
.

Cook

Tutorial

Aryeh M. Friedman
aryeh@m-net.arbornet.org

.

This document describes Cook version 2.25
and was prepared 17 July 2004.

This document describing the Cook program is
Copyright © 2002 Aryeh M. Friedman

Cook itself is
Copyright © 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
2000, 2001, 2002, 2003, 2004 Peter Miller

This program is free software; you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details.

You should have received a copy of the GNU General Public License along with this
program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111, USA.

Cook Tutorial

1. Building Programs
If you write simple programs (a few hundred lines
of code at most) compiling the program is often
no more then something like this:

gcc foo.c -o foo
If you have a few files in your program you just
do:

gcc foo.c ack.c -o foo
But what happens if some file that is being
compiled is the output of an other program (like
using yacc/lex to construct a command line
parser)? Obviously foo.c does not exist before
foo.y is processed by yacc. Thus you have to
do:

yacc foo.y
cc foo.c ack.c -o foo

What happens if say you modify ack.c but do
not modify foo.y? You can skip the yacc step.
For a small program like the one above it is
possible to remember what order you need to do
stuff in and what needs to be done depending on
what file you modify.

Let’s add one more complication let’s say you
have a library that also needs to be "built" before
the executable(s) is built. You need to not only
remember what steps are needed to construct the
library object file but you also need to remember
that it needs to be done you make your
executables. Now add to this you also need to
keep track of different versions as well figuring
out how to build different versions for different
platforms and/or customers (say you support
Windows, Unix and have a Client, Server and
trial, desktop and enterprise versions of each and
you need to produce any and all combination of
things... that’s 24 different versions of the same
set of executables). It now becomes almost
impossible to to remember how each on is built.
On top all this if you build it differently every
time you need to recompile the program there is
no guarantee you will not introduce bugs due to
only the order stuff was built in.

And the above example is for a "small"
applications (maybe 10 to 20 files) what happens
if you have a medium or large project (100s or
1000s of files) and 10+ or 100+ executables with
each one having 10+ different configurations. It
is clearly the number of possible ways to make
this approaches infinity very rapidly (in algorithm
designer terms O(n!)). There has to be a easier
way! Traditionally people have used a tool called
make to handle this complexity, but make has

some major flaws such that it is very hard if not
impossible to make know how to build the entire
project without some super nasty and flawed
"hacks". In the last few years a program called
Cook has gained a small but growing popularity
as a extremely "intelligent" replacement for make.

2. Dependency Graphs
Clearly, for any build process the build
management utility (e.g. cook or make) needs to
know that for event Y to occur event X has to
happen first. This knowledge is called a
dependency. In simple programs it is possible to
just tell the build manager that X depends on Y.
This has a few problems:

• You can not define generic dependencies
for example you can not say that all .o files
depend on .c files of the same name.

• Often there are intermediate files created
during the build process for example
foo.y → foo.c → foo.o → foo.
This means that each intermediate file
needs to be made before the final program
is built.

• In almost all projects there is no single way
of producing any giv en file type. For
example ack.c does not need to be
created from the ack.y file but foo.c
does need to be created from the foo.y
file.

• Many times many things depend on event X
but X can not happen until Y happens. For
example if you need to compile all the .c
files into .o files before you can combine
them into a library then once the library is
made then and only then can you build all
the executables that need that library.

• Depending on what variant of an executable
you are building you may have a total
different set of dependencies for that
executable. For example the Microsoft
version of your program may be totally
different than the Unix one.

Thus one of the most fundamental things any
build manager needs to know is create a "graph"
of all the dependencies (i.e. what depends on
what and what order stuff needs to be built in).

Obviously if you modify only a file or two and
rebuild the project you only need to recreate those
files that depend on the ones you changed. For

Aryeh M. Friedman Page 1

Cook Tutorial

example if I modify foo.y but not ack.c then
ack.c does not need to be recompiled but
foo.c after it is recreated does. All build
managers know how to do this.

3. Cook vs. Make
Many times the contents of entire directories
depend on the building of everything in other
directories. Make has traditionally done this with
"recursive make". There is a basic flaw with this
method though: if you "blindly" make each
directory in some preset order you are doing stuff
that is either unneeded and/or may cause
problems in the build process down the road. For
a more complete explanation, see Recursive Make
Considered Harmful1.

Cook takes the opposite approach. It makes a
complete dependency graph of your entire project
then does the entire "cook" at the root directory of
your project.

4. Teaching Cook about
Dependencies
Each node in a dependency graph has two basic
attributes. The first is what other nodes (if any) it
depends on, and the second is a list of actions
needed to be performed to bring the node up to
date (bring it to a state in which any nodes that
depend on it can use it’s products safely).

One issue we have right off the bat is which node
do we start at. While by convention this node is
usually called ’all’ it does not have to be, as we
will see later it might not even hav e a hard coded
name at all. Once we know where to start we
need someway of linking nodes together in the
dependency graph.

In cook all this functionality is handled by
recipes. In basic terms a recipe is:

• The name of the node so other nodes know
how to link to it (this name can be
dynamic). This name is usually the name
of a file, but not always.

1. Miller, P.A. (1998). Recursive Make Considered
Harmful, AUUGN Journal of AUUG Inc., 19(1), pp.
14-25.
http://aegis.sourceforge.net/auug97.pdf

• A list of other recipes that need to be
"cooked" before this recipe can be
processed. The best way to think of this is
to use the metaphor that cook is based on.
That being in order to make meal at a fine
restaurant you need to make each dish. For
each dish you need to combine the
ingredients in the right order at the right
time. You keep dividing up the task until
you get to a task that does not depend on
something else like seeing if you have
enough eggs to make the bread. A
dependency graph for building a software
project is almost identical except the
ingredients are source code not food.

• A list of actions to perform once all the
ingredient are ready. Again using the
cooking example, in order to make a French
cream sauce you gather all the ingredients
(in cook’s cases the output from other
recipes) and then and only then put the
butter in the pan with the the flour and
brown it, then slowly mix the milk in, and
finally add in the cheese.

So in summary we have the following parts of a
recipe:

• The name of the recipe’s node in the graph

• A list of ingredients needed to cook the
recipe

• A list of steps performed to cook the recipe

From the top level view in order to make a
hypothetical project we do the following recipes:

• We repeatedly process dependency graph
nodes until we get a leaf node (one that
does not have any ingredients). Namely we
go from the general to the specific not the
other way.

• Visit the all recipe which has program1
and program2 as its ingredients

• Visit the program1 node which has
program1.o and libutils.a as its
ingredients

• Visit program1.o which has
program1.c and program1.h as its
ingredients

• Visit program1.c to discover that it is a
leaf node, because the file already exists we
need to do nothing to create it.

Aryeh M. Friedman Page 2

Cook Tutorial

• Visit program1.h to discover that it is a
leaf node, because the file already exists we
need to do nothing to create it.

• Now that we have all the ingredients for
program1.o we can cook it with a
command something like

gcc -c program1.c \
-o program1.o

• Visit the libutils.a node which has
lib1.o as its only ingredient.

• Visit lib1.c to discover that it is a leaf
node, because the file already exists we
need to do nothing to create it.

• Now that we have all the ingredients for
lib1.o we can cook it with a command
something like

gcc -c lib1.c -o lib1.o

• Now that we have all the ingredients for
libutils.a we can cook it with a
command something like

rm libutils.a
ar cq libutils.a lib1.o

• Now that we have all the ingredients for
program1 we can cook it with a
command something like

gcc program1.o libutils.a \
-o program1

• Visit the program2 node which has
program2.o and libutils.a as its
ingredients

• Visit program2.o which has
program2.c and program1.h as its
ingredients

• Visit program2.c to discover that it is a
leaf node, because the file already exists we
need to do nothing to create it.

• Visit program2.h to discover that it is a
leaf node, because the file already exists we
need to do nothing to create it.

• Now that we have all the ingredients for
program2.o we can cook it with a
command something like

gcc -c program2.c \
-o program2.o

• There is no need to visit the libutils.a
node, or any of its ingredient nodes,
because Cook remembers that they hav e
been brought up to date already.

• Now that we have all the ingredients for
program2 we can cook it with a
command something like

gcc program2.o libutils.a \
-o program2

• Return to the all recipe and find that we
have cooked all the ingredients and there
are no other actions for it. We are done and
our entire project is built!

Now what happens if I say modify program2.c
all we have to do is walk to the entire graph from
all and we find that program2.c has changed,
and do any node which depends on
program2.c needs to be brought up to date,
and any nodes which depend on them, and so on.
In this example, this would be program2.c →
program2.o → program2 → all.

5. Recipe Syntax
All statements, recipes and otherwise, are in the
form of

statement;
Note the terminating simicolon (;). An example
statement is

echo aryeh;
The only time the the simicolon (;) is not needed
is in compound statements surrounded by { curly
braces }. In general the convention is to follow
the same general form that C uses, as it is with
most modern programming languages. This
means that for the main part almost everything
you have learned about writing legal statements
works just fine in cook. The only exception are
the [square brackets] used instead of (
parentheses) in most cases.

The general form of a recipe, there are some
advanced options that do not fit well into this
format, is:

name: ingredients
{

actions
}

Note: the actions and ingredients are optional.

Here is a recipe from the above example:
program1.o: program1.c program1.h
{

gcc -c program1.c
-o program1.o;

}

The only thing to remember here is that

Aryeh M. Friedman Page 3

Cook Tutorial

program1.c either has to exist or Cook needs
to know how to cook it. If you reference an
ingredient that Cook does not know how to cook
you get the following error:

cook: program1: don’t know how
cook: cookfile: 1: "program1"

not derived due to errors
deriving "program1.o"

All this says is there is no algorithmic way to
build example1.o that Cook can find.

A cookbook file can contain zero or more recipes.
If there is no default recipe (the first recipe whose
name is hard coded) you get the following error:

cook: no default target

Most of the time this just means that Cook cannot
figure out what the "concrete" name of a recipe is
based solely by reading the cookbook. By default
cook looks for the cookbook in "Howto.cook"
[note 1].

6. A Sample Project
For the remainder of the tutorial we will be using
the following sample project source tree:

Project
Howto.cook
lib

lib1.c
lib2.c
lib.h

prog1
src1.c
src2.c
main.c

prog2
src1.c
src2.c
main.c

doc
prog1

manual
prog2

manual

The final output of the build process will be
completely working and installed executables of
prog1 and prog2 installed in /usr/local/bin and the
documentation being placed in
/usr/local/share/doc/myproj.

7. Our First Cookbook
The first step in making a cookbook is to sketch

out the decencies in our sample project the graph
would be:

lib1.c lib2.c lib.h

lib1.o lib2.o

lib/lib.a

bin/prog2

src1.cmain.c src2.c

main.o src1.o src2.o

src2.y

bin/prog1

main.c src1.c src2.c

main.o src1.o src2.o

Now we know enough to write the first version of
our cookbook. The cookbook which follows
doesn’t actually cook anything, because it
contains ingredients and no actions. We will add
the actions needed in a later section. Here it is:

/* top level target */
all: /usr/local/bin/prog1

/usr/local/bin/prog2
/usr/local/share/doc/prog1/manual
/usr/local/share/doc/prog2/manual
;

/* where to install stuff */
/usr/local/bin/prog1:

bin/prog1 ;
/usr/local/bin/prog2:

bin/prog2 ;
/usr/local/share/doc/prog1/manual:

doc/prog1/manual ;
/usr/local/share/doc/prog2/manual:

doc/prog2/manual ;

/* how to link each program */
bin/prog1:

prog1/main.o
prog1/src1.o
prog1/src2.o
lib/liblib.a ;

bin/prog2:
prog2/main.o
prog2/src1.o
prog2/src2.o
lib/liblib.a ;

Aryeh M. Friedman Page 4

Cook Tutorial

/* how to use yacc */
prog2/src2.c: prog2/src2.y ;

/* how to compile sources */
prog1/main.o: prog1/main.c ;
prog1/src1.o: prog1/src1.c ;
prog1/src2.o: prog1/src2.c ;
prog2/main.o: prog2/main.c ;
prog2/src1.o: prog2/src1.c ;
prog2/src2.o: prog2/src2.c ;
lib/src1.o: lib/src1.c ;
lib/src2.o: lib/src2.c ;

/* include file dependencies */
prog1/main.o: lib/lib.h ;
prog1/src1.o: lib/lib.h ;
prog1/src2.o: lib/lib.h ;
prog2/main.o: lib/lib.h ;
prog2/src1.o: lib/lib.h ;
prog2/src2.o: lib/lib.h ;
lib/src1.o: lib/lib.h ;
lib/src2.o: lib/lib.h ;

/* how to build the library */
lib/liblib.a:

lib/src1.o
lib/src2.o ;

In order to cook this cookbook just type the
cook

command in the same directory as the cookbook
is in.

8. Soft coding Recipes
One of the most glaring problems with this first
version of our cookbook is it hard codes
ev erything. This has two problems:

• We hav e to be super verbose in how we
describe stuff since we have to specify
ev ery single recipe by hand.

• If we add new files (maybe we add a third
executable to the project) we have to
rewrite the cookbook for every file we add.

Fortunately, Cook has a way of automating the
build with implicit recipes. It has a way of saying
how to move from any arbitrary .c file to its .o
file.

Cook provides several methods for being able to
soft code these relationships. This section
discusses file "patterns" that can be used to do
pattern matching on what recipe to cook for a
given file.

Note on pattern matching notation used in this

section:

[string] means the matched pattern.

The first thing to keep in mind about cook’s
pattern matching is once a pattern is matched it
will have the same value for the remainder of the
recipe. So for example if we matched
prog/[src1].c then any other reference to that
pattern will also return src1. For example:

prog/[src1].o: prog/[src1].o ;
if we matched src1 on the first match
(prog1/[src1].o) then we will always match
src1 in this recipe (prog1/[src1].c).

Cook uses the percent (%) character to denote
matches of the relative file name (no path). Thus
the above recipe would be written:

prog/%.o: prog/%.c ;

Cook also lets you match the full path of a file, or
parts of the path to a file. This done with %n
where n is a part number. For example

/usr/local/bin/prog1
could match the pattern

/%1/%2/%3/%
with the parts be assigned

%1 usr
%2 local
%3 bin
% prog1

Note that the final component of the path has no n
(there is no %4 for prog1). If we want to
reference the whole path, Cook uses %0 as a
special pattern to do this.

/usr/local/bin/prog1
could match the pattern

%0%
with the parts be assigned

%0 /usr/local/bin/
% prog1

Patterns are connected together thus %0%.c will
match any .c file in any pattern.

Let’s rewrite the cookbook for our sample project
using pattern matching. The relevant portions of
our cookbook are replaced by

/* how to use yacc */
%0%.c: %0%.y;

/* include file dependencies */
%0%.c: lib/lib.h;

/* how to compile sources */
%0%.o: %0%.c;

Aryeh M. Friedman Page 5

Cook Tutorial

When constructing the dependency graph Cook
will match the the first recipe it sees that meets all
the requirements to meet a given pattern. I.e. if
we have a pattern for prog1/%.c and one for
%0%.o and it needs to find the right recipe for
prog1/src.o it will match the one that appears
first in the cookbook. So if the first one is %0%.c
then it does that recipe even if we meant for it to
match prog1/%.c.

9. Arbitrary Statements
and Variables
Any statement that is not a recipe, and not a
statment inseide a recipe, is executed as soon as it
is seen. For example I can have a Howto.cook
file that only contains the following line:

echo Aryeh;
and when ever I ise the cook command it will
print my name.

This in and upon it self is quite pointless but it
does give a clue about how we can set some
cookbook-wide values. Now the question is how
do we symbolically represent those variables.

Cook has only one type of variable and that is a
list of string literals, i.e. "ack", "foo", "bar",
etc. There are no restrictions on how you name
variables, except they can not be reserved words,
this is pretty close to the restrictions most
programming languages have. There is one major
difference though: variables can start with
numbers and contain punctuation characters.
Additionally you can vary variable names, i.e. the
name of the actual variable can use a variable
expression (this is hard to explain but easy to
show which we will do in a few paragraphs).

All variables, when queried for their value, are [
in square brackets] for example if the "name"
variable contains "Aryeh" then:

echo [name];
Has exactly the same result as the previous
example. Variables are simply set by using var
= value; For example:

name = Aryeh;
echo [name];

Let’s say I need to have two variables called
’prog1_obj’ and ’prog2_obj’ that contain a list of
all the .o ingredients in the prog1 and prog2
directories respectively. Obviously the same
operation that produces the value of prog1_obj is
identical to the one that produces prog2_obj
except it operates on a different directories. So

why then do we need two different operations to
do the same thing, this violates the principle of
any giv en operation it should only occur in one
place. In reality all we need to do is have some
way of changing the just the variable name and
not the values it produces. In cook we do this
with something like [[dir_name]_obj]. The actual
procedure for getting the list of files will be
covered in the "control structures" section.

Let’s revise some sections of our sample project’s
cookbook to take advantage of variables:

/* where to install stuff */
prefix = /usr/local;
idoc_dir = [prefix]/share/doc;
ibin_dir = [prefix]/bin;

/* top level target */
all:

[ibin_dir]/prog1
[ibin_dir]/prog2
[idoc_dir]/prog1/manual
[idoc_dir]/prog2/manual;

/* where to install each program */
[ibin_dir]/%: bin/% ;
[idoc_dir]/%/manual: doc/%/manual ;

As you can see we didn’t make the cookbook any
simpler because we do not know how to
intelligently set stuff based on what the actual file
structure of our project. The only thing we gain
here is the ability to change where we install stuff
very quickly be just changing install_dir. We also
gain a little flexibility in how we name the
directories in our source tree.

10. Using Built-in
Functions
If all you could do was set variables to static
values and do pattern matching cook would not be
very useful, i.e. every time we add a new source
file to our project we need to rewrite the
cookbook. We need some way to extract useful
data from variables and leave out what we do not
want. For example if we want to know what all
the .c files in the prog1 directory are we just ask
for all files that match prog1/%.c. We could use
the match_mask built-in function to extract the
needed sublist of files. Built-in functions can do
many other manipulations of our source tree
contents and how to process them. In general I
will introduce a given built-in function as we
encounter them.

Aryeh M. Friedman Page 6

Cook Tutorial

As far as cook is concerned, for the most part,
functions and variables are treated identically.
This means anywhere where you would use a
variable you can use a function. In general a
function is called like this:

[func arg1 arg2 ... argN]

For example:
name = [foobar aryeh];

11. Source Tree Scanning
The first thing we need to do to automate the
process of handling new files is to collect the list
of source files. In order to do this we need to ask
the operating system to give us a list of all files in
a directory and all it’s subdirectories. In Unix the
best way to do this is with the find(1) command.
Thus to get a complete list of all files in say the
current directory we do:

find . -print
or any variation thereof.

Great, now how do we get the output of find into
a variable so cook can use it. Well, the collect
function does this. We then just assign the results
of collect to a list of files, build experts like to
call this the manifest. So here is how we get the
manifest:

manifest = [stripdot
[collect find . -print]];

That is all nice and well but how do we get the list
of source files in prog1 only, for example.
There is a function called match_mask that
does this. The match_mask function returns all
"words" that match some pattern in our list. For
example to get a list of all .c files in our project
we do:

src = [match_mask %0%.c
[manifest]];

It is fine to know what files are already in our
source tree but what we really want to do is find
the list of files that need to be cooked. We use the
fromto function to do this. The fromto
function takes all the words in our list and
transforms all the names which match to some
other name. For example to get a list of all the .o
files we need to cook we do:

obj = [fromto %0%.c %0%.o
[src]];

It is rare that we need to know about the existence
of .c files since in most cases, unless they are
derived from cooking something else, they either
exist or they do not exist. In the case of them not
existing the .o target for that source should fail.

For this reason we really do not need a src
variable at all. Remember I mentioned that a
function call can be used anywhere a variable can.
This means that we can do the match_mask call
in the same line that we do the fromto. Thus the
new statement is:

obj = [fromto %0%.c %0%.o
[match_mask %0%.c
[manifest]]];

Time to update some sections of our sample
project’s cookbook one more time:

/* info about our files */
manifest =

[collect find . -print];
obj = [fromto %0%.c %0%.o

[match_mask %0%.c
[manifest]]];

/* how to build each program */
prog1_obj = [match_mask

prog1/%.o [obj]];
prog2_obj = [match_mask

prog2/%.o [obj]];
bin/%: [%_obj] lib/lib.a;

/* how to build the library */
lib_obj = [match_mask lib/%.o

[obj]];
lib/lib.a: [lib_obj];

The important thing to observe here is that it is
now possible to add a source file to one of the
probram or library directories and Cook will
automagically notice, without any need to modify
the cookbook. It doesn’t matter whether there are
3 files or 300 in these directories, the cookbook is
the same.

12. Flow Control
If there was no conditional logic in programming
would be rather pointless, who wants to write I
program that can only do something once, the
same is true in cook. Even though the stuff we
need to conditional in a build is often very trivial
as far as conditional logic goes, namely there are
if statements and the equivalent of while loops
and thats all.

If statements are pretty straight forward. If you
are used to C, C++, etc, the only surprise is the
need for the then keyword. Here is a example if
statement:

if [not [count [file]]] then
echo no file provided;

The count function returns the number of words

Aryeh M. Friedman Page 7

Cook Tutorial

in the "file" list and the not function is true if the
argument is 0. Other then that the if statement
works much the way you would expect it to.

Cook has only one type of loop that being the
loop statement and it takes no conditions. A
loop is terminated by the loopstop statement
(like a C break statement). Other then that loops
pretty much work the way you expect them to.
Here is an example loop:

/* set the loop "counter" */
list = [kirk spock 7of9

janeway worf];

/* do the loop */
loop word = [list]
{

/* print the word */
echo [word];

}

13. Special Variables
Like most scripting languages Cook has a set of
predefined variables. While most of them are
used internally by Cook and not by the user, one
of them deserves special mention and that is
target. The target variable has no meaning
out side of recipes but inside recipes it refers to
the current recipe’s target’s "real" name, i.e. the
one that Cook "thinks" it is currently building, not
the soft coded name we provided in the
cookbook. For example in our sample project’s
cook book if we where compiling lib/src1.c
into lib/src.o the %0%.o: %0%.c; recipe
would, as far as Cook is concerned, actually be
lib/src1.o: lib/src1.c; The recipe
name, and thus the [target], of this is set to
the lib/src.o string.

There are other special variables described in the
Cook User Guide. You may want to look them up
and use them when you start writing more
advanced cookbooks.

14. Super Soft coding
Now we know enough so we can make Cook
handle building an arbitrary number of programs
in our sample project. Note the following
example assumes that all program directories
contain a main.c file and no other directory
contains it. The best way to understand what is
needed it to look at the sample cookbook for this
line by line. So here are the rewritten sections of
our sample cookbook:

/* names of the programs */
progs = [fromto %/main.c %

[match_mask %/main.c
[manifest]]];

/* top level target */
all:

[addprefix [ibin_dir]/
[progs]]

[prepost [idoc_dir]/ /manual
[progs]];

/* how to build each program */
loop prog = [progs]
{

[prog]_obj = [match_mask
[prog]/%.o [obj]];

}
bin/%: [%_obj] lib/lib.a;

The basic idea is that we use a loop to create the
list of .o files for all programs and then we use
variable variable names to reference the right one
in the recipe.

15. Scanning for Hidden
Decencies
In most real programs most .c files have a
different set of #include lines in them. For
example prog1/src1.c might include
prog1/hdr1.h but prog1/src2.c does not.
So far we have conveniently avoided this fact on
the assumption that once made .h files don’t
change. Any experience with a non-trivial project
show this is not true. So how do we automatically
scan for these dependencies? It would not only
defeat the purpose of soft coding but would be a
pain in the butt to have to encode this in the
cookbook.

One way of doing it is to scan each .c for
#include lines and say any that are found
represent "hidden" dependencies. It would be
fairly trivial to create a shell script or small C
program that does this. Cook though has been
nice enough to include program that does this for
us in most cases that are not insanely non-trivial.
There are several methods of using c_incl we
will only cover the "trivial" method here, if you
need higher performance refer to the Cook User
Guide, it has a whole chapter on include
dependencies.

The c_incl program essentially just prints a list
of #include files it finds in its argument. To do

Aryeh M. Friedman Page 8

Cook Tutorial

this just do:
c_incl prog.c

Now all we have to do is hav e Cook collect
this output on the ingredients list of our recipe
and boom we have a list of our hidden
dependencies. Here is the rewritten portion of our
sample cookbook for that:

/* how to build each program and
include file dependencies */

%0%.o: %0%.c
[collect c_incl -api %0%.c];

The c_incl -api option means if the file
doesn’t exist, just ignore it.

16. Recipe Actions
Now that we have all the decencies soft coded all
we have to do actually build our project is to tell
each recipe how to actually cook the target from
the ingredients. This is done by adding actions to
a recipe. The actions are nothing more "simple"
statements that are bound to a recipe. This is
done by leaving off the trailing semicolon (;) on
the recipe and putting the actions inside { curly
braces }. This is best shown by example. So
here is our final cookbook for our sample project:

/* where to install stuff */
prefix = /usr/local;
idoc_dir = [prefix]/share/doc;
ibin_dir = [prefix]/bin;

/* info about our files */
manifest =

[collect find . -print];
obj = [fromto %0%.c %0%.o

[match_mask %0%.c
[manifest]]];

/* names of the programs */
progs = [fromto %/main.c %

[match_mask %/main.c
[manifest]]];

/* top level target */
all:

[addprefix [ibin_dir]/
[progs]]

[prepost [idoc_dir]/ /manual
[progs]];

/* how to build each program */
loop prog = [progs]
{

[prog]_obj = [match_mask
[prog]/%.o [obj]];

}
bin/%: [%_obj]
{

gcc [%_obj] -o [target];
}

/* how to build the library */
lib_obj = [match_mask lib/%.o

[obj]];
lib/lib.a: [lib_obj]
{

rm [target];
ar cq [target] [lib_obj];

}

/* how to "install" stuff */
[ibin_dir]/%: bin/%
{

cp bin/% [target];
}
[idoc_dir]/%/manual: doc/%/manual
{

cp doc/%/manual [target];
}

/* how to compile sources*/
%0%.o: %0%.c

[collect c_incl -api %0%.c]
{

gcc -c %0%.c -o [target];
}

17. Advanced Features
Even though the tutorial part of this document is
done, I feel it is important to just mention some
advanced features not covered in the tutorial.
Except for just stating the basic nature of these
features I will not go into detail on any giv en one.

• Platform polymorphism. This is where
Cook can automatically detect what
platform you are on and do some file
juggling so that you build for that platform.

• Support for private work areas. If you are
working within a change management
system, Cook knows how to query it for
only the files you need to work on. This
includes the automatic check-out and in of
private copies of those files.

• Parallel builds. For large projects it is
possible to spread the build over sev eral
processors or machines.

Conditional recipes. It is possible to
execute a recipe one way if certain

Aryeh M. Friedman Page 9

Cook Tutorial

conditions are met and an other way if they
are not.

Many more that are not directly supported by
Cook but can easily be integrated using shell
scripts.

18. Contacts
If you find any bugs in this tutorial please send a
bug report to Aryeh M. Friedman <aryeh@m-
net.arbornet.org>.

The Cook web site is http:-
//www.canb.auug.org.au/˜millerp-
/cook/

If you want to contact Cook’s author, send email
to Peter Miller
<millerp@canb.auug.org.au>.

Aryeh M. Friedman Page 10

