail statement.

stmt
fail exprs ;

This is hugely useful when programs do not return a useful exit status, but do fail. If they hav e printed an
error message, but not produced the output file, you could use the Fail statement without arguments:

fred: other stuff
set unlink

{
brain-dead [need] -o [target];

Peter Miller Page 44

Cook User Guide

if [not [exists [target]]] then
fail;

}

If you give the Fail statement any arguments, they will be printed as an error message before the recipe
fails:

fred: other stuff
set unlink

{
brain-dead [need] -o [target];
if [not [exists [target]]] then

fail Did not produce [target] file.;
}

7.3.14 The If Statement
The if statement has one of two forms.

stmt
if expr then stmt

else stmt

In nested if statements, the else will bind to the closest else-less if. An expression is false if and only if all
of its words are null or it has no words.

Note that one or both of the subordinate statements may be compound statements, should you need to say
something more complex than a single statement.

7.3.15 The Loop and Loopend Statements
Looping is provided for in cook by the generic infinite loop construct defined below.

stmt
loop stmt

A facility is provided to break out of a loop at any point.

stmt
loopstop ;

The statement following the loop directive is executed repeatedly forever. The loopstop statement is only
semantically valid within the scope of a loop statement.

Here is an example of how to use the loop statement:
dirs = a b c d;
src = ;

tmp = [dirs];
loop
{

tmp_dir = [head [tmp]];
if [not [tmp_dir]] then

loopstop;
tmp = [tail [tmp]];
src = [src] [glob [tmp_dir]"/*.c"];

}

There is also a ‘‘for each’’ loop variant, allowing a more terse expression of exactly the same thing
dirs = a b c d;
src = ;

Peter Miller Page 45

Cook User Guide

loop tmp_dir = [dirs]
{

src = [src] [glob [tmp_dir]"/*.c"];
}

You can use loopstop within such a loop. Note that the loop body must be a compound statement.

7.3.16 Functions
It is possible to define your own functions.

7.3.16.1 Function Definition
User-defined functions are specified using something similar to an assignment.

function
function word = cstmt

Functions must be defined before they are used.

You need to make sure you do not re-define a built-in-function as this may have dire consequences.

7.3.16.2 The Retur n Statement

You return values from a function by using the return statement:

stmt
return exprs ;

Note that return statements are not meaningful outside a function definition.

7.3.16.3 Function Arguments
The arguments to the function are passed in the ‘‘arg’’ variable. Each argument is also separately defined in
the ‘‘@1’’ to ‘‘@9’’ variables for direct access. (If there are more than 9, you will need to use ‘‘[word n
[arg]]’’ for argument 10 and later). These variables are unique for each function invocation, even if they are
nested.

You can use the ‘‘@1’’ to ‘‘@9’’ variables as local variables if you have no need of their values.

All of these special names are thread safe and recursion safe. Every function invokation receives its own
set of them.

7.3.16.4 Example
An example of a function definition is a ‘‘capitalize’’ function:

function capitalize =
{

@1 = ;
loop @2 = [downcase [arg]]
{

@1 += [upcase [substr 1 1 [@2]]][substr 2 99 [@2]];
}
return [@1];

}
This function capitalizes the first letter of each of its arguments.

User-defined functions are invoked in the same way a built-in functions.
host = [os node];
Host = [capitalize [host]];

See the ‘‘Function Library’’ section for additional function examples which are distributed with Cook.

Peter Miller Page 46

Cook User Guide

7.3.16.5 Function Call Statement
User defined functions may be invoked in the same way as built-in functions, but they may also be invoked
in the same way as commands, providing a form of subroutine.

stmt
function elist ;

If the function return value is not zero, it is considered to fail, just as a command would fail. The
commonest use of this is to invoke the built-in print function for debugging cookbooks.

function print [__FILE__] [__LINE__] hello [getenv USER];

These function calls may be used in recipe bodies, or in the general cookbook.

7.3.16.6 Local Variables
Functions can have local variables simply by using the word local on the left-hand-side of the
assignment. Care needs to be taken with the loop statement and the += assignment, as the variable needs
to be established as a local variable first.

function capitalize =
{

local result = ;
local tmp = ;
loop tmp = [downcase [arg]]
{

result += [upcase [substr 1 1 [tmp]]][substr 2 99 [tmp]];
}
return [result];

}
Functions may have as many local variables as they like.

Local variables are reentrant. You can write recursive functions, and each invocation of the function has an
independent set of local variables.

Local variables are thread-safe. You can use the same user-defined function in two parallel threads, and
their local variables are completely independent.

The ‘‘arg’’ and ‘‘@1’’ to ‘‘@9’’ variables are implicitly local.

Peter Miller Page 47

Cook User Guide

8. Built-In Functions
This chapter defines each of the built-in functions of cook.

A built-in function is invoked by using an expression of the form
[func-name arg arg ...]

in most places where a literal word is valid.

8.1 addprefix
The addprefix function is used to add a prefix to a list or words. This function requires at least one
argument. The first argument is a prefix to be added to the second and subsequent arguments.

8.1.1 See Also
addsuffix, patsubst, prepost, subst

8.2 addsuffix
The addsuffix function is used to add a suffix to a list or words. This function requires at least one
argument. The first argument is a suffix to be added to the second and subsequent arguments.

8.2.1 See Also
addprefix, patsubst, prepost, subst

8.3 and
This function requires at least two arguments, upon which it forms a logical conjunction. The value
returned is "1" (true) if none of the arguments are "" (false), otherwise "" (false) is returned.

8.3.1 Example
The following cookbook fragment shows how to use the [and] function in conditional recipes.

#if [and [defined change] [defined baseline]]
...do something...
#endif

This fragment will only do something if both the change and baseline variables are defined.

8.3.2 Caveat
This function is rather clumsy, and probably needs to be replaced by a better syntax within the cokbook
grammar itself.

This function does not short-circuit evaluation.

8.3.3 See Also
or, not

Peter Miller Page 48

Cook User Guide

8.4 basename
The basename treats each argument as filenames, and extracts all but the suffix of each filename. If the
filename contains a period, the basename is everything up to (but not including) the period. Otherwise, the
basename is the entire filename.

Please note: this is not the same behavior as the Unix basename(1) utility. For this, [basename
[notdir args]] or [fromto %0%.c %0% args] may be more appropriate.

8.4.1 Example

Expression Result

[basename foo.c] foo
[basename foo/bar.c] foo/bar
[basename baz] baz
[basename foo/bar/baz] foo/bar/baz

8.4.2 See Also
addsuffix, dirname, entryname, fromto, notdir, suffix

8.4.3 Caveat
This function is almost nothing like the Unix command of the same name. It operates in this manner for
compatibility with other packages.

8.5 cando
This function is used to test whether Cook knows how to cook the given targets. It returns all of the
arguments for which derivations can be found, or nothing if none can.

8.5.1 Caveat
This will use as much of the cookbook as has been read in up to the point where this function is used. This
can mean that crucial recipes have yet to be parsed and instantiated.

8.5.2 See Also
cook, uptodate

8.6 catenate
This function requires zero or more arguments. If no arguments are supplied, the result is an empty word
list. If one or more arguments are supplied, the result is a word list of one word being the catenation of all
of the arguments.

8.6.1 Example

Expression Result

[catenate a] a
[catenate a b] ab
[catenate a " " b] "a b"

Quotes used in the results for clarity.

8.6.2 See Also
split, unsplit, prepost, join

Peter Miller Page 49

Cook User Guide

8.7 collect_lines
The arguments are interpreted as a command to be passed to the operating system. The result is one "word"
for each line of the output of the command.

8.7.1 Example
To read each line of a file into a variable:

files = [collect_lines cat file];
Spaces and tabs in the input lines will be preserved in the "words" of the result.

8.7.2 See Also
collect, execute, glob, read, read_lines, write

8.7.3 Caveat
You will probably get better performance using the #include-cooked directive, and a recipe to create
the included file.

8.8 collect
The arguments are interpreted as a command to be passed to the operating system. The result is one word
for each white-space separated word of the output of the command.

The command will not be echoed unless the -No_Silent option is specified on the command line.

8.8.1 Example
Read the date and time and assign it to a variable:

now = [collect date];
Do not use the collect function to expand a filename wildcard, used the [glob] function instead.

8.8.2 See Also
collect_lines, execute, glob, read, read_lines, write

8.8.3 Also Known As
shell

8.9 cook
This function requires one or more arguments, filenames to be tested to see if they are up-to-date, and be
brought up-to-date if they are not. The result are true ("1") if the files are (now) up-to-date, or false ("") if
they could not be built.

8.9.1 Caveat
This will use as much of the cookbook as has been read in up to the point where this function is used. This
can mean that crucial recipes have yet to be parsed and instantiated.

This function works one argument at a time. This is slower than the main cookbook, which will pursue all
targets simultaneously.

8.9.2 See Also
cando, uptodate

Peter Miller Page 50

Cook User Guide

8.10 count
This function requires zero or more arguments. The result is a word list of one word containing the
(decimal) length of the argument word list.

8.10.1 Example
This cookbook fragment echoes the number of files, and then the name of the last file:

echo There are [count [files]] files.;
echo The last file is [word [count [files]] [files]].;

8.10.2 See Also
head, tail, word

8.10.3 Also Known As
words

8.11 defined
This function requires a single argument, the name of a variable to be tested for existence. It returns "1"
(true) if the named variable is defined and "" (false) if it is not.

8.11.1 Example
This function is most often seen in conditional portions of cookbooks:

if [defined baseline] then
cc_flags = [cc_flags] -I[baseline];

8.12 dirname
This function requires one or more arguments, the names of files which will have their directory parts
extracted.

8.12.1 Example

Expression Result

[dirname a] ‘pwd‘
[dirname a/b] a
[dirname a/b/c] a/b

When the answer would be ‘‘.’’ (the current directory), the result is instead the absolute path of the current
directory. This allows repeated [dirname] applications to climb the directory tree, no matter where you
start. See relative_dirname for one which returns ‘‘.’’ instead.

8.12.2 See Also
basename, entryname, notdir, pathname, relative_dirname, suffix

8.12.3 Also Known As
dir

Peter Miller Page 51

Cook User Guide

8.13 dir
This function requires one or more arguments, the names of files which will have their directory parts
extracted.

8.13.1 Example

Expression Result

[dir a] .
[dir a/b] a
[dir a/b/c] a/b

8.13.2 See Also
basename, entryname, notdir, pathname, relative_dirname, suffix

8.13.3 Also Known As
dirname

8.14 dos-path
This function requires one or more arguments, which will be converted from a UNIX path into a DOS path.
This is of most use under Windows-NT, to convert Cook’s internal pathnames into DOS pathnames. (The
UNIX porting layer usually hides this from Cook.)

8.14.1 Example

Expression Result

[dos-path a/b/c] a\b\c
[dos-path //c/temp] c:\temp
[dos-path //server/stuff] \\server\stuff

8.14.2 See Also
un-dos-path

8.15 downcase
This function requires one or more arguments, words to be forced into lower case.

8.15.1 Example

Expression Result

[downcase FOO] foo
[downcase Bar] bar
[downcase baz] baz

8.15.2 See Also
upcase

Peter Miller Page 52

Cook User Guide

8.16 entryname
This function requires one or more arguments, the names of files which will have their entry name parts
extracted.

8.16.1 Example

Expression Result

[entryname foo.c] foo.c
[entryname foo/bar.c] bar.c
[entryname baz] baz

8.16.2 See Also
basename, dir, suffix

8.16.3 Also Known As
notdir

8.17 execute
This function requires at least one argument, and executes the command given by the arguments. If the
executed command returns non-zero exit status the resulting value is "" (false), otherwise it is "1" (true).

The command will not be echoed unless the -No_Silent option is specified on the command line.

8.17.1 Caveat
This function is not often required as its functionality is available in a more useful form as recipe bodies.

8.17.2 Example
To get access to a wide range of Unix command, such as test(1), you can use this function in conditionals

if [not [test -d fubar]] then
{

rm -f fubar;
mkdir fubar;

}

8.17.3 See Also
collect

8.18 exists
This function requires one argument, being the name of a file to test for existence. The resulting word list
is "" (false) if the file does not exist, and "1" (true) if the file does exist.

8.18.1 Example
To remove the target of a recipe before building it again:

%.a: [%_obj]
{

if [exists [target]] then
rm [target]

set clearstat;
[ar] qc [target] [%_obj];

}
Note: you must use the clearstat, because otherwise cook’s "stat cache" will be incorrect.

This is only an example. It is better to perform this particular activity using the ‘‘unlink’’ flag. See the
[find_command] function, below, for an example.

Peter Miller Page 53

Cook User Guide

8.18.2 See Also
cando, find_command, uptodate

8.19 exists-symlink
This function requires one argument, being the name of a file to test for existence. The test will not follow
symbolic links, so it may be used to test for the existence of symbolic links themselves. The resulting word
list is "" (false) if the file does not exist, and "1" (true) if the file does exist.

8.19.1 See Also
exists, readlink

8.20 expr
This function may be used to calculate simple integer arithmetic expressions. The numbers and the
operators are expected to each be a separate argument. The result is a string containing the value of the
evaluated expression.

8.20.1 Operators
The following operators are understood. They hav e the same precedence as the equivalent C operators.

Operator Associativity

() →
! ˜ - ←
* / % →
+ - →
<< >> →
< <= > >= →
== != →
& →
ˆ →
| →
&& →
|| →
?: ←

Please note that there is no short-circuit evaluation of the ?: or && or || operators.

You may need to quote some of the operators, to insulate them from their usual Cook interpretation (colon
and equals characters in particular).

Numbers may be given in decimal, octal (with a 0 prefix), or hexadecimal (with a 0x prefix). The result is
always decimal.

8.20.2 See Also
count

Peter Miller Page 54

Cook User Guide

8.21 filter_out
This function requires one or more arguments. The first argument is a pattern, the second and later
arguments are strings to match against this pattern. The resulting wordlist contains those arguments which
did not match the pattern given as the first argument.

8.21.1 Example

Expression Result

[filter_out %.c a.c a.o] a.o
[filter_out %.cc a.c a.o] a.c a.o

8.21.2 Match Mode
This function is affected by the selected match mode. See the File Name Patterns chapter for details.

8.21.3 See Also
filter, stringset

8.22 filter
This function requires one or more arguments. The first argument is a pattern, the second and later
arguments are strings to match against this pattern. The resulting wordlist contains those arguments which
matched the pattern given as the first argument.

8.22.1 Example

Expression Result

[filter %.c a.c a.o] a.c
[filter %.cc a.c a.o]

8.22.2 Match Mode
This function is affected by the selected match mode. See the File Name Patterns chapter for details.

8.22.3 See Also
filter_out, stringset

8.22.4 Also Known As
match_mask

8.23 find_command
This function requires at least one argument, being the names of commands to search for in $PATH. The
resulting word list contains either "" (false) or a fully qualified path name for each command given.

8.23.1 Example
Some systems require ranlib(1) to be run on archives, and some do not. Here is a simple way to test:

ranlib = [find_command ranlib];

%.a: [%_obj]
set unlink

{
ar qc [target] [%_obj];
if [ranlib] then

[ranlib] [target];
}

Peter Miller Page 55

Cook User Guide

8.23.2 See Also
cando, exists, uptodate

8.24 findstring
The findstring function is used to match a fixed string against a set of strings. This function takes at least
one argument. The first argument is the fixed string, the second and subsequent arguments are matched
against the first. The result contains one word for each of the second and subsequent arguments, each will
either be the empty string (false) or the string to be matched, if a match was found.

8.24.1 Example

Expression Result

[findstring a a b c] a "" ""
[findstring a b c] "" ""

Quotes are for clarity, to emphasize the empty strings. Because the empty string is "false", this can be used
in an if statement:

if [findstring fish [sources]] then
sources = [sources] hook.c;

8.24.2 See Also
filter-out, match, match_mask, patsubst, stringset, subst

8.25 firstword
This function requires zero or more arguments. The wordlist returned is empty if there were no arguments,
or the first argument if there were arguments.

8.25.1 Example
You can iterate along a list using the loop statement combined with the firstword and tail functions:

dirs = a b c d;
src = ;

tmp = [dirs];
loop
{

tmp_dir = [firstword [tmp]];
if [not [tmp_dir]] then

loopstop;
tmp = [tail [tmp]];
src = [src] [glob [tmp_dir]"/*.c"];

}
More efficient ways exist to do this, this an example only.

8.25.2 See Also
count, glob, fromto, prepost, tail, word

8.25.3 Also Known As
head

Peter Miller Page 56

Cook User Guide

8.26 fromto
This function requires at least two arguments. Fromto gives the user access to the pattern transformations
available to cook. The first argument is the "from" form, the second argument is the "to" form. All other
arguments are mapped from one to the other.

8.26.1 Example
Given a list of C source files, generate a list of object files as follows:

obj = [fromto %.c %.o [src]];

8.26.2 See Also
filter, filter_out, subst

See the pattern matching chapter for more information about patterns.

8.26.3 Match Mode
This function is affected by the selected match mode. See the File Name Patterns chapter for details.

8.26.4 Also Known As
patsubst

8.27 getenv
Each argument is treated as the name of an environment variable. The result is the value of each argument
variable, or "" if it does not exist (consistent with command shell behaviour).

8.27.1 Example
To read the value of the TERM environment variable:

term = [getenv TERM];

Values of variables are not automagically set from the environment, you must set each one explicitly:
cc = [getenv CC];
if [not [cc]] then

cc = gcc;

8.27.2 See Also
find_command, home

8.28 glob
Each argument is treated as a sh(1) file name pattern, and expanded accordingly. The resulting list of
filenames is sorted lexicographically.

You may need to quote the pattern, to protect square brackets from the meaning cook attaches to them.

Note: The character sequence /* is a comment introducer, and is a frequent source of problems when
combined with the glob function. Remember to quote glob arguments which need this character sequence.
See the [head] function, below, for an example of this.

8.28.1 Example
To find the sources in the current directory:

src = [glob *.c];
obj = [fromto %.c %.o [src]];

8.28.2 See Also
filter, filter_out, shell

8.28.3 Also Known As
wildcard

Peter Miller Page 57

Cook User Guide

8.29 head
This function requires zero or more arguments. The wordlist returned is empty if there were no arguments,
or the first argument if there were arguments.

8.29.1 Example
You can iterate along a list using the loop statement combined with the head and tail functions:

dirs = a b c d;
src = ;

tmp = [dirs];
loop
{

tmp_dir = [head [tmp]];
if [not [tmp_dir]] then

loopstop;
tmp = [tail [tmp]];
src = [src] [glob [tmp_dir]"/*.c"];

}
More efficient ways exist to do this, this an example only.

8.29.2 See Also
count, glob, fromto, prepost, tail, word

8.29.3 Also Known As
firstword

8.30 home
The home function is used to find the home directory of the named users. You may name more than one
user. If no users are named, it returns the home directory of the current user.

8.31 if
This function requires one or more arguments, the arguments before the "then" word are used as a
condition. If the condition is true the words between the "then" word and the "else" word are the result,
otherwise the words after the "else" word are the value. The "else" clause is optional. There is no way to
escape the "then" and "else" words.

8.31.1 Example
Here is an example of the ‘‘if ’’ function. Please note that ‘‘if ’’, ‘‘then’’ and ‘‘else’’ are reserved words, so
you need to quote them before they will be recognised on the function context.

%: %_obj
set ["if" [defined all_shallow] "then" shallow]

{
[cc] -o [target] [%_obj];

}

8.31.2 Caveat
It is often clearer to use the if statement than this function.

The recipe flags are evaluated at the same time as the recipe targets. None of the [target], [targets], [need],
[younger] variables or pattern matches (%, %1, etc) are set at this time.

Peter Miller Page 58

Cook User Guide

8.32 in
This function requires one or more arguments. The wordlist returned is a single word: the index of the
matching word (1 based) if the first argument is equal to any of the later ones; or "" (false) if not.

This function can also be used for equality testing, just use a single element in the set.

Because it returns the index, the return valus can be used with the [word] or [words] functions.

8.32.1 Example
Frequently seen in conditional parts of recipes:

%: [%_obj]
{

[cc] -o [target] [%_obj];
if [in [target] [private]] then

chmod og-rwx [target];
}

8.32.2 See Also
stringset, word, words

8.33 interior_files
This function requires zero arguments. The result is the list of files which are interior to the dependency
graph. (Files which are constructed by a recipe.) This function is only meaningful within a recipe body.

8.33.1 See Also
leaf_files function, graph_interior_file variable, graph_interior_pattern variable

8.34 join
The join function is used to join two sets of strings together, element by element. The argument list must
contain an even number of arguments, with the first half joined pair-wise with the last half. There is no
marker of any kind between the lists, so the user needs to ensure they are both the same length.

8.34.1 Example

Expression Result

[join a b c d] ac bd
[join a b] ab

8.34.2 See Also
basename, catenate, suffix

Peter Miller Page 59

Cook User Guide

8.35 leaf_files
This function requires zero arguments. The result is the list of files which are leaves of the dependency
graph. (Files which are not constructed by a recipe.) This function is only meaningful within a recipe
body.

8.35.1 See Also
interior_files function, graph_leaf_file variable, graph_leaf_pattern variable

8.36 matches
This function requires one or more arguments. The first argument is a pattern, the second and later
arguments are strings to match against the pattern. The resulting wordlist contains "" (false) if did not
match and the 1-based list index (true) if it did.

The returned list index may be used in combination with the [words] function.

8.36.1 Example
This function may be used to test for strings which have a particular form:

if [matches %1C%2 [version]] then
cc_flags = [cc_flags] -DDEBUG

If the version contains a Capital-C character, then turn on debugging.

8.36.2 Match Mode
This function is affected by the selected match mode. See the File Name Patterns chapter for details.

8.36.3 See Also
filter, filter-out, words

8.37 match_mask
This function requires one or more arguments. The first argument is a pattern, the second and later
arguments are strings to match against this pattern. The resulting wordlist contains those arguments which
matched the pattern given as the first argument.

8.37.1 Example

Expression Result

[match_mask %.c a.c a.o] a.c
[match_mask %.cc a.c a.o]

8.37.2 Match Mode
This function is affected by the selected match mode. See the File Name Patterns chapter for details.

8.37.3 See Also
filter-out, findstring, stringset

8.37.4 Also Known As
filter

Peter Miller Page 60

Cook User Guide

8.38 mtime
This function requires one argument, the name of a file to fetch the last-modified time of. The resulting
wordlist is "" (false) is the file does not exist, or a string containing a (sortable) representation of the date
and time the files were last modified.

8.38.1 See Also
exists, mtime-seconds, sort_newest

8.39 mtime-seconds
This function requires one argument, the name of a file to fetch the last-modified time of. The resulting
wordlist is "" (false) is the file does not exist, or a string containing number of seconds since the epoch that
the files were last modified. This is more useful than [mtime] for doing arithmetic on.

8.39.1 See Also
exists, expr, mtime, sort_newest

8.40 notdir
This function requires one or more arguments, the names of files which will have their entry name parts
extracted.

8.40.1 Example

Expression Result

[notdir foo.c] foo.c
[notdir foo/bar.c] bar.c
[notdir baz] baz

8.40.2 See Also
basename, dirname, relative_dirname, suffix

8.40.3 Also Known As
entryname

8.41 not
This function requires zero or more arguments, the value to be logically negated. It returns "1" (true) if all
of the arguments are "" (false), or there are no arguments; and returns "" (false) otherwise. This is
symmetric with the definition of true and false for if.

8.41.1 Example
This is often seen in recipes:

%1/%0%2.o: %1/%0%2.c
single-thread %2.o

{
if [not [exists [dirname [target]]]] then

mkdir -p [dirname [target]]
set clearstat;

[cc] [cc_flags] -I%1 %1/%0%2.c;
mv %2.o [target];

}
Note that "%0" matches zero or more whole filename portions, including the trailing slash. See the chapter
on pattern matching for more information.

This is an example only. The ‘‘mkdir’’ recipe flag creates the directory more efficiently.

Peter Miller Page 61

Cook User Guide

8.41.2 See Also
and, or

8.42 operating_system
This function requires zero or more arguments. The resulting wordlist contains the values of various
attributes of the operating system, as named in the arguments. If no attributes are named, "system" is
assumed. Below is a list of attributes:

node The name of the computer cook is presently running on.

system The name of the operating system cook is presently being run under. For example: if you
were running on SunOS 4.1.3, this would return "SunOS".

release The specific release of operating system, within name, cook is presently being run under.
For example: if you were running on SunOS 4.1.3, this would return "4.1.3".

version Version information. For SunOS 4.1.3, this would return the kernel build number, for
other systems it is often the kernel patch release number.

machine The name of the hardware cook is presently running on. For example: If you were
running on SunOS 4.1.3 this would return "sun4" or similar.

This function may be abbreviated to "os".

8.42.1 Example
This function is usually used to determine the architecture (either system or machine):

arch=[os system]-[os release]-[os machine];
if [matches SunOS-4.1%1-sun4%2 [arch]] then

arch = sun4;
else if [matches SunOS-5.%1-sun4%2 [arch]] then

arch = sun5;
else if [matches SunOS-5.%1-i86pc [arch]] then

arch = sun5pc;
else if [matches ConvexOS-%1-%2 [arch]] then

arch = convex;
else

arch = unknown;

8.42.2 Caveat
This function is implemented using the uname(2) system call. Some systems do not implement this
correctly, and therefore this function is less useful than it should be, and needs the pattern match appropach
used above.

8.42.3 See Also
collect

8.42.4 Also Known As
os

Peter Miller Page 62

Cook User Guide

8.43 options
This functions takes no arguments. The results is a complete list of cook options, exactly describing the
current options settings. This intended for use in constructing recursive cook invocations.

The option setting generated are a combination of the command line options used to invoke cook, the
contents of the COOK environment variable, the results of the ‘‘set’’ command and the various ‘‘set’’
clauses.

8.43.1 Example
The top level cookbook for a recursive project structure can be as follows:

%:
{

dirlist = [dirname [glob ’*/Howto.cook’]];
loop
{

dir = [head [dirlist]];
if [not [dir]] then

loopstop;
dirlist = [tail [dirlist]];

cd [dir]\; cook [options] %;
}

}

/*
* This recipe sets the default.
* It doesn’t actually do anything.
*/
all:;

Please note the % hiding on the end of the nested cook command, this is how the target is communicated to
the nested cook invocation.

8.43.2 Caveat
Recursive Cook is not recommended, because it segments the dependency graph and forces Cook to walk
the graph in (potentially) the wrong order. This introduces a number of significant problems. A single top-
level cookbook is recommended.

8.43.3 See Also
The supplied ‘‘recursive’’ cookbook does exactly this. In order to use it, you need a Howto.cook file
containing the single line

#include "recursive"

Peter Miller Page 63

Cook User Guide

8.44 or
This function requires at least two arguments, upon which it forms a logical disjunction. The value
returned is "1" (true) if any one of the arguments is not "" (false), otherwise "" (false) is returned.

8.44.1 See Also
and, not

8.45 pathname
The function requires one or more arguments, being files names to be replaced with their full path names.

8.45.1 Example
Relative names are made absolute, and redundant slashes and dots are removed:

pwd = [pathname .];

8.45.2 See Also
basename, dirname, entryname

8.46 patsubst
This function requires at least two arguments. Patsubst gives the user access to the pattern transformations
available to cook. The first argument is the "from" form, the second argument is the "to" form. All other
arguments are mapped from one to the other.

8.46.1 Example
Given a list of C source files, generate a list of object files as follows:

obj = [patsubst %.c %.o [src]];

8.46.2 Match Mode
This function is affected by the selected match mode. See the File Name Patterns chapter for details.

8.46.3 See Also
filter, filter_out, subst

8.46.4 Also Known As
fromto

8.47 prepost
This function must have at least two arguments. The first argument is a prefix and the second argument is a
suffix. The resulting word list is the third and later arguments each given the prefix and suffix as defined by
the first and second arguments.

8.47.1 Example

Expression Result

[prepost sun4/ .o a b] sun4/a.o sun4/b.o
[prepost -I "" . bl] -I. -Ibl

8.47.2 See Also
addprefix, addsuffix, patsubst, subst

Peter Miller Page 64

Cook User Guide

8.48 print
The arguments are printed as an informative message. The usual output wrapping is performed. The
function returns the empty list as a result.

This function is frequently use to debug cookbooks.

8.49 quote
Each argument is quoted by double quotes, with shell9 special characters escaped as necessary.

8.49.1 See Also
collect, execute

8.50 read_lines
The argument is interpreted as the name of a text file to be read. The result is one word for each line of the
file.

8.50.1 Example
Read a the example file and assign it to a variable:

example = [read_lines example];

8.50.2 See Also
collect, collect_lines, read, write

8.51 readlink
The arguments are assumed to be symbolic links, and their values are read. It is a fatal error if the files
named are not symbolic links.

8.51.1 See Also
collect, exists-symlink

8.52 read
The argument is interpreted as the name of a text file to be read. The result is one word for each white-
space separated word of the file.

8.52.1 Example
Read a the example file and assign it to a variable:

example = [read example];

8.52.2 See Also
collect, collect_lines, read_lines, write

9. See sh (1) and csh(1) for more information.

Peter Miller Page 65

Cook User Guide

8.53 relative_dir name
This function requires one or more arguments, the names of files which will have their directory parts
extracted.

8.53.1 Example

Expression Result

[relative_dirname a] .
[relative_dirname a/b] a
[relative_dirname a/b/c] a/b

See dirname if you want to climb the directory tree with repeated applications, relative_dirname will
continue to return ‘‘.’’ once the current directory is reached.

8.53.2 See Also
basename, dirname, entryname, notdir, pathname, suffix

8.53.3 Also Known As
reldir

8.54 resolve
This builtin function is used to resolve file names when using the search_list variable to locate files. This
builtin function produces resolved file names as output. This is useful when taking partial copies of a
source to perform controlled updates. The targets of recipes are always cooked into the current directory.

8.54.1 Example
This function is used in cookbooks which use the search_list functionality:

search_list = . baseline;

%.o: %.c
{

[cc] [cc_flags] [addprefix -I [search_list]] [resolve %.c];
}

The cookbooks distributed with Cook contain full support for the search_list functionality. They are a
good source of examples of how to write recipes which take this into account.

8.55 shell
The arguments are interpreted as a command to be passed to the operating system. The result is one word
for each white-space separated word of the output of the command.

The command will not be echoed unless the -No_Silent option is specified on the command line.

8.55.1 Example
Read the date and time and assign it to a variable:

now = [shell date];
Do not use the shell function to expand a filename wildcard, used the [wildcard] function instead.

8.55.2 See Also
collect_lines, execute, wildcard

8.55.3 Also Known As
collect

Peter Miller Page 66

Cook User Guide

8.56 sort_newest
The arguments are sorted by file last-modified time, youngest to oldest. File names are resolved first (see
the resolve function, below). Absent files will be sorted to the start of the list.

8.56.1 Example
This function is often used to "shorten the wait" when building large project, so that the file you edited most
recently is recompiled almost immediately:

src = [glob *.c];
obj = [sort_newest [fromto %.c %.o [src]]];

This trick does not always work as expected, and can take significant time for little result.

8.56.2 See Also
fromto, glob, sort

8.57 sort
The arguments are sorted lexicographically.

Note: Duplicates are not removed. Use the stringset function if you want to do this.

8.57.1 See Also
sort_newest, stringset

8.58 split
The split function is used to split strings into multiple strings, given the separator. This function requires at
least one argument. The first argument is the separator character, the second and subsequent arguments are
to be separated. The result is the separated strings, each as a separate word.

8.58.1 Example

Expression Result

[split ":" "foo:bar:baz"] foo bar baz
[split " " "New York"] New York

Each of the words in the result is a separate string.

This can be useful in splitting an environment variable into separate words. For example:
path = [split ":" [getenv PATH]];

8.58.2 See Also
unsplit, join, catenate, strip

Peter Miller Page 67

Cook User Guide

8.59 stringset
Logical operations are performed on sets of strings. These include conjunction (+) or implicit, disjunction
(*) and difference (-).

8.59.1 Example

Expression Result

[stringset a b a] a b
[stringset a b c * a] a
[stringset a b c - a] b c
[stringset a b - c + d] a b d

The can be very useful in constructing lists of source files:
src = [stringset [glob "*.[cyl]"] - y.tab.c lex.yy.c];

8.59.2 See Also
filter, filter_out, glob, in, patsubst, subst

8.60 stripdot
The stripdot function is used to remove leading ‘‘.\’’ directories from each of the path name arguments.

8.60.1 Example

Expression Result

[stripdot ./foo.c] foo.c
[stripdot bar.o] bar.o
[stripdot /fubar] /fubar

8.60.2 See Also
set stripdot

8.61 strip
The strip function is used to remove leading and trailing white space from words. Internal sequences of
white space are replaced by a single space.

8.61.1 Example

Expression Result

[strip " " "foo " " bar"] "" foo bar
[strip " really big "] "really big"

Quotes are used here for clarity, and are not present in the internal representation of strings.

8.61.2 See Also
split

Peter Miller Page 68

Cook User Guide

8.62 substr
The substr function is used to perform substring extracton. The first argument is the starting position in the
string, starting from one. The second argument is the number of characters to extract. Thirst and
subsequent arguments will be processed to extract sub-strings.

8.62.1 Example

Expression Result

[substr 1 1 Peter] P
[substr 3 99 Miller] ller

8.62.2 See Also
subst, patsubst

8.63 subst
The subst function is used to perform string substitutions on its arguments. This function requires at least
two arguments. The first argument is the "from" string, the second argument is the "to" string. All
occurreneces of "from" are replaced with "to" in the third and subsequent arguments.

8.63.1 Example
This is a litteral replacement, not a pattern replacement:

Expression Result

[subst buffalo cress water.buffalo] water.cress
[subst .c .o test.c] test.o
[subst .c .o stat.cache.c] stat.oache.o

Note that last case: it is not selective.

8.63.2 See Also
filter, filter_out, patsubst

8.64 suffix
The suffix function treats each argument as a filename, and extracts the suffix from each. If the filename
contains a period, the suffix is everything starting with the last period. Otherwise, the suffix is the empty
string (as opposed to nothing at all).

8.64.1 Example

Expression Result

[suffix a.c foo b.y] .c "" .y
[suffix stat.cache.c] .c
[suffix .eric] ""

Quotes are used here for clarity, and are not present in the internal representation of strings.

The suffix functions in this way to allow sensible results when using the join function to re-unite filenames
dismembered by the basename and suffix functions.

8.64.2 See Also
basename, dirname, entryname, join, patsubst

Peter Miller Page 69

Cook User Guide

8.65 tail
This function requires zero or more arguments. The word list returned will be empty if there is less than
two arguments, otherwise it will consist of the second and later arguments.

8.65.1 See Also
count, head, word

8.66 un-dos-path
This function requires one or more arguments, which will be converted from a DOS path into a UNIX path.
This is of most use under Windows-NT, to convert DOS pathnames into Cook’s internal pathnames. (The
UNIX porting layer usually hides this from Cook.)

8.66.1 Example

Expression Result

[un-dos-path a\b\c] a/b/c
[un-dos-path c:\temp] //c/temp
[un-dos-path \\server\stuff] //server/stuff

8.66.2 See Also
dos-path

8.67 unsplit
The unsplit function is used to glue strings together, using the specified glue. The first argument is the text
to go between each of the second and subsequent arguments.

8.67.1 Example

Expression Result

[unsplit ":" one two three] "one:two:three"
[unsplit " " four five six] "four five six"

The quotes are necessary to isolate characters such as colon and space which cook would normally treat
differently.

8.67.2 See Also
catenate, prepost, split

Peter Miller Page 70

Cook User Guide

8.68 upcase
This function requires one or more arguments, words to be forced into upper case.

8.68.1 Example

Expression Result

[upcase FOO] FOO
[upcase Bar] BAR
[upcase baz] BAZ

8.68.2 See Also
downcase

8.69 uptodate
This function may be used to determine if files are up-to-date. It returns a word list containing the names of
the up-to-date files, or empty if none of them are up-to-date. They are not brought up to date if they are not
already. This function requires one or more arguments.

8.69.1 Caveat
This will use as much of the cookbook as has been read in up to the point where this function is used. This
can mean that crucial recipes have yet to be parsed and instanciated.

8.69.2 See Also
cando, cook

8.70 wildcard
Each argument is treated as a sh(1) file name pattern, and expanded accordingly. The resulting list of
filenames is sorted lexicographically.

You may need to quote the pattern, to protect square brackets from the meaning cook attaches to them.

Note: The character sequence /* is a comment introducer, and is a frequent source of problems when
combined with the wildcard function. Remember to quote wildcard arguments which need this character
sequence.

8.70.1 Example
To find the sources in the current directory:

src = [wildcard *.c];
obj = [patsubst %.c %.o [src]];

8.70.2 See Also
filter, filter_out, patsubst

8.70.3 Also Known As
glob

Peter Miller Page 71

Cook User Guide

8.70.4 Wordlist
This function may be used to extract a list of words from a larger list. The first argument is the starting
position, and the second argument is the ending poistion, inclusive. The third and subsequent arguments
are the list to be extracted from. Positions are numbered starting from 1. If the start is bigger than the end,
they will be quietly swapped. If the start is bigger than the list, the result will be empty.

8.70.4.1 Example

Expression Result

[wordlist 2 3 foo bar baz] bar baz
[wordlist 1 1 foo bar baz] foo
[wordlist 7 3 foo bar baz] baz

There are a number of functions which are similar

Expression Similar to

[wordlist 1 1 list] [head list]
[wordlist 2 9999 list] [tail list]
[wordlist N N list] [word N list]

8.70.4.2 See Also
firstword head, tail, word, words

8.71 word
The word function is used to extract a specific word from a list of words. The function requires at least one
argument. The first argument is the number of the word to extract from the wordlist. The wordlist is the
second and subsequent arguments. An empty list will be returned if you ask for an element off the end of
the list.

8.71.1 Example

Expression Result

[word 1 one two three] one
[word 2 one two three] two
[word 3 one two three] three
[word 5 one two three]

The last element of a list of words may be extracted as:
last = [word [count [list]] [list]];

8.71.2 See Also
count, head

Peter Miller Page 72

Cook User Guide

8.72 words
This function requires zero or more arguments. The result is a word list of one word containing the
(decimal) length of the argument word list.

8.72.1 Example
This cookbook fragment echoes the number of files, and then the name of the last file:

echo There are [words [files]] files.;
echo The last file is [word [words [files]] [files]].;

8.72.2 See Also
head, tail, word

8.72.3 Also Known As
count

8.73 write
This function requires one or more arguments. The first argument is the name of the file to write, the
second an later arguments are lines to be written to the file. (This is specifically a text file.) The result is an
empty word list.

This function is very useful in writing command line file for Windows-NT, due to its absurdly short
command line interface.

8.73.1 See Also
read, read_lines

Peter Miller Page 73

Cook User Guide

9. Predefined Variables
A number of variables are defined by cook at run-time.

9.1 arg
This is the arguments list for user-defined functions. Individual arguments are split out into ‘‘@1’’ to
‘‘@9’’. These can also be used at automatic variables. Caution: arg and the automatic variables are shared
for parallel execution, causing weird interactions if you execute a command within the function.

9.2 command-line-goals
The value of this variable is the goals specified on the command line, if any. If none were specified, and the
default goal is in effect, the value will be empty.

9.3 __FILE__
The value of this variable is the logical name of the file which contains it. In the case of #include-
cooked files, the physical name may be obtained using the [resolve] function. The logical name may be
set using the #line directive.

9.4 __FUNCTION__
The value of this variable is the name of the function which executes it. It is not set for the global
cookbook scope or the recipe body scope.

9.5 graph_leaf_file
File names which are listed in this variable could be leaf files of the dependency graph. (See also the
leaf_files function, for Cook’s idea of the leaf files.)

9.6 graph_exter ior_file
File names which are listed in this variable cannot be present in any way in the dependency graph.

9.7 graph_inter ior_file
File names which are listed in this variable could be interior files of the dependency graph. (See also the
interior_files function, for Cook’s idea of the interior files.)

9.8 graph_leaf_patter n
File names which match the patterns in this variable could be leaf files of the dependency graph. (See also
the leaf_files function, for Cook’s idea of the leaf files.)

9.9 graph_exter ior_pattern
File names which match the patterns in this variable cannot be present in any way in the dependency graph.

9.10 graph_inter ior_pattern
File names which match the patterns in this variable could be interior files of the dependency graph. (See
also the interior_files function, for Cook’s idea of the interior files.)

9.11 __LINE__
The value of this variable is the line number within of the file which contains it. The line number may be
set using the #line directive.

9.12 need
The ingredients of the recipe currently being cooked.

Peter Miller Page 74

Cook User Guide

9.13 parallel_hosts
This variable may be set to indicate a list of hosts to use to distribute the execution of recipe bodies.

9.14 parallel_jobs
This variable may be set to the number of parallel execution threads to perform simultaneously. Defaults to
1 if not set.

9.15 parallel_rsh
This variable may be set to the command used to execute commands on remote machines. Assumes to take
argument in the same form as the BSD rsh(1) command. Defaults to ‘‘rsh’’ if not set.

9.16 search_list
This variable may be set to a list of directories to be searched for targets and ingredients. This list is
initially the current directory (.) and will always have the current directory prepended if it is not present.
This is useful when taking partial copies of a source to perform controlled updates. Use the resolve built-in
function to determine what file name cook actually found. The targets of recipes are always cooked into the
current directory.

The cookbooks distributed with Cook contain full support for the search_list functionality. They are a
good source of examples of how to write recipes which take this into account.

9.17 self
The name cook was inv oked as, usually "cook". Be careful what you call cook, because anything with the
string "cook" in it will be changed, including (but not limited to) file suffixes and environment variable
names.

9.18 target
The target of the recipe currently being cooked, or the first target if there is more than one.

9.19 targets
The targets of the recipe currently being cooked. This includes all targets of the recipe, should there be
more than one.

9.20 thread-id
This variable has a unique value for each execution thread, for the lifetime of that thread. This value may
be used to construct thread-unique variable names, thread-unique temporary file names, or anything else
that needs to be unique to each execution thread. The thread IDs are re-used, and so several threads in
sequence may have the same thread ID; it is only guaranteed that no other simultaneous thread will have the
same thread ID. By re-using thread IDs, generated variable names are also re-used, avoiding memory
bloat.

9.21 younger
The subset of the ingredients of the recipe currently being cooked which are younger than the target.

9.22 version
The version of cook currently executing.

Peter Miller Page 75

Cook User Guide

10. Functions Librar y
There is a file of functions available to you by using a

#include "functions"
line in your cookbook. The file defines a number of useful functions.

The functions in the file also serve as examples of how you can write your own functions.

10.1 capitalize
The capitalize function maps all of its arguments into lower case, and then the first letter of each argument
is mapped to upper case. Zero, one or more arguments may be given.

10.2 defined-or-null
The defined-or-null function may be used to determine if a variable has been set (on the command line, for
example) and return its value if so, otherwise return the empty list.

This function should only be given one argument - the name of the variable to look for. Additional
arguments will be ignored. Too few arguments will produce a complaint about the "" variable being
undefined.

10.3 defined-or-default
The defined-or-default function may be used to determine if a variable has been set (on the command line,
for example) and return its value if so, otherwise return the given default value.

The first argument is the name of the variable to look for.

The second and later arguments (if present) are the default value to be used if the named variable is not
defined. Optional.

10.4 repeat
The repeat function is used to repeatedly call another function, once for each of the specified arguments.
The can be useful when dealing with functions which do not automaticly accept argument lists in the form
you require.

There are many instances where the repeat function call be used to elegantly avoid used to the ‘‘loop {
loopstop }’’ construct.

The first argument is the name of the function you want called. This function must accept a single
argument.

The second and subsequent arguments are argument values to be passed to the named function, one at a
time.

The results of the invocations of the function are accumulated in the order in which they were calculated.
The accumulated results are returned.

10.5 var iable_by_path
The variable_by_path function is used to extract the union of option settings relevant to a particular
compilation or link. By using a variable prefix, this function may be used to obtain the setting of a wide
variety of options and commands.

Global variables are searched in a no particular order for the necessary information. All are searched, all
found are used.

For example, the function call [variable_by_path cc_flags foo/bar/baz.c] will hunt for
variables with the following names: cc_flags_foo/bar/baz.c and cc_flags_foo/bar and
cc_flags_foo and cc_flags. It is expected that the vast majority of these variables will not be set.
Duplicates are removed.

Peter Miller Page 76

Cook User Guide

11. Actions when Cooking
This section describes what cook does when you ask it to cook something.

Cook performs the following actions in the order stated.

11.1 Scan the COOK Environment Var iable
The COOK environment variable is looked for. If it is found, it is treated as if it consisted of cook
command line arguments. Only the -Help option is illegal. This could result is very strange behavior if
used incorrectly.

This feature is supplied to override cook’s default with your own preferences.

11.2 Scan the Command Line
The command line is scanned as defined in chapter 3.

11.3 Locate the Cookbook
The current directory is scanned for the cookbook. Names which a cookbook may have include

howto.cook Howto.cook .howto.cook
how.to.cook How.to.cook .how.to.cook

cookfile Cookfile .cookrc
cook.file Cook.file .cook.rc

The first so named file found in the current directory will be used. The order of search is not defined. You
are strongly advised to have just one of these name forms in any directory. The name Howto.cook is the
preferred form.

11.4 For m the Listing Filename
The listing file, if not explicitly named in the environment variable or on the command line, will be the
name of the cookbook, with any suffix removed and ’.list’ appended.

11.5 Create the Listing file
The listing file is created. If cook is executing in the background, or the -NoTTy option has been specified,
stdout and stderr will be redirected into the listing file. If cook is executing in the foreground, and the
-NoTTy option has not been specified, stdout and stderr will be redirected into a pipe to a tee(1) command;
which will, in turn, copy the output into the named file.

A heading line with the name of the file and the date, is generated.

11.6 Scan the Cookbook
When cook reads the cookbook it evaluates all of the statements it finds in it. Usually these statements
instantiate recipes, although other things are possible.

Recipes contain statements that are not evaluated immediately, but which are remembered for later
execution when cooking a target. The meaning of a cookbook is defined in chapter X.

11.7 Determine targets to cook
If no target files are named on the command line, the targets of the first defined explicit or ingredients
recipe. It is an error if this is none.

11.8 Cooking a Target
A derivation graph is formed using all of the targets given. Once the derivation graph is formed, it will be
walked, looking for files which are out of date.

Peter Miller Page 77

Cook User Guide

To build the derivation graph for a target, each the following steps is performed in the order given:

1. Cook exploits knowledge of the derivation graph that the user may provide to it:

• If the graph_exterior_file variable is set, and the file name is listed in it, the file is not a leaf,
and the derivation will backtrack and try another alternative.

• If the graph_exterior_pattern variable is set, and the file name matches one of the patterns
listed in it, the file is not a leaf, and the derivation will backtrack and try another alternative.

• If the graph_leaf_file variable is set, and the file name is listed in it, the file is a leaf file of the
derivation. There is no need to attempt to apply any recipes. It will be an error if the file does
not exist.

• If the graph_leaf_pattern variable is set, and the file name matches one of the patterns listed
in it, the file is a leaf file of the derivation. There is no need to attempt to apply any recipes.
It will be an error if the file does not exist.

These optimizations require an accurate source file manifest, but can result is substantial
performance improvements.

2. Cook scans through the instantiated ingredients recipes in the order they were defined. All
ingredients recipes with the target in their target list are used.

If a recipe is used, then any ingredients also have their derivation graph constructed. When walking
the graph, if any of the ingredients are younger than the target, all other explicit or implicit recipes
with the same target will be deemed to be out of date.10

3. Cook then scans through the instantiated explicit recipes in the order they were defined. All explicit
recipes with the target in their target list are used.

If a recipe is a used, the ingredients also have their derivation graph constructed. When walking the
graph, if any ingredients are out of date or the target does not yet exist (or the "forced" flag is set in
the recipe’s set clause) the recipe body will be performed. If a recipe has no ingredients, it will not
be performed, unless the target does not yet exist, or it is forced.

4. If the target was not in the target list of any explicit recipe, cook then scans the instantiated implicit
recipes in the order they were defined, in two passes. Implicit recipes which not not have pattern
elements in the basename of the targets are scanned before implicit recipes which do have patterns
in the basename. Usually this has no significant effect, however in heavily heterogeneous builds
this method is often used in constructing the dependency files, so that all architectures may use the
one implicit dependency recipe, rather than stating every architecture explicitly. Within each pass,
the order of scan is the order of definition.

Implicit recipe targets and ingredients may contain a wildcard character (%), which is why they are
implicit. When expressions are evaluated into word lists in an implicit recipe, any word containing
the wildcard character (%) will be expanded out by the current wildcard expansion.

If the target matches a pattern in the targets of an implicit recipe, it is a candidate. Each ingredient
of a candidate recipe is recursively cooked. If any ingredient cannot be cooked, then the implicit
recipe is not used. If all ingredients can be cooked, then the implicit recipe is used.

If an implicit recipe is a used, the forced ingredients also have their derivation graph constructed. It
is an error if a forced ingredient cannot be constructed.

Only the first implicit recipe to get to this point is used. The scan stops at this point.

5. If the target is not the subject of any ingredients or explicit recipe, and no implicit recipes can be
applied, then several derivations are attempted, in the order specified:

10. A target which does not exist yet is considered to be infinitely ancient, and thus everything is younger than it.

Peter Miller Page 78

Cook User Guide

• If the graph_interior_file variable is set, and the file name is listed in it, the file is a not leaf
file of the derivation. Cook will backtrack and try another alternative.

• If the graph_interior_pattern variable is set, and the file name matches one of the patterns
listed in it, the file is a not leaf file of the derivation. Cook will backtrack and try another
alternative.

• If the graph_leaf_file variable is set, and the file name is listed in it, the file is a leaf file of the
derivation. It will be an error if the file does not exist.

• If the graph_leaf_pattern variable is set, and the file name matches one of the patterns listed
in it, the file is a leaf file of the derivation. It will be an error if the file does not exist.

• If either of the graph_leaf_file or graph_leaf_pattern variables are set, then the file is not a
leaf, and the derivation will backtrack and try another alternative.

• If the file exists, then it is up to date, and the file is a leaf file of the derivation.

• If the file does not exist then Cook doesn’t know how, and the derivation will backtrack and
try another alternative.

If a command in the body of any recipe fail, cook will not that body any further, and will not perform the
body of any recipe for which the target of the failed actions was an ingredient, directly or indirectly.

Cook will trap recursive looping of targets.

• If the file exists, the it is up to date, or

• If the file does not exist then cook doesn’t know how.

11.9 The Dependency Graph
The above section describes how Cook derives the dependency graph. Once the dependency graph has
been derived, it is then walked. The next section describes a little about how Cook walks the dependency
graph.

Cook is a simple kind of expert system. You giv e it a set of of recipes for how to construct things, and a
target to be constructed. The recipes can be decomposed into pair-wise ordered dependencies between
files.

Cook determines how to build the target by constructing a directed acyclic graph. The vertexes of this
graph are the files in the system, the edges in this graph are the inter-file dependencies. The edges of the
graph are directed because the pair-wise dependencies are ordered resulting in a acyclic graph − things
which look like loops are resolved by the direction of the edges.

For example, if you have a simple cookbook (with the recipe bodies omitted for simplicity) like this:
program: one.o two.o;
one.o: one.c one.h;
two.o: two.c two.h one.h;

here is the corresponding directed acyclic graph.

Peter Miller Page 79

Cook User Guide

one.c one.h two.c two.h

one.o two.o

program

There are several things that can be done with the graph once it has been derived:
• It can be walked to verify and regenerate the referential integrity of the files (the usual case), or
• it can walked to print the pair-wise dependencies (the -pairs option), or
• it can be walked to generate a shell script (the -script option) which does something very similar to
the first option.

11.9.1 Edge Types
Each of the arrows in the above graph have a specific type.

strict edges mean that Cook will decide that a target is out-of-date if its time stamp is not strictly
younger than all of the ingredients. This is almost always what you want.

weak edges mean that Cook will decide that a target is out-of-date if its time stamp is older than any of
the ingredients. This means that the times stamps of the target and ingredients may be equal -
this is useful for hard links and symbolic links. You specify edges of this type by appending the
‘‘(weak)’’ string to the name of the ingredient.

exists edges mean that Cook will arrange for the ingredient to be cooked before the recipe is run, but
the time stamp is not consulted. The ingredient cannot ever make the target out-of-date. This is
useful form coping with version stamps which change often, but you don’t want to re-link unless
something else changes. You specify edges of this type by appending the ‘‘(exists)’’ string
to the name of the ingredient.

The default edge type is ‘‘strict’’. You can use the "time-adjust" setting (see the "set" command) to make
this simpler on very fast machines.

11.10 File Status
Cook determines the time a file was last modified by asking the operating system. Because this operation
tends to be performed frequently, cook maintains a cache of this information, rather than make redundant
calls to the operating system. Because this information is cached, it is possible for cook’s memory of a
file’s last-modified time to become inconsistent with the file’s actual last-modified time. In particular, cook
doe not ask the operating system for the "new" last-modified time of a recipe target once a recipe body is
completed. Careful use of the set clearstat clause will generally prevent this. For example, the
following recipe needs to create a directory when writing its output:

bin/%: [%_obj]
{

if [not [exists bin]] then
mkdir bin;

[cc] -o [target] [need];
}

If there were several programs being cooked, e.g. bin/foo and bin/bar, the second time cook performed the
recipe, it would erroneously attempt to make the bin directory a second time - contrary to the test. This is
because [exists bin] used the cache, and nothing tells cook that the cache is now wrong. The recipe should

Peter Miller Page 80

Cook User Guide

have been written
bin/%: [%_obj]
{

if [not [exists bin]] then
mkdir bin

set clearstat;
[cc] -o [target] [need];

}
which tells cook that it should remove any files named in the mkdir command from the cache.

An alternative way of performing the above example is to set the mkdir recipe flag:
bin/%: [%_obj]

set mkdir
{

[cc] -o [target] [need];
}

This flag instructs cook to create the directory for the target before running the recipe body. There is a
similar unlink flag, which unlinks the targets of the recipe before running the recipe body. These two flags
take care of most, but not all, uses of the clearstat flag.

A second mechanism used by cook to determine the last-modified times of files is a file fingerprint. This is
a cryptographically strong hash of the contents of a file. The chances of two different files having the same
fingerprint is less than 1 in 2**200. If cook notices that a file has changed, because its last-modified time
has changed, a fingerprint is taken of the file and compared with the remembered fingerprint. If the
fingerprints differ, the file is considered to be different. If the fingerprints match, the file is considered not
to have changed.

This description of fingerprints is somewhat simplified, the actual mechanics depends on remembering two
different last-modified times, as well as the fingerprint, in a file called .cook.fp in the current directory.

Fingerprinting can cause some surprises. For example, when you use the touch(1) command, cook will
often fail to do anything, and report instead that everything is up-to-date. This is because the fingerprint
has not changed. In this situation, either remove the .cook.fp file, or use the -No_FingerPrint command
line option.

Peter Miller Page 81

Cook User Guide

12. Option Precedence
At various points in the description there are a number of flags and options with the same, or similar,
names. These are in fact different levels of the same option.

The different levels, from highest precedence to lowest, are as follows.

Error This level is used to disable undesirable side effects when an error occurs.

Command Line Options specified on the command line override almost everything. There are some
isolated cases where there is no equivalent command line option. They are in scope for
the entire cook session.

Execute When a command attached to a recipe is executed, the flags in the ’set’ clause are given
this precedence. They are in scope for the duration of the execution of the command they
are bound to.

Recipe When a recipe is considered for use, the flags in the ’set’ clause are given the precedence.
They are in scope for the evaluation of the ingredients names and the execution of the
recipe body; they are not in scope while cooking the ingredients.

Cookbook When a ’set’ statement is encountered in the cookbook, the option are given this priority.
They are in scope until the end of the cook session.

Environment Variable
When the options in the COOK environment variable are set, they are given this
precedence. They are in scope for the entire cook session.

Default All options have a default setting. The defaults noted in chapter 3 are given this
precedence. They are in scope for the entire cook session.

Peter Miller Page 82

Cook User Guide

13. File name patterns
There are two pattern matchers to choose from.

The tough part about designing a pattern matcher for something like Cook is that ideally the patterns must
be reversible. That is, it must be possible to use the same string both as a pattern to be matched against and
as a template for building a string once a pattern has matched. Rather like the difference between the left
and right sides of an editor search-and-replace command in an editor using the same description for both
the search pattern and the replace template. This is why classic regular expressions are not the default.

The choice of which pattern matcher to use is dictated by flag settings:

set match-mode-cook
This causes patterns to be matched using Cook’s native patterns. This is the default.

set match-mode-regex
This causes patterns to be matched using regular expressions.

The match mode to use may be set at the cookbook level
set match-mode-cook;

or at the recipe level
%.o: %.c

set match-mode-cook
{

[cc] -o %.o -c %.c;
}

if you want to change your mind temporarily.

The match mode also affects match functions, such as filter, filter_out, fromto, match_mask, matches and
patsubst. If you use these in your user-defined functions, you need to be extra careful about this.

The match mode also affects the graph variables, used to specify explicit graph interior and leaf files.

13.1 Cook Patter ns
The native Cook pattern matcher has symmetric left-hand-side and right-hand-side patterns. This is best
demonstrated with an example recipe:

%.c %.h: %.y
set match-mode-cook

{
yacc -d %.y;
mv yy.tab.c %.c;
mv yy.tab.h %.h;

}
Notice how the left-hand-side of the recipe (the targets) uses the same style of patterns as the right-hand-
side (the ingredients and the recipe body).

This matcher has eleven match "fields", referenced as % and %0 to %9. The % character can be escaped
as %%. The % and %1 to %9 forms match any character except slash (/); these forms may not match a
leading empty string, to avoid problems with false matches against absolute paths. The %0 form matches
all characters, but must be either empty, or hav e whole path components, including the trailing / on each
component.

A few examples will make this clearer:

string does not match

%.c snot/fred.c
%1/%2.c etc/boo/fred.c

Peter Miller Page 83

Cook User Guide

string matches setting

%.c fred.c %="fred"
%1/%2.c snot/fred.c %1="snot"

%2="fred"
%0%5.c fred.c %0=""

%5="fred"
%0%6.c snot/fred.c %0="snot/"

%6="fred"
%0%7.c etc/boo/fred.c %0="etc/boo/"

%7="fred"
/usr/%1/%1%2/%3.%2%4 /usr/man/man1/fred.1x %1="man"

%2="1"
%3="fred"
%4="x"

The %0 behavior is designed to allow patterns to range over subtrees in a controlled manner. Note that the
use of this sort of pattern in a recipe will result in deeper searches than the naive recipe designer would
expect.

13.1.1 Examples
There are two main places where patterns are used: with the match_mask and fromto functions, and in
recipes.

You can perform file name filtering and rewriting as follows:
source_files = [collect cat MANIFEST];
object_files =

[fromto %0%.c %0%.o [match_mask %0%.c [manifest]]]
[fromto %0%.y %0%.gen.o [match_mask %0%.y [manifest]]]
;

The recipes to go with the above files may be
%0%.o: %0%.c

single-thread ["if" %0 "then" %.o]
{

/* note: no slash before dot */
cc -c -I%0. %0%.c;
if %0 then

mv %.o %0%.o;
}

This recipe can compile files in a large project, where source files appear in a number of sub-directories.
The ‘‘-I%0.’’ ensures that there are locally include-able files in the sub-directories. If the ‘‘%0’’ had been
entirely omitted from the recipe, it will only compile files in the current directory.

A common yacc recipe, used when there is more than one yacc grammar in a project, looks like this:
%0%.gen.c %0%.gen.h: %0%.y

single-thread yy.tab.c yy.tab.h
{

yacc -d %0%.y
yy = [collect echo %0% | sed "’s/[ˆA-Za-z0-9]/_/’"];
sed "’s/[yY][yY]/"[yy]"_/g’" yy.tab.c > %0%.gen.c;
sed "’s/[yY][yY]/"[yy]"_/g’" yy.tab.h > %0%.gen.h;
rm yy.tab.c yy.tab.h;

}
To be more selective about the ‘‘%0’’ portion, use more pattern elements before or after it.

Peter Miller Page 84

Cook User Guide

13.2 Regular Expressions
The regular expression pattern matcher uses POSIX regular expressions. It has asymmetric left-hand-side
and right-hand-side patterns. This is best demonstrated with an example recipe:

\\(.*\\)\\.c \\(.*\\)\\.h: \\1.y
set match-mode-regex

{
yacc -d \\1.y;
mv yy.tab.c \\1.c;
mv yy.tab.h \\1.h;

}
Notice how the left-hand-side of the recipe (the targets) uses a completely different style of patterns as the
right-hand-side (the ingredients and the recipe body).

All those backslashes are necessary, because Cook uniformly applies C escapes to strings when it reads
them, and it doesn’t know you mean a regular expression backslash until you use it in a recipe context.

See re_format(7) for a definition of POSIX 1003.2 regular expressions; you want the ‘‘basic’’ REs.

Please note that characters which are special to Cook will need to be escaped with a backslash, or enclosed
in quotes. These include curly braces (‘‘{’’ and ‘‘}’’), square brackets (‘‘[’’ and ‘‘]’’), colon (‘‘:’’) and
equals (‘‘=’’). Backslash always needs to be escaped, whether encoded in a string or not, because within a
string it serves to escape the string terminator.

You also need to remember that dot (‘‘.’’) is a common character in filenames, and frequenty significant in
file name patters, but it is a regular expression wildcard. You need to escape it to make it literal.

You need to make absolutely certain that when recipes have more than one left-hand-size (as in the yacc
example) that the patterns all assign identical values to their nested sub-expressions.

The usual right-hand-side replacements are available: an escaped number is replaced with the n-th nested
sub-expression; and the ampersand (‘‘&’’) is replaced by the whole left-hand-side (if you have more than
one left-hand-side, this is ambiguous). Backslash may be used to escape them.

13.2.1 Examples
There are two main places where patterns are used: with the match_mask and fromto functions, and in
recipes.

You can perform file name filtering and rewriting as follows:
set match-mode-regex;
source_files = [collect cat MANIFEST];
object_files =

[fromto \\(.*\\)\\.c \\1.o
[match_mask \\(.*\\)\\.c [manifest]]]

[fromto \\(.*\\)\\.y \\1.gen.o
[match_mask \\(.*\\)\\.y [manifest]]]

;

The recipes to go with the above files may be
\\(.*\\)\\.o: \\1.c

single-thread ["if" [not [in [relative_dirname \\1] .]]
"then" [notdir \\1.o]]

{
cc -c -I[[relative_dirname \\1] \\1.c;
if [not [in [relative_dirname \\1] .]] then

mv [notdir \\1.o] \\1.o;
}

This recipe can compile files in a large project, where source files appear in a number of sub-directories.
The ‘‘-I\\1.’’ ensures that there are locally include-able files in the sub-directories.

Peter Miller Page 85

Cook User Guide

A common yacc recipe, used when there is more than one yacc grammar in a project, looks like this:
\\(.*\\)\\.gen.c \\(.*\\)\\.gen.h: \\1.y

single-thread yy.tab.c yy.tab.h
{

yacc -d \\1.y
yy = [collect echo \\1 | sed "’s/[ˆA-Za-z0-9]/_/’"];
sed "’s/[yY][yY]/"[yy]"_/g’" yy.tab.c > \\1.gen.c;
sed "’s/[yY][yY]/"[yy]"_/g’" yy.tab.h > \\1.gen.h;
rm yy.tab.c yy.tab.h;

}
To be more selective about the ‘‘\\(.*\\)’’ portion, use more pattern elements before or after it.

Peter Miller Page 86

Cook User Guide

14. Supplied Cookbooks
A number of cookbooks are supplied with cook. To make use of one, a preprocessor directive of the form

#include "whichone"
must appear at the start of your cookbook.

Cook does not have any "built-in" recipes. All recipes are stored in text files, so they are more easily read,
understood, copied, hacked or corrected. The supplied cookbooks live in the /usr/local/share/cook
directory.

You may supply your own "system" recipes, by placing cookbooks into a directory called $HOME/.cook or
using the -Include command line option, possibly in your $COOK environment variable.

14.1 as
This cookbook defines how to use the assembler.

14.1.1 recipes

%.o: %.s Construct object files from assembler source files.

14.1.2 var iables

as The assembler command. Not altered if already defined.

as_flags Options to pass the assembler command. Not altered if already defined. The default is
empty.

as_src Assembler source files in the current directory.

dot_src Source files constructable in the current directory (unioned with existing setting, if
necessary).

dot_obj Object files constructable in the current directory (unioned with existing setting, if
necessary).

dot_clean Files which may be removed from the current directory in a clean target.

14.2 c
This cookbook describes how to work with C files. Include file dependencies are automatically determined.

14.2.1 recipes

%.o: %.c Construct object files form C source files, with automatic include file dependency
detection.

%.ln: %.c Construct lint object files from C source files, with automatic include file dependency
detection.

14.2.2 var iables

c_incl The C include dependency sniffer command. Not altered if already defined.

cc The C compiler command. Not altered if already defined.

lint The lint command. Not altered if already defined.

cc_flags Options to pass to the C compiler command. Not altered if already defined. The default
is "-O".

cc_include_flags Options passed to the C compiler and c_incl controlling include file searching. Not
altered if already defined. The default is empty.

Peter Miller Page 87

Cook User Guide

cc_src C source files in the current directory.

dot_src Source files constructable in the current directory (unioned with existing setting, if
necessary).

dot_obj Object files constructable in the current directory (unioned with existing setting, if
necessary).

dot_clean Files which may be removed from the current directory in a clean target.

dot_lint_obj Lint object files constructable in the current directory (unioned with existing setting, if
necessary).

14.2.3 See Also
The ‘‘library’’ cookbook, for linking C sources into a library.
The ‘‘program’’ cookbook, for linking C sources into a program.

14.3 f77
This cookbook describes how to work with Fortran files.

14.3.1 recipes

%.o: %.f77 Construct object files form Fortran source files.

14.3.2 var iables

f77 The Fortran compiler command. Not altered if already defined.

f77_flags Options to pass to the Fortran compiler command. Not altered if already defined. The
default is "-O".

f77_src Fortran source files in the current directory.

dot_src Source files constructable in the current directory (unioned with existing setting, if
necessary).

dot_obj Object files constructable in the current directory (unioned with existing setting, if
necessary).

dot_clean Files which may be removed from the current directory in a clean target.

14.3.3 See Also
The ‘‘library’’ cookbook, for linking Fortran sources into a library.
The ‘‘program’’ cookbook, for linking Fortran sources into a program.

Peter Miller Page 88

Cook User Guide

14.4 g77
This cookbook is the same as the ‘‘f77’’ cookbook, but it sets the f77 variable to the GNU Fortran compiler,
g77.

14.5 gcc
This cookbook is the same as the ‘‘c’’ cookbook, but it sets the cc variable to the GNU C compiler, gcc.

14.6 home
This cookbook defined where certain directories are, and some common uses of those directories, relative
to $HOME.

14.6.1 var iables

home The current users’ home directory.

bin The directory to place program binaries into.

include The directory to place include files into.

lib The directory to place libraries into.

cc_include_flags The [include] directory is appended to the search options.

cc_link_flags The [lib] directory is appended to the search options.

14.7 lex
This cookbook describes how to work with lex files.

14.7.1 recipes

%.c: %.l Construct C source files from lex source files.

14.7.2 var iables

lex The lex command. Not altered if already defined.

lex_flags Options to pass to the lex command. Not altered if already defined. The default is empty.

lex_src Lex source files in the current directory.

dot_src Source files constructible in the current directory (unioned with existing setting, if
necessary).

dot_obj Object files constructible in the current directory (unioned with existing setting, if
necessary).

dot_clean Files which may be removed from the current directory in a clean target.

dot_lint_obj Lint object files constructible in the current directory (unioned with existing setting, if
necessary).

Peter Miller Page 89

Cook User Guide

14.8 librar y
This cookbook defines how to construct a library.

If an include file (or files) are defined for this library, you will have to append them to [install] in your
Howto.cook file.

14.8.1 var iables

all targets of the all recipe

install targets of the install recipe

me The name of the library to be constructed. Defaults to the last component of the
pathname of the current directory.

ar The archive command.

install targets of the install command. Only defined if the [lib] variable is defined.

14.8.2 recipes

all construct the targets defined in [all].

clean remove the files named in [dot_clean].

clobber remove the files name in [dot_clean] and [all].

install Construct the files named in [install]. Only defined if the [lib] variable is defined.

uninstall Remove the files named in [install]. Only defined if the [lib] variable is defined.

14.9 print
This cookbook is used to print files. It will almost certainly need to be changed for every site.

14.9.1 recipes

%.lw: %.ps Print a PostScript file.

%.lp: % Print a text file.

14.9.2 var iables

lp The print command. Not altered if already defined.

lp_flags Options passed to the print command. Not altered if already defined. Defaults to empty.

Peter Miller Page 90

Cook User Guide

14.10 program
This cookbook defines how to construct a program.

If your program uses any libraries, you will have to append them to [ld_libraries] in your Howto.cook file.

14.10.1 var iables

all Targets of the all recipe.

install targets of the install recipe

ld The name of the linker command. Not altered if already defined. Set to the same as the
‘‘cc’’ variable if set, otherwise set to the same as the ‘‘f77’’ variable if set, otherwise set
to ‘‘ld’’.

ld_flags Not altered if already defined. The default is empty.

ld_libraries Options passed to the C compiler when linking, these are typically library search paths
(-L) and libraries (-l). Not altered if already defined. The default is empty.

me The name of the program to be constructed. Defaults to the last component of the
pathname of the current directory.

14.10.2 recipes

all Construct the targets named in [all].

clean Remove the files named in [dot_clean].

clobber Remove the files named in [dot_clean] and [all].

install Construct the files named in [install]. Only defined if the [lib] variable is defined.

uninstall Remove the files named in [install]. Only defined if the [lib] variable is defined.

14.10.3 See Also
The ‘‘c’’ cookbook, for C sources.
The ‘‘f77’’ cookbook, for Fortran sources.
The ‘‘usr’’ or ‘‘usr.local’’ or ‘‘home’’ cookbooks, for defining install locations.

14.11 rcs
This cookbook is used to extract files from RCS.

14.11.1 recipes

%: RCS/%,v Extract files from RCS.

%: %,v Extract files from RCS.

14.11.2 var iables

co The RCS checkout command.

co_flags Flags for the co command, default to empty.

Peter Miller Page 91

Cook User Guide

14.12 recursive
This cookbook may be used to construct recursive cook direwctory structures, where the top-level
cookbook only invokes cookbooks in deeper directories.

All largets given to this cookbook result in all sub-directories containing a Howto.cook file having cook
invoked with the same target.

14.12.1 Recipes
The all recipe is defined, but it does nothing, it only exists to set the default target name.

14.13 sccs
This cookbook is used to extract files from SCCS.

14.13.1 recipes

%: SCCS/s.% Extract files from SCCS.

%: s.% Extract files from SCCS.

14.13.2 var iables

get The SCCS get command.

get_flags Flags for the get command, default to empty.

14.14 text
This cookbook is used to process text documents.

Include file dependencies are automatically detected. The requirements for various preprocessors are
automatically detected (e.g. eqn, tbl, pic, graf).

14.14.1 recipes

%.ps: %.t PostScript for generic *roff source.

%: %.t Straight text from *roff source.

14.14.2 var iables

text_incl The text_incl command (finds include dependencies). Not altered if already set.

text_roff The text_roff command (finds preprocessor requirements). Not altered if already set.

roff_flags Arguments passed to text_roff, and indirectly to the *roff program. Not altered if already
set. Defaults to empty.

Peter Miller Page 92

Cook User Guide

14.15 usr.local
This cookbook defined where certain directories are, and some common uses of those directories, relative
to /usr/local.

14.15.1 var iables

bin The directory to place program binaries into.

include The directory to place include files into.

lib The directory to place libraries into.

cc_include_flags The [include] directory is added to the search options.

cc_link_flags The [lib] directory is added to the search options.

14.16 usr
This cookbook defined where certain directories are, relative to /usr.

14.16.1 var iables

bin The directory to place program binaries into.

include The directory to place include files into.

lib The directory to place libraries into.

14.17 yacc_many
This cookbook describes how to use yacc. The difference with the "yacc" cookbook is that this cookbook
allows you to have more that one yacc generated parser in the same program, by using the classic sed(1)
hack of the output.

14.18 yacc
This cookbook describes how to use yacc.

You will have to add "-d" to the [yacc_flags] variable if you want %.h files generated.

If a y.output file is constructed, it will be moved to %.list.

14.18.1 recipes

%.c %.h: %.y Construct C source and header files from yacc source files. Applied if -d in [yacc_flags].

%.c: %.y Construct C source files from yacc source files. Applied if -d not in [yacc_flags].

14.18.2 var iables

yacc_src Yacc source files in the current directory.

dot_src Source files constructable in the current directory (unioned with existing setting, if
necessary).

dot_obj Object files constructable in the current directory (unioned with existing setting, if
necessary).

dot_clean Files which may be removed from the current directory in a clean target.

dot_lint_obj Lint object files constructable in the current directory (unioned with existing setting, if
necessary).

Peter Miller Page 93

Cook User Guide

15. Glossary
This document employs a number of terms specific to cook.

body A set of statements, usually commands, to be performed to cook the targets of a recipe
after the ingredients exist.

command A command is a list of words to be passed to the operating system to be executed.

cook When used as a verb, refers to the actions cook would perform to create a target,
according to some recipe.

cookbook A file containing input for cook, usually recipes.

explicit recipe An explicit recipe is one where the targets contain no patterns. That is, there are no
percent (’%’) characters in any of the targets.

fingerprint A cryptographically strong hash of the contents of a file, use to determine if the file
contents have changed.

flag A flag modifies the behavior of a cook session, recipe or command.

forced ingredient A files which must exist before a target file of an implicit recipe may be cooked. The
inability to construct a forced ingredient is an error.

function A function is an action applied to a word list.

gate A gate is a condition which allows the conditional application of a recipe. The gate
condition is in addition to the requirement that the ingredients are cookable.

implicit recipe An implicit recipe is a recipe with patterns in the targets. That is, there is a percent (’%’)
character in at least one of the targets.

ingredient A files which must exist before a target file may be cooked. In an implicit recipe the
inability to construct of an ingredient means that the recipe will not be applied. In an
explicit recipe the inability to construct an ingredient is an error.

last-modified time
UNIX imbues files with several attributes. One of these is a time-stamp of when the file
was last modified. Usually this is when the file was last written to.

recipe A recipe consists of several parts.

1. A set of targets to be cooked,

2. A set of ingredients of those targets, and

3. An optional set of forced ingredients.

4. An optional set of flags.

5. An optional gate.

6. An optional body .

target The object of a recipe, a thing which is cooked.

touch UNIX imbues files with several attributes. One of these is a time-stamp of when the file
was last modified. Usually this is when the file was last written to, however it is possible
to simply adjust this attribute, rather than actually writing to the file; this is colloquially
known as touching a file.

variable A variable is a named place holder for a value. The value may be changed.

Peter Miller Page 94

