
.

Cook
A File Construction Tool

Reference Manual

Peter Miller
millerp@canb.auug.org.au

.

This document describes Cook version 2.25
and was prepared 17 July 2004.

This document describing the Cook program, and the Cook program itself, are
Copyright © 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
2001, 2002, 2003, 2004 Peter Miller; All rights reserved.

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICU-
LAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if
not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111,
USA.

0

Table of Contents(Cook) Table of Contents(Cook)

The README File . 1
Release Notes . 4
How to Build the Sources . 14

Windows NT . 19
Internationalization . 21

c_incl(1) determine include dependencies . 23
cook(1) a file construction tool . 27
cook_bom(1) bill of materials . 32
cook_lic(1) GNU General Public License . 34
cook_rsh(1) load balancing rsh . 39
cookfp(1) calculate file fingerprint . 41
cooktime(1) set file times . 43
find_libs(1) find pathnames of libraries . 45
make2cook(1) translate makefiles into cookbooks 47
roffpp(1) replace .so requests within *roff sources 50

Reference Manual Cook iii

Permuted Index(Cook) Permuted Index(Cook)

cook_rsh(1) 39 cook_rsh - load balancing rsh
cook_bom(1) 32 cook_bom - bill of materials
cook_bom(1) 32 cook_ bom - bill of materials
cookfp(1) 41 cookfp - calculate file fingerprint
c_incl(1) 23 c_incl - determine dependencies
cook(1) 27 cook - a file construction tool
cook(1) 27 cook - a file construction tool
cook_bom(1) 32 cook_bom - bill of materials
make2cook(1) 47 make2cook - translate makefiles into cookbooks
cookfp(1) 41 cookfp - calculate file fingerprint
cook_rsh(1) 39 cook_rsh - load balancing rsh
cooktime(1) 43 cooktime - set file times
make2cook(1) 47 make2 cook - translate makefiles into cookbooks
c_incl(1) 23 c_incl - determine dependencies
c_incl(1) 23 c_incl - determine dependencies
cook(1) 27 cook - a file construction tool
cookfp(1) 41 cookfp - calculate file fingerprint
cooktime(1) 43 cooktime - set file times
find_libs(1) 45 find_libs - find pathnames of libraries
find_libs(1) 45 find_libs - find pathnames of libraries
cookfp(1) 41 cookfp - calculate file fingerprint
c_incl(1) 23 c_ incl - determine dependencies
make2cook(1) 47 make2cook - translate makefiles into cookbooks
find_libs(1) 45 find_libs - find pathnames of libraries
find_libs(1) 45 find_ libs - find pathnames of libraries
cook_rsh(1) 39 cook_rsh - load balancing rsh
make2cook(1) 47 make2cook - translate makefiles into

cookbooks
make2cook(1) 47 make2cook - translate makefiles into cookbooks
cook_bom(1) 32 cook_bom - bill of materials
find_libs(1) 45 find_libs - find pathnames of libraries
roffpp(1) 50 roffpp - replace .so requests within *roff sources
roffpp(1) 50 roffpp - replace .so requests within *roff sources
roffpp(1) 50 roffpp - replace .so requests within *roff

sources
roffpp(1) 50 roffpp - replace .so requests within * roff sources
cook_rsh(1) 39 cook_rsh - load balancing rsh
cook_rsh(1) 39 cook_ rsh - load balancing rsh
cooktime(1) 43 cooktime - set file times
roffpp(1) 50 roffpp - replace . so requests within *roff sources
roffpp(1) 50 roffpp - replace .so requests within *roff sources
cooktime(1) 43 cooktime - set file times
cook(1) 27 cook - a file construction tool
make2cook(1) 47 make2cook - translate makefiles into cookbooks
roffpp(1) 50 roffpp - replace .so requests within *roff sources

iv Cook Reference Manual

Read Me(Cook) Read Me(Cook)

NAME
cook − a file construction tool

DESCRIPTION
The cook program is a tool for constructing files, and maintaining referential integrity between files. It is
given a set of files to create, and recipes of how to create and maintain them. In any non-trivial program
there will be prerequisites to performing the actions necessary to creating any file, such as include files.
The cook program provides a mechanism to define these.

When a program is being developed or maintained, the programmer will typically change one file of several
which comprise the program. The cook program examines the last-modified times of the files to see when
the prerequisites of a file have changed, implying that the file needs to be recreated as it is logically out of
date.

The cook program also provides a facility for implicit recipes, allowing users to specify how to form a file
with a given suffix from a file with a different suffix. For example, to create filename.o from filename.c

• Cook is a replacement for the traditional
make(1) tool.

• Cook is more powerful than the traditional
make tool.

• There is a make2cook utility included in the
distribution to help convert makefiles into
cookbooks.

• Cook has true variables, not simple macros.

• Cook has user defined functions.

• Cook has a simple but powerful string-based
description language with many built-in
functions. This allows sophisticated filename
specification and manipulation without loss of
readability or performance.

• Cook can build in parallel.

• Cook can distribute builds across your LAN.

• Cook is able to build your project with multiple
parallel threads, with support for rules which
must be single threaded. It is possible to
distribute parallel builds over your LAN,
allowing you to turn your network into a virtual
parallel build engine.

• Cook is able to use fingerprints to supplement
file modification times. This allows build
optimization without contorted rules.

• In addition to walking the dependency graph,
Cook can turn the input rules into a shell script,
or a web page.

• Cook can be configured with an explicit list of
primary source files. This allow the dependency
graph to be constructed faster by not going down
dead ends, and also allows better error messages
when the graph can’t be constructed. This
requires an accurate source file manifest.

• Cook runs on almost any flavor of UNIX. The
source distribution is self configuring using a
GNU Autoconf generated configure script.

• Cook has special cascade dependencies,
allowing powerful include dependency
specification, amongst other things.

If you are putting together a source-code distribution and planning to write a makefile, consider writing a
cookbook instead. Although Cook takes a day or two to learn, it is much more powerful and a bit more
intuitave than the traditional make(1) tool. And Cook doesn’t interpret tab differently to 8 space characters!

Reference Manual Cook 1

Read Me(Cook) Read Me(Cook)

ARCHIVE SITE
The latest version of cook is available on the Web from:

URL: http://www.canb.auug.org.au/˜millerp/cook/
File: cook-2.25.README # the README from the tar file
File: cook-2.25.lsm # LSM format description
File: cook-2.25.spec # RedHat package specification
File: cook-2.25.rm.ps.gz # PostScript of the Reference Manual
File: cook-2.25.ug.ps.gz # PostScript of the User Guide
File: cook-2.25.tar.gz # the complete source

This Web page also contains a few other pieces of software written by me. Please have a look if you are
interested.

Cook is also carried by sunsite.unc.edu in its Linux archives. You will be able to find Cook on any
of its mirrors.

URL: ftp://sunsite.unc.edu/pub/Linux/devel/make/
File: cook-2.25.README # the README from the tar file
File: cook-2.25.lsm # LSM format description
File: cook-2.25.spec # RedHat package specification
File: cook-2.25.rm.ps.gz # PostScript of the Reference Manual
File: cook-2.25.ug.ps.gz # PostScript of the User Guide
File: cook-2.25.tar.gz # the complete source

This site is extensively mirrored around the world, so look for a copy near you (you will get much better
response).

MAILING LIST
A mailing list has been created so that users of cook may exchange ideas about how to use the cook
program. Discussion may include, but is not limited to: bugs, enhancements, and applications. The list is
not moderated.

The address of the mailing list is
cook-users@canb.auug.org.au

Please do not send subscribe requests to this address.

To subscribe to this mailing list, send an email message to majordomo@canb.auug.org.au with a
message body containing the single line

subscribe cook-users
If you have an email address which is not readily derived from your mail headers (majordomo is only a Perl
program, after all) you will need to use a message of the form:

subscribe cook-users address
where address is the email address to which you want messages sent.

The software which handles this mailing list cannot send you a copy of the cook program.

BUILDING COOK
Full instructions for building the cook program may be found in the BUILDING file included in this
distribution.

2 Cook Reference Manual

Read Me(Cook) Read Me(Cook)

COPYRIGHT
cook version 2.25
Copyright © 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
2003, 2004 Peter Miller; All rights reserved.

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
ev en the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write
to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA.

It should be in the LICENSE file included with this distribution.

AUTHOR
Peter Miller E-Mail: millerp@canb.auug.org.au
/\/* WWW: http://www.canb.auug.org.au/˜millerp/

Reference Manual Cook 3

Read Me(Cook) Read Me(Cook)

NEW IN THIS RELEASE
A number of features have been added to cook with this release. The following list is only a summary; for
excruciating detail, and also acknowlegements of those who generously sent me feedback, please see the
etc/CHANGES.* files included in this distribution.

Version 2.25 (10-Jun-2004)
• The ./configure script now understands the --with-nlsdir option, used to specify the install location of the
.mo files.

• A bug has been fixed on Linux (and it only ever ocurred on Linux) where cook would suddenly stop for
no reason with exit status 1. Turns out that sometimes fflush(stderr) returns an EAGAIN error.

• A bug has been fixed which caused the cook −script option to produce invalid shell scripts when a recipe
body contained no statements.

• A bug has been fixed in the graph file pair generation, used to generate warnings about dangerous
#include-cooked contents.

• The metering output now includes elapsed times and percentages.

• There is a new tell-position setting, so that when Cook prints a command it is about to run, it includes the
file name and line nunmber of the command. This can be useful when debugging cookbooks.

• A bug has been fixed in the output line wrapping. Once again it adapts to the window width.

Version 2.24 (17-Jul-2003)
• A major problem with parallel execution and hangs has been fixed. The table indexed by process ID was
now growing correctly.

• Some words have been added to the User Guide about the SHELL environment variable, and the effects of
errors in the .profile file.

• Building RPMs has been improved, and the spec file now uses more modern RPM features.

• Building on Cygwin has been improved.

• Building on AIX has been improved.

Version 2.23 (1-May-2003)
• Build problem encountered using newer bersions of GNU Bison mave been fixed.

• For Cook developers, there is now a .ae file on the web site.

• An error in the documentation of the errok flag has been fixed.

Version 2.22 (28-Feb-2003)

4 Cook Reference Manual

Read Me(Cook) Read Me(Cook)

• A small problem with fingerprints has been fixed.

• A tutorial has been contributed.

• You can now hav e international characters in comments.

• A C++ cookbook has been added.

• A test failure on Cygwin has been fixed.

• The [read] and [read_lines] builtin functions have been added. See the Reference Manual for more
information.

Version 2.21 (26-Aug-2002)
• The c_incl(1) command now accepts the −stripdot and −nostripdot options. These may be used to control
the removal of redundant leading dot directories.

• A bug has been fixed where cascade recipes failed to heed the stripdot setting.

• There is a new [stripdot] function, so that you can strip leading dot directories from file names
within functions.

• A bug has been fixed in how the builtin functions which manipulate build graphs were called. This fixed a
problem with freeing a string which had already been freed.

Version 2.20 (6-Jun-2002)
• There is a fix for the build problems caused by recent GNU Gettext releases.

• The fingerprint handling is now more robust, particularly when faced with files that move backwards in
time.

• There is a fix for the build problems caused by recent Bison releases.

Version 2.19 (19-Feb-2002)
• Some introduced with recent versions of GNU Bison have been fixed. Bison’s include file insulation
didn’t use YY in the insulating symbol (just to be completely inconsistent) and in another case a namespace
clash occurred for a function name.

• The generated Makefile has been improved, along with other small build and install improvements.

• A top-level fail statement how halts the parse as soon as it is executed. This will make it more useful for
checking build environments.

• Documentation about cook_rsh(1) has been added to the Parallel chapter of the User Guide.

Version 2.18 (15-Oct-2001)
• A bug has been fixed in the ingredients-fingerprint recipe attribute. It was failing to save the fingerprint
cache file in some cases, and thus came to incorrect conclusions on following runs.

• The (exists) ingredients attribute has been fixed so that it no longer implies behavious rimilar to set
shallow.

• There is a new cook_rsh(1) program, for use with the host-binding recipe attribute, which allows you to
load balance builds across classes of hosts. See cook_rsh(1) and the Parallel chapter of the User Guide for
more information.

• Some build problems have been fixed on various platforms.

• More keywords are now understood for M4 include directives.

Version 2.17 (25-Apr-2001)

Reference Manual Cook 5

Read Me(Cook) Read Me(Cook)

• When using file fingerprints, the way the .cook.fp file is written has been changed, so that the timestamp
of the containing directory is modified much less often. This is useul in combination with the cook_bom(1)
utility.

• A bug has been fixed under Cygwin, where archive members were not being fingerprinted correctly.

• A bug has been fixed in the [quote] function. It now quotes all sh(1), csh(1) and bash(1) special
characters correctly.

• A bug has been fixed in the [uptodate] function. It now works as advertised.

• There is a new ingredients-fingerprint recipe flag. This means that you can now cause a recipe to re-
trigger when the ingredients list changes. This is especially useful when a library has a file removed.

• The dependency graph can now hav e the edge types specified. The ‘‘weak’’ edge type if useful for
managing links, and the ‘‘exists’’ edge type is useful for managing version stamps. See the User Guide for
more information.

Version 2.16 (25-Oct-2000)
• The stringset function now accepts a ‘+’ operator. While union is implicit, the apparrently redundant ‘+’
operator is useful for cancelling the other operators.

• The ‘‘reason and fingerprint bug’’ has been fixed. This caused a mysterious error message to appear
sometimes when using the -reson option incombination with fingerprints.

• The % and %n patterns are now allowed to match the empty string, provided they aren’t the first thing in
the pattern (otherwise undesirable absolute path problems can occur).

• The c_incl(1) command now accepts ‘-’ as a file name on the command line, meaning standard input.

• Some improvements have been made to the Cygwin support, extending the ‘‘.exe’’ automatic executable
suffix coverage to a couple more places.

• A bug in the ‘‘c’’ cookbook has been fixed, which was getting .h dependency files wrong.

Version 2.15 (11-Apr-2000)
• The C_incl(1) problem with absolute paths has been fixed.

• A bug has been fixed which caused problems on Solaris and SGI, where Cook would report a No child
processes error.

Version 2.12 (28-Mar-2000)
• The c_incl program now has a -quote-filenames option, which means that you can have filenames with
spaces and special characters in them.

• A bug in the c_incl program’s path flattening has been fixed.

• A small Y2K bug has been fixed in the date parsing used by the cooktime(1) command.

• A bug which caused the -parallel option to lose track of processes when you used [execute] in a recipe
body has been fixed.

• The restrictions on the placement of the placement of %0 in a pattern have been dropped; too many
people didn’t like it. This does not break any cookbooks.

• Cook now copes with the absence of the HOME environment variable. This was a problem for CGI
scripts.

Version 2.11 (4-Nov-1999)

6 Cook Reference Manual

Read Me(Cook) Read Me(Cook)

• Numerous portability problems have been fixed in the configure and build.

• A bug has been fixed which prevented Cook from working correctly when run by some versions of
cron(8) and at(1).

• There is a new cook_bom --ignore option, allowing you to nominate file patterns that you don’t want in
the file lists.

• There is a new [__FUNCTION__] variable, which contains the name of the executing function, which
suppliments the existing [__FILE__] and [__LINE__] variables.

• Functions now hav e local variables, just put the word local on the left-hand-side of the first assignment.
Local variables are reentrant and thread-safe.

Version 2.10 (6-Sep-1999)
• The [print] and [write] functions now work more sensably with the −SCript option.

• The fingerprint code has been improved. It now does considerably fewer redundant fingeprint
calculations, resulting is some very welcome speed improvements.

• The behaviour of the remote shell invocation to cope with rshd at the remote end failing to spawn a shell,
and it copes with the default shell at the remote end not being the Bourne shell.

• The −PARallel behaviour has been improved, so that it now looks for child process who have finished
more than it looks for recipes to run. This doesn’t change the semantics any, but it matches user
expectations far better (and results in shorter-lived zombie processes).

• The set meter recipe flag works once more. (It stopped working when the parallel modifications were
made, and mysteriously forgotten until now.)

• There are some changes made to the fingerprinting code to detect when files under ClearCase move
backwards in time (because the underlying file version is ‘‘uncovered’’) meaning that the derived (object)
files need to be rebuilt.

• There is a new [mtime-seconds] function, similar to the [mtime] function, except that it returns seconds
since the epoch, rather than a human readable date. More useful to handing to [expr].

• A bug has been fixed on SGI IRIX which failed to cope with not being able to create directories because
they already exist.

• Ingredient recipes (ones with no body) may now hav e a double colon rather than a single colon, even
when there is more than on target specified. Some users may find this a more natural syntax for ingredients
recipes.

• The [expr] function now reports an error when given a number too big to represent, rather than quietly
returning wrong answers. The range of representable values depends on your system.

• Cook now works with GNU Regex correctly on Windows-NT.

Version 2.9 (27-May-1999)

Reference Manual Cook 7

Read Me(Cook) Read Me(Cook)

• There is a new ‘‘for each’’ style looping construct. See the User Guide for more information.

• It is now possible to use regular expression patterns, instead of Cook’s native patterns. You can set this
for a whole cookbook or individual recipes. The default is to use Cook’s native patterns. See the File
Name Patterns chapter of the User Guide for more information.

• A bug which caused host-binding and single-thread to core dump has been fixed.

• All text file input now copes with CRLF sequences, so mixing NT and Unix builds on the one file server
no longer creates problems.

• Fingerprints are now cached per-directory, rather than one huge file for an entire directory tree. This is
more useful in recursive build and [search_list] situations.

• The [cando], [cook] and [uptodate] functions now return lists of successful files, rather than a simple
true/false result.

• The [in] and [matches] functions now return the list index (1 based) of the matching word. See the User
Guide for more information.

• There is a new cook -web option, to print a HTML web page on the standard output, representing the
dependency graph. This is useful in documenting the build process, or debugging cookbooks.

• There is a new cook --fingerprint-update option which scans the directory tree below the current directory
and updates the file fingerprints. This helps when you use another tool (such as RCS or ClearCase) which
alters the file but preserves the file’s modification time.

• There is a new [write] function for writing text files. This is useful for coping with Windows-NT’s
absurdly short command lines.

Version 2.8 (1-Feb-1999)
• The remote host-binding code has been improved to cope with staggeringly long commands (which
tended to make rsh(1) barf), and also wierd and wonderfull $SHELL settings.

• The #include directive now accepts more than one file, to be more symmetric with the #include-cooked
directive.

• A bug has been fixed where cooktime gav e an incorrect error message if setting the file’s utimes failed.

• The configure script has been improved for use on non-UNIX systems.

• There is a new builtin [cook] function, a natural companion for the [cando] and [uptodate] functions. See
the Cook User Guide for more information.

Version 2.7 (30-Dec-1998)
• There is a new cook_bom(1) command (Bill Of Materials). This may be used to efficiently scan a
directory tree for files, so that ingredients lists may be produced automatically. See cook_bom(1) for more
information.

• There is a new assign-append statement, so you can now use += to append to the value of a variable. See
the User Guide for more information.

• There is a new gate-first recipe flag, which causes the recipe gate to be evaluated before the ingredients
are derived, rather than after.

• The c_incl(1) command has a new --interior-files option, so you can tell it about include files that don’t
exist yet. This is helpful when they are generated, i.e. they are interior files of the dependency graph, hence
the option name.

• There is a new [interior-files] function, which returns the files interior to the dependency graph
(constructed by a recipe), and a complementatry [leaf-files] function, which returns the leaf files of the
dependency graph (not constructed by any recipe).

• There is a new ‘‘no-include-cooked-warning’’ flag, if you want to suppress the warnings about derived file
dependencies in include-cooked files.

• There is a new relative_dirname built-in function, similar to the existing dirname function, but it returns

8 Cook Reference Manual

Read Me(Cook) Read Me(Cook)

‘‘.’’ for files with no directory part, rather than the absolute path of the current directory.

Version 2.6 (0-Nov-1998)
• Cook has been ported to Windows-NT using CygWin32. See the BUILDING file for details.

• There are two new functions (dos-path and un-dos-path) for use when invoking non-CygWin32
WindowsNT programs. See the Cook User Guide for more information.

• Fingerprints now work meaningfully with directories.

• A bug has been fixed in the pattern matching code. It would sometimes cause core dumps.

• A bug involving fingerprints in combination with the search_list has been fixed. Cook would occasionally
conclude that a shallow target was up-to-date when a shallow ingredient was edited to be the same as a
deeper ingredient.

• A bug has been fixed in cooktime. It would use an inappropriate timezone offset on some systems.

Release 2.5 (2-Sep-1998)
• A problem which caused some tests to fail on Solaris’ tmpfs now has a work-around.

• The ‘‘setenv’’ statement has finally been documented. It’s been in the code tfor years, but I could never
figure out why folks weren’t using it!

• A number of build problems on various systems have been fixed.

Release 2.4 (21-Jul-1998)
• There is a new form of dependencies. Known as cascaded dependencies, they allow the user to associate
additional dependencies with an ingredient. For example, a C source file can be associated with cascaded
include dependencies. This means that all files which depend on the C source file, also depend on the
included files. The Cook Reference Manual has been updated to include this new functionality.

• There is a new section of the Cook Reference Manual giving suggestions and a template for building large
projects.

• There is a new [expr] function, to calculate simple arithmetic expressions. See the User Guide for
more information.

• There is a new c_incl -no-recursion option, to prevent scanning nested includes. This is of most use when
combined with the new cascade dependencies.

• There is a new [exists-symlink] function, which may be used to test for the existence of symlinks.
The [exists] function follows symbolic links, and is not useful when manipulating the links themselves.

Release 2.3 (20-May-1998)
• There are 6 new special variables: graph_leaf_file, graph_leaf_pattern, graph_interior_file,
graph_interior_pattern, graph_exterior_file and graph_exterior_pattern. These variables may be used to
define the leaves of the derivation graph (the accept forms), and non-leave of the graph (the reject forms).
This can make the graph derivation faster, and greatly improves some error messages. This functionality is
of most use when you have an exact source file manifest, e.g. from a software configuration management
system. See the User Guide for more information.

• The %0 pattern element has been extended to permit the matching of absolute paths.

Release 2.2.2 (10-Dec-1997)
• There is a new statement type, allowing functions to be invoked as subroutines in any place where a
command may be invoked. See the User Guide for more information.

• A number of problems with installing Cook have been fixed. This includes changing -mgm to -mm for
the documnetation formatting, and missing include dependencies and missing rules for installing the man
pages.

• There is a new ‘‘print’’ builtin function. When combined with the new function call statement, this
provides a way of printing information without invoking ‘‘echo’’. See the User Guide for more
information.

Reference Manual Cook 9

Read Me(Cook) Read Me(Cook)

• Cook now defaults the language to ‘‘en’’ internally if neoither the LANG nor LANGUAGE environment
variable was set. This gives better error messages.

Release 2.2.1 (04-Nov-1997)
• A bug was fixed where a recipe would fail to trigger if some, but not all, of its targets were not present,
but the existing targets were up-to-date. This bug was introduced in the inference engine re-write.

Release 2.2 (31-Oct-1997)
• The c_incl utility has had two new languages added. It now understands M4, and also has an
‘‘optimistic’’ language which can scan many assemblers and even some high-level languages. See
c_incl(1) for more information.

• The c_incl utility also has a new --no-absolute-path option, to supress scanning and reporting of
such files. See c_incl(1) for more information.

• There is a new warning added for dependencies on derived ingredients when this information resides
solely in derived cookbooks included using the #include-cooked facility. This assists in detecting
problems which may preclude a successful ‘‘clean’’ build.

• This release adds a number of cookbook functions to the distrubuted cookbooks. These may be used by
adding a

#include "functions"
line to your cookbook. See the Cook User Guide for more information.

• This release fixes a bug where the graph walking phase ignored interrupts until something went wrong.

• This release fixes a bug where make2cook did not correctly translate ‘‘%’’ into sematicly equivalent Cook
constructs.

Release 2.1 (12-Oct-1997)
• It is possible to specify that a command is to be executed on a specific machine or machines. This can be
useful for restrictively licensed third party software tools.

• The parallel functionality has been extended to implement a virtual parallel machine on a LAN.

• Fingerprinting has been enhanced to be more informative, and to adjust file modification times so that
subsequest fingerprint-less runs will not find too much to do.

• The #line directive is now available, for better diagnostics of generated cookbooks. The __FILE__
and __LINE__ variable are also available.

• There is now a thread-id variable, to obtain a thread-unique value for use in generating temporary file
names or variable names, etc, which are unique to a thread.

• Added the wordlist function and the command-line-goals variable for compatibility with GNU
Make. Updated make2cook to understand them.

Release 2.0.1
• An install problem in the generated Makefile, to do with the the manuals, has been fixed.

Release 2.0 (11-Sep1997)

10 Cook Reference Manual

Read Me(Cook) Read Me(Cook)

Development of this release was generously supported by Endocardial Solutions, Inc.

• Parallel execution is now supported. If you have a multi-processor machine, you can specify the number
of parallel processing threads with the -PARallel command line option, or via the [parallel_jobs] variable.
By using the [os node] function, the [parallel_jobs] variable can be set appropriately for the host machine
automatically by the cookbook. There is a new single-thread keyword to support single threading
recipes which cannot be paralleized.

• The dependency graph is now constructed differently. This gives exactly the same results, but the order of
evaluation of recipes is a little more random. This different graph construction is able to give better error
messages, better -Reason information, and allows the introduction of parallel recipe evaluation if you have
a multi-processor computer.

• Recipes which use c_incl(1) to calculate their dependencies in the ingredients section will need a small
modification − they will need to use the --Absent-Program-Ignore option. See the User Guide for
more information.

• You can now print pair-wise file dependencies by using the -PAirs option.

• You can now print a shell script which approximates the actions cook would take when building the
targets by using the -SCript option.

• There is a new ‘‘shallow’’ recipe flag, allowing you to specify that the targets of a recipe are required to be
in the top-level directory, not further down the search_list path.

• You may now define user-written functions in the cookbook to supplement the built-in functions. Your
functions will be called in the same manner as built-in functions. There are new function and return
keywords to support definition of functions.

• The progress indicators produced by the -STar option now hav e more detail: + means that the cook book
is being read, * means that the graph is being constructed, and # means that the graph is being walked.

Release 1.11 (14-Jun-1977)
• Fixed a bug in the pattern matching which caused %0 (when not at the start of the pattern) to fail to match
the empty string.

• The install locations have been changed slightly to conform better to the GNU filesystem standards, and to
take advantage of the additional install location options of the configure scripts generated by GNU
Autoconf.

Release 1.10
• Error messages have been internationalized. It is now possible to get error messages in your native
language, if it is supported.

• The cook command now accepts a -no-include-cooked option, to disable any cooking of the #include-
cooked files.

• The cook -TRace option has been renamed -Reason. This is thought to more accurately reflect what it
does.

• The cook -Reason output has been changed to cite cookbook file names and line numbers, in order to be
more useful. In addition, more reason messages carry location information.

Reference Manual Cook 11

Read Me(Cook) Read Me(Cook)

Release 1.9
• There are new ‘‘f77’’ and ‘‘g77’’ cookbooks, to allow Fortran sources, in addition to C sources.

• There is a new [options] function, which expands to the current settings of the command line options.
This is useful for recursive cook directory structures. See the Reference Manual for more information.

• There is a new ‘‘recursive’’ cookbook, to assist in constructing recursive cook structures.

• The find_libs program now understands about shared libraries.

• A bug which made the builtin [glob] function far to generous has been corrected.

• A bug which caused some expression evaluation errors to be ignored has been corrected.

• The ‘‘set update’’ flag has been re-named the ‘‘set time-adjust’’ flag, to more closely describe what it
does. The old name will continue to work indefinitely.

• There is a new ‘‘set time-adjust-back’’ flag, which sets recipe target times to be exactly one (1) second
younger than the youngest ingredient. This is usually an adjustment into the recent past.

Release 1.8
• The fingerprint code has been improved to work better with the search_list functionality.

• The diagnostics have been improved when cook ‘‘don’t know how’’. A list of attempted ingredients is
included in the error message.

• There is a new mkdir recipe flag. This creates recipe target directories before the recipe body is run. See
the Reference Manual for more information.

• There is a new unlink recipe flag. This unlinks recipe targets before the recipe body is run. See the
Reference Manual for more information.

• There is a new recurse recipe flag. This overrides the infinite loop recipe heuristic, allowing recipes to
recuse upon themselves if one of their ingredients matches one of their targets. See the Reference Manual
for more information.

Release 1.7
• The AIX code to handle archive files has been fixed.

• The fingerprint code now works on 64-bit systems.

Release 1.6
• Fixed a bug in the leading-dot removal code, and added an option to make it user-settable. Fixed a bug in
the search_path depth code.

Release 1.5
• The c_incl program now correctly prints the names of absent include files, causing them to be cooked
correctly in a greater number of cases.

• Recipes with no ingredients are now only applied if the target is absent. To still use the previous
behaviour, use the "set force" clause on the recipe.

• It is now possible to supplement the last-modified time with a fingerprint, so cook does even fewer
unnecesary recompilations than before. Put the statement

set fingerprint;
somewhere near the top of your Howto.cook file for this to be the default for your project.

• There is a new form of include directive:
#include-cooked filename...

When files are included in this way, cook will check to make sure they are up-to-date. If not, they will be
cooked, and then cook will start again and re-read the cookbook. This is most often used for maintaining
include-dependency files.

• Cook now configured using a program called configure, distributed with the package. The configure
program is generated by GNU Autoconf. See the BUILDING file for more details.

• The semantics of search_list have been improved. It is now guaranteed that when ingredients change they

12 Cook Reference Manual

Read Me(Cook) Read Me(Cook)

result in targets earlier in the search_list being updated.

• There is now a make2cook translator, to translate Makefile files into Howto.cook files. Most of the GNU
Make extensions are understood. There is no exact semantic mapping between make and cook, so manual
editing is sometimes required. See make2cook(1) for more information.

• Cook now understands archive member references, in the same format as used by make, et al. Archive
member references benefit from stat caching and fingerprinting, just as normal files do.

Release 1.4
• The cook program is now known to work on more systems. Most changes were aimed at improving
portability, or avoiding problems specific to some systems.

• The GNU long option name convention is now understood. Option names for cook were always long, so
this mostly consists of ignoring the extra leading ’-’. The "--foo=bar" convention is also understood for
options with arguments.

• Tests which fail now tell you what it was they were testing for. This will give the user some idea of what
is happening.

Reference Manual Cook 13

Build(Cook) Build(Cook)

NAME
cook − a file construction tool

SPACE REQUIREMENTS
You will need about 5MB to unpack and build the Cook package. Your milage may vary.

BEFORE YOU START
There are a few pieces of software you may want to fetch and install before you proceed with your
installation of Cook.

Please note: if you install these packages into /usr/local (for example) you must ensure that the ./configure
script is told to also look in /usr/local/include for include files (CFLAGS), and /usr/local/lib for library files
(LDFLAGS). Otherwise the ./configure script will incorrecly conclude that they hav e not been installed.

GNU Gettext
The Cook package has been internationalized. It can now print error messages in any of the
supported languages. In order to do this, the GNU Gettext package must be installed before you
run the configure script as detailed in the next section. This is because the configure script looks
for it. On systems which use the GNU C library, version 2.0 or later, there is no need to explictly
do this as GNU Gettext is included. Remember to use the GNU Gettext configure --with-gnu-
gettext option if your system has native gettext tools.

GNU rx
Cook needs regular expressions to operate correctly. Get a copy from your nearest GNU mirror.
On systems which use the GNU C library, version 2.0 or later, there is no need to explictly do this
as GNU rx is included.

GNU Groff
The documentation for the Cook package was prepared using the GNU Groff package. This
distribution includes full documentation, which may be processed into PostScript or DVI files at
install time − if GNU Groff has been installed. You must use GNU Groff version 1.15 or later.

On Solaris, you may need to edit the Makefile to change the groff −man and −mm options to
−mgan and −mgm instead.

Bison If your operating system does not have a native yacc(1) you will need to fetch and install GNU
Bison in order to build the Cook package.

GCC You may also want to consider fetching and installing the GNU C Compiler if you have not done
so already. This is not essential.

The GNU FTP archives may be found at ftp.gnu.org, and are mirrored around the world.

SITE CONFIGURATION
The Cook package is configured using the configure program included in this distribution.

The configure shell script attempts to guess correct values for various system-dependent variables used
during compilation, and creates the Makefile and common/config.h files. It also creates a shell script
config.status that you can run in the future to recreate the current configuration.

Normally, you just cd to the directory containing Cook’s source code and type
% ./configure
...lots of output...
%

If you’re using csh on an old version of System V, you might need to type
% sh configure
...lots of output...
%

instead to prevent csh from trying to execute configure itself.

Running configure takes a minute or two. While it is running, it prints some messages that tell what it is
doing. If you don’t want to see the messages, run configure using the quiet option; for example,

% ./configure --quiet

14 Cook Reference Manual

Build(Cook) Build(Cook)

%

There is a known problem with GCC 2.8.3 and HP/UX. You will need to set CFLAGS = -O in the
generated Makefile. (The configure script sets it to CFLAGS = -O2.) This is because the code
optimization breaks the fingerprints. If test 46 fails (see below) this is probably the reason.

To compile the Cook package in a different directory from the one containing the source code, you must
use a version of make that supports the VPATH variable, such as GNU make. cd to the directory where you
want the object files and executables to go and run the configure script. configure automatically checks for
the source code in the directory that configure is in and in .. (the parent directory). If for some reason
configure is not in the source code directory that you are configuring, then it will report that it can’t find the
source code. In that case, run configure with the option --srcdir=DIR, where DIR is the directory that
contains the source code.

By default, configure will arrange for the make install command to install the Cook package’s files in
/usr/local/bin, /usr/local/lib, /usr/local/share and /usr/local/man. There are a number of options which
allow you to control the placement of these files.

--prefix=PA TH
This specifies the path prefix to be used in the installation. Defaults to /usr/local unless otherwise
specified.

--exec-prefix=PA TH
You can specify separate installation prefixes for architecture-specific files files. Defaults to
${prefix} unless otherwise specified.

--bindir=PA TH
This directory contains executable programs. On a network, this directory may be shared
between machines with identical hardware and operating systems; it may be mounted read-only.
Defaults to ${exec_prefix}/bin unless otherwise specified.

--datadir=PA TH
This directory contains installed data, such as the documentation and cookbooks distributed with
Cook. On a network, this directory may be shared between all machines; it may be mounted
read-only. Defaults to ${prefix}/share/cook unless otherwise specified. A ‘‘cook’’ directory will
be appended if there is none in the specified path.

--libdir=PA TH
This directory contains installed data. On a network, this directory may be shared between
machines with identical hardware and operating systems; it may be mounted read-only. Defaults
to ${exec_prefix}/lib/cook unless otherwise specified. A ‘‘cook’’ directory will be appended if
there is none in the specified path.

--mandir=PA TH
This directory contains the on-line manual entries. On a network, this directory may be shared
between all machines; it may be mounted read-only. Defaults to ${prefix}/man unless otherwise
specified.

--with-nlsdir=PA TH
This directory contains the install error message catalogues. On a network, this directory may be
shared between machines with identical hardware and operating systems; it may be mounted
read-only. Defaults to --libdir unless otherwise specified.

configure ignores most other arguments that you give it; use the --help option for a complete list.

Reference Manual Cook 15

Build(Cook) Build(Cook)

On systems that require unusual options for compilation or linking that the Cook package’s configure script
does not know about, you can give configure initial values for variables by setting them in the environment.
In Bourne-compatible shells, you can do that on the command line like this:

$ CC=’gcc -traditional’ LIBS=-lposix ./configure
...lots of output...
$

Here are the make variables that you might want to override with environment variables when running
configure.

Variable: CC
C compiler program. The default is cc.

Variable: CPPFLAGS
Preprocessor flags, commonly defines and include search paths. Defaults to empty. It is common
to use CFLAGS=-I/usr/local/include to access other installed packages.

Variable: INSTALL
Program to use to install files. The default is install if you have it, cp otherwise.

Variable: LIBS
Libraries to link with, in the form -lfoo -lbar. The configure script will append to this, rather
than replace it. It is common to use LIBS=-L/usr/local/lib to access other installed
packages.

Variable: NLSDIR
Similar to the --with-nlsdir option.

If you need to do unusual things to compile the package, the author encourages you to figure out how
configure could check whether to do them, and mail diffs or instructions to the author so that they can be
included in the next release.

BUILDING COOK
All you should need to do is use the

% make
...lots of output...
%

command and wait. When this finishes you should see a directory called bin containing nine files: c_incl,
cook, cookfp, cooktime, find_libs, make2cook and roffpp.

cook cook program is a file construction tool, and may invoke the following tools in some of its
recipes.

cookfp The cookfp program is a utility distributed with Cook which calculates the fingerprints of files. It
uses the same algorithm as the fingerprints used by cook itself. For more information, see
cook(1) and cookfp(1).

cooktime
The cooktime program is a utility distributed with Cook which allows the time-last-modified and
time-last-accessed stamps of files to be set to specific times. For more information, see
cooktime(1).

c_incl The c_incl program is a utility distributed with Cook which examines C files and determines all
the files it includes directly and indirectly. For more information, see c_incl(1).

find_libs
The find_libs program is a utility distributed with Cook which tracks down the names of library
files, given cc-style library options (-L and -l). For more information, see find_libs(1).

make2cook
The make2cook program is a utility to help convert Makefiles into cookbooks. An exact 1:1
semantic mapping is not possible, so some addition editing is often required.

16 Cook Reference Manual

Build(Cook) Build(Cook)

roffpp The roffpp program is a utility distributed with Cook which acts as a proprocessor for *roff files,
removing source (.so) directives. It accepts include search path command line options just as
/lib/cpp does. For more information, see roffpp(1).

You can remove the program binaries and object files from the source directory by using the
% make clean
...lots of output...
%

command. To remove all of the above files, and also remove the Makefile and common/config.h and
config.status files, use the

% make distclean
...lots of output...
%

command.

The file etc/configure.in is used to create configure by a GNU program called autoconf . You only need to
know this if you want to regenerate configure using a newer version of autoconf .

TESTING COOK
The Cook program comes with a test suite. To run this test suite, use the command

% make sure
...lots of output...
Passed All Tests
%

The tests take a few seconds each, with a few very fast, and a couple very slow, but it varies greatly
depending on your CPU.

If all went well, the message
Passed All Tests

should appear at the end of the make.

Known Problems
If test 46 fails, this is often caused by optimization bugs in gcc. Edit the Makefile to change -O2 to -O,
and delete common/fp/*.o to cause them to be re-built. Make and test again.

If you are using Sun’s tmpfs file system as your /tmp directory, some tests will fail. This is because the
tmpfs file system does not support file locking. Set the COOK_TMP environment variable to somewhere
else before running the tests. Something like

% setenv COOK_TMP /usr/tmp
%

is usually sufficient if you are using C shell, or
$ COOK_TMP=/usr/tmp
$ export COOK_TMP
$

if you are using Bourne shell. Remember, this must be done before running the tests.

Tests 121 and 122 can sometimes have problems on Solaris, where they giv e false negatives. If you work
out why, please let the author know.

INSTALLING COOK
As explained in the SITE CONFIGURATION section, above, the Cook package is installed under the
/usr/local tree by default. Use the --prefix=PA TH option to configure if you want some other path.
More specific installation locations are assignable, use the --help option to configure for details.

All that is required to install the Cook package is to use the
% make install
...lots of output...
%

command. Control of the directories used may be found in the first few lines of the Makefile file and the

Reference Manual Cook 17

Build(Cook) Build(Cook)

other files written by the configure script; it is best to reconfigure using the configure script, rather than
attempting to do this by hand.

PRINTED MANUALS
The easiest way to get copies of the manuals is to get the cook.2.25.rm.ps.gz and cook.2.25.ug.ps.gz files
from the archive site. These are compressed PostScript files of the Reference Manual and User Guide,
respectively. The Reference Manual (about 36 pages) contains the README file, the BUILDING file and
internationalization notes, as well as all of the manual pages for all of the commands. The User Guide
(about 56 pages) tells you how to use the Cook package.

This distribution contains the sources to all of the documentation for Cook. The author used the GNU groff
package and a postscript printer to prepare the documentation. If you do not have this software, you will
need to substitute commands appropriate to your site.

If you have the GNU Groff package installed before you run the configure script, the Makefile will contain
instructions for constructing the documentation. If you alreday used the make command, above, this has
already been done. The following command

% make groff_all
...lots of output...
%

can be used to do this explicitly, if you managed to get to this point without doing it. Please note that there
may be some warnings from groff, particularly for the .txt files; this is normal.

Once the documents have been formatted, you only need to print them. The following command
% lpr lib/en/refman.ps lib/en/user-guide.ps
%

will print the English PostScript version of the Reference Manual and the User Guide. Watch the make
output to see what other versions are available.

GETTING HELP
If you need assistance with the Cook program, please do not hesitate to contact the author at

Peter Miller <millerp@canb.auug.org.au>
Any and all feedback is welcome.

When reporting problems, please include the version number given by the
% cook -version
cook version 2.25.D001
...warranty disclaimer...
%

command. Please do not send this example; run the program for the exact version number.

In the common/main.h file, there is a define of DEBUG in comments. If the comments are removed,
extensive debugging is turned on. This causes some performance loss, but performs much run-time
checking and adds the -TRACIng command line option.

When the -TRACing option is followed by one or more file names, it turns on execution traces in those
source files. It is best to put this option on the end of the command, so that the names of the files to be
traced are not confused with any other filenames or strings on the command line.

18 Cook Reference Manual

Build(Cook) Build(Cook)

WINDOWS-NT
It is possible to build Cook for Windows-NT. I have done this using the Cygnus freeware CygWin32
system, and I believe it has also once been done using the commercial NutCracker system. This document
only describes the CygWin32 port.

The Source
You need to FTP the CygWin32 system from Cygnus. It can be found at

http://sourceware.cygnus.com/cygwin/
and then follow the links. The version I used was B20.1.

Mounting Things
You need to mount a directory onto /tmp, or lots of things, and especially bash(1), don’t work. If you are
in a heavily networked environment, like me, you need to know that using a networked drive for /tmp just
doesn’t work. I have no idea why. Use

mount C:/temp /tmp
instead. (Or some other local drive.)

Just a tip for all of you who, like me, know UNIX much better than you know Windows-NT: the left-hand
mount argument needs to be specified with a drive letter (e.g. C:) rather than with a double slash (e.g. not
//C) unless its Windows-NT name starts with \\.

You need to mount the Cygnus bin directory at /bin, otherwise shell scripts that start with #!/bin/sh
don’t work, among other things. This includes the ./configure script, and the scripts it writes (e.g.
config.status).

mount Cygnus-Dir/H-i386-cygwin/bin /bin
You will want to mount your various network drives onto the same places they appear on your UNIX hosts.
This means that your cookbooks will work without change, even if they contain absolute paths. And your
users don’t need to learn two names for all the source files.

Don’t forget your home directory. The trick is to set HOME in the cygnus.bat file, before bash starts.
(How you do this with one batch file and multiple users I haven’t yet figured out.)

You also need to set the LOGNAME and USER environment variables appropriately, or test 14 will fail.

Mounts persist across Cygwin sessions. They are stored in a registry file somewhere. You will not need to
do all this every time!

Before your start
You will need to install a couple of other pieces of software before you build Cook.

util-linux
You need to get GNU rx, but to make it work you have to find a tsort command, so that GNU rx’s
./configure script works. Try the latest copy of system/misc/util-linux-?.?.tar.gz
from the sunsite.unc.edu Linux archive (or a mirror). Simply build and install misc-
utils/tsort.c by hand.

GNU rx Once you have tsort installed, you will be able to get GNU rx configured. Get a copy from your
local GNU mirror.

Configure
The configure and build step should be the same as for UNIX, as described above. All the problems I
encountered were to do with getting the mounts just right. (But expect it to be dog slow compared to Linux
or FreeBSD on the same box.)

The configure step is almost the same as for UNIX. I know you are itching to get typing, but read throught
to the install section before you configure anything.

bash$./configure
...lots of output...
bash$

Reference Manual Cook 19

Build(Cook) Build(Cook)

Build
The build step is exactly the same as for UNIX, and you shouldn’t notice any difference...

bash$ make
...lots of output...
bash$

Test
All of the tests should pass, you only need to run them to convince yourself the build worked... (a constant
surprize to me, I must say!)

bash$ make sure
...lots of output...
Passed All Tests
bash$

If test 12 fails, it probably means you don’t hav e /bin right.

Install
Installing the software works as usual, though you need to make some choices right at the start (I told you
to read this all the way through first). If you want to use the ‘‘/usr/local’’ prefix (or any other install prefix)
you mount it right at the start. For anything other than the ‘‘/usr/local’’ default prefix, you also needed to
give a ‘‘--prefix=blahblah’’ argument to the configure script, right at the start.

bash$ make install
...lots of output...
bash$

COPYRIGHT
cook version 2.25
Copyright © 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
2003, 2004 Peter Miller; All rights reserved.

The Cook package is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

It should be in the LICENSE file included with this distribution.

AUTHOR
Peter Miller E-Mail: millerp@canb.auug.org.au
/\/* WWW: http://www.canb.auug.org.au/˜millerp/

20 Cook Reference Manual

Internationalization(Cook) Internationalization(Cook)

NAME
Internationalization

DESCRIPTION
The Cook package has gone international; it can now speak many languages. This is accomplished by
using the GNU Gettext library and utilities. In order to do this, is is necessary to install GNU Gettext prior
to configuring, making and installing the Cook package, as described in the BUILDING file.

Internationalization
This is the process of identifying all of the error messages in the source code, and providing error message
catalogues in a variety of languages. The error message identification was performed by the Cook
package’s author, and the various GNU translation teams provided the translations. Users of the Cook
package do not need to do anything to internationalize it, this has already been done.

Localization
The programs in the Cook package are "localizable" when properly installed; the programs they contain can
be made to speak your own native language.

By default, the Cook package will be installed to allow translation of messages. It will automatically detect
whether the system provides a usable ‘gettext’ function.

INSTRUCTIONS FOR USERS
As a user, if your language has been installed for this package, you only have to set the ‘LANG’
environment variable to the appropriate ISO 639 two-letter code prior to using the programs in the package.
For example, let’s suppose that you speak German. At the shell prompt, merely execute

setenv LANG de
(in ‘csh’), or

LANG=de; export LANG
(in ‘sh’). This can be done from your .cshrc or .profile file, setting this automatically each time you login.

An operating system might already offer message localization for many of its programs, while other
programs have been installed locally with the full capabilities of GNU Gettext. Using the GNU Gettext
extended syntax for the ‘LANG’ environment variable may break the localization of already available
through the operating system. In this case, users should set both the ‘LANGUAGE’ and ‘LANG’
environment variables, as programs using GNU Gettext give preference to the ‘LANGUAGE’ environment
variable.

For example, some Swedish users would rather read translations in German when Swedish is not available.
This is easily accomplished by setting ‘LANGUAGE’ to ‘sv:de’ while leaving ‘LANG’ set to ‘sv’.

DIRECTORY STRUCTURE
All files which may require translation are located below the lib directory of the source distribution. It is
organized as one directory below lib for each localization. Localizations include all documentation as well
as the error messages.

Localization Directory Names
Each localization is contained in a sub-directory of the lib directory, with a unique name. Each localization
sub-directory has a name of the form:

localization
language

- territory . codeset

language is one of the 2-letter names from the ISO 639 standard. See http://www.ics.uci.edu/pub/ietf/-
http/related/iso639.txt for a list.

territory is one of the 2-letter country codes from the ISO 3166 standard. See ftp://rs.internic.net/-
netinfo/iso3166-countrycodes for a list.

Reference Manual Cook 21

Internationalization(Cook) Internationalization(Cook)

codeset is one of the codeset names defined in RFC 1345. This simplifies the task of moving
localizations between charsets, because GNU Recode understands them. See
http://info.internet.isi.edu/1s/in-notes/rfc/files/rfc1345.txt for a list.

Here are some examples of localization names:

Name Description

en.ascii English, ASCII encoding
en_us.ascii English with US spelling
de.latin1 German, Latin-1 encoding

Localization Directory Contents
Each localization sub-directory in turn contains sub-directories. These are:

Directory Contents

LC_MESSAGES The error message (PO) files
building The BUILDING file
man1 The section 1 manual entries
readme The README file
refman The Reference Manual
user-guide The User Guide

The structure is identical below each of the localization directories. The sub-directories of all localizations
will have the same names.

INSTRUCTIONS FOR TRANSLATORS
When translating the error messages, all of the substitutions described in cook_sub(5) are also available.
Substitution variable names and function names may be abbreviated, in the same way that command line
options are abbreviated, but abbreviation should probably be avoided. Substitution names will never be
internationalized, otherwise the substitutions will stop working, Catch-22.

While Cook was written by an English speaker, the English localization is necessary, to translate the ‘‘terse
programmer’’ style error messages into something more user friendly.

Messages which include command line options need to leave the command line options untranslated,
because they are not yet internationalized, though they may be one day.

Each LC_MESSAGES directory within each localization contains a number of PO files. There is one for
each program in the Cook package, plus one called common.po containing messages common to all of
them. The MO file for each program is generated by naming the program specific PO file and also the
common PO file.

22 Cook Reference Manual

C_INCL(1) C_INCL(1)

NAME
c_incl - determine dependencies

SYNOPSIS
c_incl [option...] filename
c_incl -Help
c_incl -VERSion

DESCRIPTION
The c_incl program is used to traverse source files looking for include dependencies suitable for
[collect]ion or #include-cooked-ing by cook.

The filename ‘‘-’’ is understood to mean the standard input. When you use this file name, caching is
ignored.

Several input languages are supported, see the options list for details.

OPTIONS
The following options are understood.

-C The source file is a C source file. It is assumed that it will have the dependencies resolved by the
cpp(1) command. The same include semantics as the cpp(1) command will be employed. This is
the default. This is short-hand for ‘‘--language=c’’

--Language=name
This option may be used to specify the language of the source file. Know names include ‘‘C’’,
‘‘M4’’, ‘‘optimistic’’ and ‘‘roff’’.

The ‘‘optimistic’’ language will take on almost anything. It accepts an include keyword in any
case, including mixed, with leading white space, but at most one leading punctuation character. It
assumes that the filename follows the include keyword and does not contain white space, and
does not start or end with punctuation characters (it strips off any it may find). The rest of the
line is ignored. The drawback is that it will sometimes recognise commands and other text as
unintended include directives, hence the name. This is often used to recognise include directives
in a wide variety of assembler input.

-Roff The source file is a *roff source file. It is assumed that it will have the dependencies resolved by
the roffpp(1) command. The same include semantics as the roffpp(1) command will be
employed. This is short-hand for ‘‘--language=roff’’

-Verbose
Tell what is happening.

-Ipath
Specify include path, a la cc(1).

-I-
Any directories you specify with -I options before the -I- option are searched only for the case of
#include "file"; they are not searched for #include <file>.

If additional directories are specified with -I options after the -I-, these directories are searched
for all #include directives. (Ordinarily all -I directories are used this way.)

In addition, the -I- option inhibits the use of the current directory (where the current input file
came from) as the first search directory for #include "file". There is no way to override this effect
of -I-. With -I. you can specify searching the directory which was current when c_incl was
invoked. That is not exactly the same as what the preprocessor does by default, but it is often
satisfactory.

The -I- option does not inhibit the use of the standard system directories for header files. Thus,
-I- and -No_System are independent.

Reference Manual Cook 23

C_INCL(1) C_INCL(1)

-Absolute_Paths
This option may be used to allow absolute paths in the output. This is usually the default.

-No_Absolute_Paths
This option may be used to exclude absolute paths from the output.

-Absent_Local_Ignore
For files included using a #include ’’filename.h’’ directive, ignore the file if it cannot be found.

-Absent_Local_Mention
For files included using a #include ’’filename.h’’ directive, print the file name even if the file
cannot be found. This is the default (it probably needs to be built).

-Absent_Local_Error
For files included using a #include ’’filename.h’’ directive, print a fatal error if the file cannot be
found.

-Absent_System_Ignore
For files included with a #include <filename.h> directive, ignore the file if it cannot be found.
This is the default (it was probably ifdef’ed out).

-Absent_System_Mention
For files included with a #include <filename.h> directive, print the file name even if the file
cannot be found.

-Absent_System_Error
For files included with a #include <filename.h> directive, print a fatal error if the file cannot be
found.

-Absent_Program_Ignore
If the file named on the command line cannot be found, behave as if the file were found, but was
empty.

-Absent_Program_Error
If the file named on the command line cannot be found, print a fatal error message. This is the
default.

-Escape_Newlines
This option may be used to request that newlines in the output are escaped with backslash (‘‘\’’)
characters.

-Help
Give information on how to use c_incl.

-EXclude filename
This option may be used to nominate include file names which are not to be used.

-VERSion
Tell what version of c_incl is being run.

-Interior_Files filename...
This option may be used to tell c_incl about include files which don’t exist yet. This is because
they are interior to the dependency graph, but cook(1) hasn’t finished walking it yet. Often used
with Cook’s [interior-files] function. (Note: the filename list has an arbitrary number of
files; it ends at the next option or end-of-line, so you need to be careful where you put the input
filename.)

-No_System
Do not search the /usr/include directory. By default this is searched last. This option implies the
-No_Absolute_Paths option, unless explicitly contradicted.

-CAche
This option may be used to turn caching on. This is the default.

24 Cook Reference Manual

C_INCL(1) C_INCL(1)

-No_Cache
This option may be used to turn caching off.

-PREfix string
This option may be used to print a string before any of the filenames are printed. It will not be
printed if no file names are printed.

-Quote_FileNames
This option may be used to have c_incl quote filenames. This permits filenames to contain
characters which are special to Cook, including spaces.

-SUFfix string
This option may be used to print a string after all of the filenames are printed. It will not be
printed if no file names are printed.

-Output filename
This option may be used to specify the output file. Defaults to the standard output if not set.

-No_Source_Relative_Includes
This option will give a fatal error if a #include ’’filename.h’’ directive is used. This is necessary
when you are using Cook’s search_list functionality to stitch together a baseline and a
private work area.

-RECursion
This option may be used to specify that nested include files are to be scanned, so that their
includes may also be discovered. This is the default.

-No_RECursion
This option may be use to specify that nested include files are not to be scanned. This option is
recommended for use with the Cook cascade-for recipes. This option implies -No_Cache,
unless a -Cache option is specified.

-Remove_Leading_Path path
This option may be used to remove path prefixes from the included filenames. May be used more
than once. This is necessary when you are using Cook’s search_list functionality to stitch
together a baseline and a private work area; usually as ‘‘[prepost "-rlp=" ""
[search_list]]’’

-STripdot
This option may be used to specify that leading redundant dot directories are to be removed from
paths before processing. This is the default.

-No_STripdot
This option may be used to specify that leading redundant dot directories need not be removed
from paths before processing. (Some path flattening may still occur.)

-Substitute_Leading_Path from to
This option may be used to modify path prefixes from the included filenames. May be used more
than once. This is necessary when you are performing heterogeneous builds in the same directory
tree. By using an ‘‘arch’’ variable to hold the architecture, and placing each architecture’s objects
in a separate directory tree, this option may be used as ‘‘-slp [arch] "’[arch]’"’’ (The
outer quotes protect from Cook, the inner quotes protect from the shell.) If you need more
intricate editing, used sed(1).

Any other options will generate an error.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case
letters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments "-help", "-HEL" and "-h" are all interpreted to mean the -Help option. The

Reference Manual Cook 25

C_INCL(1) C_INCL(1)

argument "-hlp" will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line.

The GNU long option names are understood. Since all option names for c_incl are long, this means
ignoring the extra leading ’-’. The "--option=value" convention is also understood.

CACHING
The caching mechanism use by the c_incl program caches the results of searching files for include files (in
a file called .c_inclrc in the current directory). The cache is only refreshed when a file changes.

The use of this cache has been shown to dramatically increase the performance of the c_incl program.
Typically, only a small proportions files in a project change between builds, resulting in a very high cache
hit rate.

When using caching, always use the same command line options, otherwise weird and wonderful things
will happen.

The .c_inclrc file is a binary file. If you wish to rebuild the cache, simply delete this file with the rm(1)
command. Being a binary file, the .c_inclrc file is not portable across machines or operating systems, so
you will need to delete it when you move your sources. It is a binary file for performance.

Accesses to the .c_inclrc file use file locking, so recipies using c_incl need not use the single-thread
clause.

EXIT STATUS
The c_incl command will exit with a status of 1 on any error. The c_incl command will only exit with a
status of 0 if there are no errors.

COPYRIGHT
c_incl version 2.25
Copyright © 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
2003, 2004 Peter Miller; All rights reserved.

The c_incl program comes with ABSOLUTELY NO WARRANTY; for details use the ’c_incl -VERSion
License’ command. This is free software and you are welcome to redistribute it under certain conditions;
for details use the ’c_incl -VERSion License’ command.

AUTHOR
Peter Miller E-Mail: millerp@canb.auug.org.au
/\/* WWW: http://www.canb.auug.org.au/˜millerp/

26 Cook Reference Manual

COOK(1) COOK(1)

NAME
cook − a file construction tool

SYNOPSIS
cook [option...][filename...]
cook -Help
cook -VERSion

DESCRIPTION
The cook program is a tool for constructing files. It is given a set of files to create, and instructions
detailing how to construct them. In any non-trivial program there will be prerequisites to performing the
actions necessary to creating any file, such as extraction from a source-control system. The cook program
provides a mechanism to define these.

When a program is being developed or maintained, the programmer will typically change one file of several
which comprise the program. The cook program examines the last-modified times of the files to see when
the prerequisites of a file have changed, implying that the file needs to be recreated as it is logically out of
date.

The cook program also provides a facility for implicit recipes, allowing users to specify how to form a file
with a given suffix from a file with a different suffix. For example, to create filename.o from filename.c

Options and filenames may be arbitrarily mixed on the command line; no processing is done until all
options and filenames on the command line have been scanned.

The cook program will attempt to create the named files from the recipes given to it. The recipes are
contained in a file called Howto.cook in the currect directory. This file may, in turn, include other files
containing additional recipes.

If no filenames are given on the command line the targets of the first recipe defined are cooked.

OPTIONS
The valid options for cook are listed below. Any other options (words on the command line beginning with
‘-’) will cause a diagnostic message to be issued.

-Action
Execute the commands given in the recipes. This is the default.

-No_Action
Do not execute the commands given in the recipes.

-Book filename
Tells cook to used the named cookbook, rather than the default ‘‘Howto.cook’’ file.

-CAScade
This option may be used to enable the use of cascaded ingredients. This is the default.

-No_CAScade
This option may be used to disable the use of cascaded ingredients.

-Continue
If cooking a target should fail, continue with other recipes for which the failed target is not an
ingredient, directly or indirectly.

-No_Continue
If cooking a target should fail, cook will exit. This is the default.

-Errok
When a command is executed, the exit code will be ignored.

-No_Errok
When a command is executed, if the exit code is positive it will be deemed to fail, and thus the
recipe containing it to have failed. This is the default.

Reference Manual Cook 27

COOK(1) COOK(1)

-FingerPrint
When cook examines a file to determine if it has changed, it uses the last-modified time
information available in the file system. There are times when this is altered, but the file contents
do not actually change. The fingerprinting facility examines the file contents when it appears to
have changed, and compares the old fingerprint against the present file contents. (See cookfp(1)
for a description of the fingerprinting algorithm.) If the fingerprint did not change, the last-
modified time in the file system is ignored. Note that this has implications if you are in the habit
of using the touch(1) command − cook will do nothing until you actually change the file.

-No_FingerPrint
Do not use fingerprints to supplement the last-modified time file information. This is the default.

-FingerPrint_Update
This option may be used to scan the directory tree below the current directory and update the file
fingerprints. This helps when you use another tool (such as RCS or ClearCase) which alters the
file but preserves the file’s modification time.

-Force
Always perform the actions of recipes, irrespective of the last-modified times of any of the
ingredients. This option is useful if something beyond the scope of the cookbook has been
modified; for example, a bug fix in a compiler.

-No_Force
Perform the actions of the recipes if any of the ingredients are logically out of date. This is the
default.

-Help
Provide information about how to execute cook on stdout, and perform no other function.

-Include filename
Search the named directory before the standard places for included cookbooks. Each directory so
named will be scanned in the order given. The standard places are $HOME/.cook then
/usr/local/share/cook.

-Include_Cooked
This option may be used to require the cooking of files named on #include-cooked and #include-
cooked-nowarn include lines in cookbooks. The files named will be included, if present. If the
files named need to be updated or created, this will be done, and then the cookbook re-read. This
is the default.

-No_Include_Cooked
This option may be used to inhibit the implicit cooking of files named on #include-cooked and
#include-cooked-nowarn include lines in cookbooks. The files will be included, if present, but
they will not be updated or created, even if required.

-Include_Cooked_Warning
This option enables the warnings about derived dependencies in derived cookbooks. This is
usually the default.

-No_Include_Cooked_Warning
This option disables the warnings about derived dependencies in derived cookbooks.

-List
Causes cook to automatically redirect the stdout and stderr of the session. Output will continue
to come to the terminal, unless cook is executing in the background. The name of the file will be
the name of the cookbook with any suffix removed and ".list" appended; this will usually be
Howto.list. This is the default.

-List filename
Causes cook to automatically redirect the stdout and stderr of the session into the named file.
Output will continue to come to the terminal, unless cook is executing in the background.

28 Cook Reference Manual

COOK(1) COOK(1)

-No_List
No automatic redirection of the output of the session will be made.

-No_List filename
No automatic redirection of the output of the session will be made, however subsequent -List
options will default to listing to the named file.

-Meter
After each command is executed, print a summary of the command’s CPU usage.

-No_Meter
Do not print a CPU usage summary after each command. This is the default.

-Pairs
This option may be used to generate a list of pair-wise file dependencies, similar to lorder(1)
output. This may be used to draw file dependency diagrams. It can also be useful when
debugging cookbooks.

-PARallel [number]
This option may be used to specify the number of parallel executions threads. The number
defaults to 4 if no specific number of threads is specified. See also the parallel_jobs variable.

Use of this option on single-processor machines needs to be done with great care, as it can bring
other processing to a complete halt. Several users doing so simultaneously on a multi-processor
machine will have a similar effect. It is also to rapidly run out of virtual memory and temporary
disk space if the parallel tasks are complex.

-No_PARallel
This option may be used to specify that a single execution thread is to be used. This is the
default.

-Precious
When commands in the body of a recipe fail, do not delete the targets of the recipe.

-No_Precious
When commands in the body of a recipe fail, delete the targets of the recipe. This is the default.

-Reason
Tw o options are provided for tracing the inferences cook makes when attempting to cook a target.
The -Reason option will cause cook will emit copious amounts of information about the
inferences it is making when cooking targets. This option may be used when you think cook is
acting strangely, or are just curious.

-No_Reason
This option may be used to cause cook will not emit information about the inferences it is making
when cooking targets. This is the default.

-SCript
This option may be used to request a shell script be printed on the standard output. This shell
script may be used to construct the files; it captures many of the semantics of the cookbook. This
can be useful when a project needs to be distributed, and the recipients do not have cook(1)
installed. It can also be very useful when debugging cookbooks.

-Silent
Do not echo commands before they are executed.

-No_Silent
Echo commands before they are executed. This is the default.

-STar
Emit progress indicators once a second. These progress indicators include

+ Reading the cookbook

Reference Manual Cook 29

COOK(1) COOK(1)

- Executing a collect function
* Building the dependency graph
Walking the dependency graph
@ Writing fingerprint files.

-No_STar
Do not emit progress indicators. This is the default.

-Strip_Dot
Remove leading "./" from filenames before attempting to cook them; applies to all filenames and
all recipes. This is the default.

-No_Strip_Dot
Leave leading "./" on filenames while cooking.

-Tell_Position
This option may be used to cause the position of commands (filename and line number) to be
printed along with the command just before it is executed (provided the −No_Silent option is in
force).

-No_Tell_Position
This option may be used to suppress printing the position of commands (filename and line
number) along with the command just before it is executed. This is the default.

-Touch
Update the last-modified times of the target files, rather than execute the actions bound to recipes.
This can be useful if you have made a modification to a file that you know will make a system of
files logically out of date, but has no significance; for example, adding a comment to a widely
used include file.

-No_Touch
Execute the actions bound to recipes, rather than update the last-modified times of the target files.
This is the default.

-TErminal
When listing, also send the output stream to the terminal. This is the default.

-No_TErminal
When listing, do not send the output to the terminal.

-Time_Adjust
This option causes cook to check the last-modified time of the targets of recipes, and updates
them if necessary, to make sure they are consistent with (younger than) the last-modified times of
the ingredients. This results in more system calls, and can slow things down on some systems.
This correspondes to the time-adjust recipe flag.

-No_Time_Adjust
Do not update the file last-modified times after performing the body of a recipe. This is the
default. This correspondes to the no-time-adjust recipe flag.

-Web
This option may be used to request a HTML web page be printed on the standard output. This
web page may be used to document the file dependencies; it captures many of the semantics of
the cookbook. It can also be very useful when debugging cookbooks.

name=value
Assign the value to the named variable. The value may contain spaces if you can convince the
shell to pass them through.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case
letters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,

30 Cook Reference Manual

COOK(1) COOK(1)

case is not important.

For example: the arguments "-help", "-HEL" and "-h" are all interpreted to mean the -Help option. The
argument "-hlp" will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line.

The GNU long option names are understood. Since all option names for cook are long, this means ignoring
the extra leading ’-’. The "--option=value" convention is also understood.

EXIT STATUS
The cook command will exit with a status of 1 on any error. The cook command will only exit with a
status of 0 if there are no errors.

FILES
The following files are used by cook:

Howto.cook
This file contains instructions to cook for how to construct files.

/usr/local/share/cook
This directory contains "system" cookbooks for various tools and activities.

.cook.fp This text file is used to remember fingerprints between invokations.

ENVIRONMENT VARIABLES
The following environment variables are used by cook:

COOK May be set to contain command-line options, changing the default behaviour of cook. May be
overridden by the command line.

PA GER Use to paginate the output of the -Help and -VERSion options. Defaults to more(1) if not set.

COOK_AUTOMOUNT_POINTS
A colon-separated list of directories which the automounter may use to mount file systems. Use
with extreme care, as this distorts Cook’s idea of the shape of the filesystem.

This feature assumes that paths below the automounter’s mount directory are echoes of paths
without it. E.g. When /home is the trigger, and /tmp_mnt/home is where the on-demand
NFS mount is performed, with /home appearing to processes to be a symlink.

This is the behavior of the Sun automounter. The AMD automounter is capable of being
configured in this way, though it is not typical of the examples in the manual. Nor is it typical of
the out-of-the-box Linux AMD configuration in many distributions.

Defauls to ‘‘/tmp_mnt:/a:/.automount’’ if not set.

COPYRIGHT
cook version 2.25
Copyright © 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
2003, 2004 Peter Miller; All rights reserved.

The cook program comes with ABSOLUTELY NO WARRANTY; for details use the ’cook -VERSion
License’ command. This is free software and you are welcome to redistribute it under certain conditions;
for details use the ’cook -VERSion License’ command.

AUTHOR
Peter Miller E-Mail: millerp@canb.auug.org.au
/\/* WWW: http://www.canb.auug.org.au/˜millerp/

Reference Manual Cook 31

cook_bom(1) cook_bom(1)

NAME
cook_bom − bill of materials

SYNOPSIS
cook_bom [option...] dirname [outfile]
cook_bom -Help
cook_bom -VERSion

DESCRIPTION
The cook_bom program is used to scan a directory and generate a cookbook fragment containing a bill of
materials for that directory. It also includes a recursive reference, via an ‘‘#include-cooked’’ directive, to
the bills of materials for nested directories.

Output is sent to the standard output unless an output filename is specified.

OPTIONS
The following options are understood:

-DIRectory pathname
This option may be used to specify a directory search path, similar to cook(1) [search_list]
functionality.

-Help
Provide some help with using the cook_bom program.

-IGnore string
This option may be used to specify filename patterns to be ignored. It may be given as many
times as required.

-PREfix string
This option may be manipulate the name of the manifest files. Defaults to the empty string if not
set.

-SUFfix string
This option may be manipulate the name of the manifest files. Defaults to ‘‘/manifest.cook
if not set.

-VERSion
Print the version of the cook_bom program being executed.

All other options will produce a diagnostic error.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case
letters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments "-help", "-HEL" and "-h" are all interpreted to mean the -Help option. The
argument "-hlp" will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line.

The GNU long option names are understood. Since all option names for cook_bom are long, this means
ignoring the extra leading ’-’. The "--option=value" convention is also understood.

EXIT STATUS
The cook_bom command will exit with a status of 1 on any error. The cook_bom command will only exit
with a status of 0 if there are no errors.

EXAMPLE
The intended use of this command is to automatically generate a project file manifest in an efficient way. If
you have a cookbook of the form

all_files_in_. = ;
#include manifest.cook

32 Cook Reference Manual

cook_bom(1) cook_bom(1)

manifest = [all_files_in_.];

set fingerprint mkdir unlink;

%0manifest.cook: ["if" [in "%0" ""] "then" "." "else" "%0"]
{

cook_bom
[addprefix ’--dir=’ [search_list]]
"--ignore=’*˜’"
[need]
[target]
;

}
At the end of this fragment, the manifest variable contains a complete list of all files in the directory
tree. This variable may then be taken apart with the match_mask function to build ingredients lists.

The constructed manifest.cook files work for both whole-project and recursive (not recommended) builds.

COPYRIGHT
cook_bom version 2.25
Copyright © 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
2003, 2004 Peter Miller; All rights reserved.

The cook_bom program comes with ABSOLUTELY NO WARRANTY; for details use the ’cook_bom
-VERSion License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the ’cook_bom -VERSion License’ command.

AUTHOR
Peter Miller E-Mail: millerp@canb.auug.org.au
/\/* WWW: http://www.canb.auug.org.au/˜millerp/

Reference Manual Cook 33

GPL(GNU) Free Software Foundation GPL(GNU)

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111, USA
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is
not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast,
the GNU General Public License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This General Public License applies to most of
the Free Software Foundation’s software and to any other program whose authors commit to using it.
(Some other Free Software Foundation software is covered by the GNU Library General Public License
instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for this
service if you wish), that you receive source code or can get it if you want it, that you can change the
software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask
you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute
copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives
you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands that there is
no warranty for this free software. If the software is modified by someone else and passed on, we want its
recipients to know that what they hav e is not the original, so that any problems introduced by others will
not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that
redistributors of a free program will individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone’s free use
or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

34 GPL GNU

GPL(GNU) Free Software Foundation GPL(GNU)

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright
holder saying it may be distributed under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program" means either the Program or any
derivative work under copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter, translation is included
without limitation in the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this License; they are
outside its scope. The act of running the Program is not restricted, and the output from the Program is
covered only if its contents constitute a work based on the Program (independent of having been made by
running the Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright
notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of
any warranty; and give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty
protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on
the Program, and copy and distribute such modifications or work under the terms of Section 1 above,
provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you changed the files and the
date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived
from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under
the terms of this License.

c) If the modified program normally reads commands interactively when run, you must cause it, when
started running for such interactive use in the most ordinary way, to print or display an announcement
including an appropriate copyright notice and a notice that there is no warranty (or else, saying that
you provide a warranty) and that users may redistribute the program under these conditions, and
telling the user how to view a copy of this License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on the Program is not required to
print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not
derived from the Program, and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those sections when you distribute them as
separate works. But when you distribute the same sections as part of a whole which is a work based on the
Program, the distribution of the whole must be on the terms of this License, whose permissions for other
licensees extend to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you;
rather, the intent is to exercise the right to control the distribution of derivative or collective works based on
the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work
based on the Program) on a volume of a storage or distribution medium does not bring the other work under
the scope of this License.

GNU GPL 35

GPL(GNU) Free Software Foundation GPL(GNU)

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no
more than your cost of physically performing source distribution, a complete machine-readable copy
of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer to distribute corresponding source
code. (This alternative is allowed only for noncommercial distribution and only if you received the
program in object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For an
executable work, complete source code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to control compilation and installation of the
executable. However, as a special exception, the source code distributed need not include anything that is
normally distributed (in either source or binary form) with the major components (compiler, kernel, and so
on) of the operating system on which the executable runs, unless that component itself accompanies the
executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then
offering equivalent access to copy the source code from the same place counts as distribution of the source
code, even though third parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this
License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain in
full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else grants
you permission to modify or distribute the Program or its derivative works. These actions are prohibited by
law if you do not accept this License. Therefore, by modifying or distributing the Program (or any work
based on the Program), you indicate your acceptance of this License to do so, and all its terms and
conditions for copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically
receives a license from the original licensor to copy, distribute or modify the Program subject to these terms
and conditions. You may not impose any further restrictions on the recipients’ exercise of the rights
granted herein. You are not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not
limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise)
that contradict the conditions of this License, they do not excuse you from the conditions of this License. If
you cannot distribute so as to satisfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a
patent license would not permit royalty-free redistribution of the Program by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance
of the section is intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to
contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free
software distribution system, which is implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed through that system in reliance on

36 GPL GNU

GPL(GNU) Free Software Foundation GPL(GNU)

consistent application of that system; it is up to the author/donor to decide if he or she is willing to
distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this
License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Program under this License may add an
explicit geographical distribution limitation excluding those countries, so that distribution is permitted only
in or among countries not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail
to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of this
License which applies to it and "any later version", you have the option of following the terms and
conditions either of that version or of any later version published by the Free Software Foundation. If the
Program does not specify a version number of this License, you may choose any version ever published by
the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions
are different, write to the author to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status of all derivatives of our free software
and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR
THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO
THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DAT A OR DAT A BEING RENDERED INACCURATE OR LOSSES
SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE
WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

GNU GPL 37

GPL(GNU) Free Software Foundation GPL(GNU)

Appendix: How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way
to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source
file to most effectively convey the exclusion of warranty; and each file should have at least the "copyright"
line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) 19yy name of author

This program is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not,
write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’. This is free
software, and you are welcome to redistribute it under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of the General Public
License. Of course, the commands you use may be called something other than ‘show w’ and ‘show c’;
they could even be mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a
"copyright disclaimer" for the program, if necessary. Here is a sample; alter the names:

Yo yodyne, Inc., hereby disclaims all copyright interest in the program ‘Gnomovision’ (which makes
passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs. If
your program is a subroutine library, you may consider it more useful to permit linking proprietary
applications with the library. If this is what you want to do, use the GNU Library General Public License
instead of this License.

38 GPL GNU

cook_rsh(1) cook_rsh(1)

NAME
cook − load balancing rsh

SYNOPSIS
cook [option...] architecture command [argument...]
cook -Help

DESCRIPTION
The cook program is a wrapper around rsh(1) which does simple load balancing. It obtains its load
information by running the rup(1) command, and selects the most suitable host hased on the architecture
you specify, and the least load of all hosts of that architecture.

The first command line argument is the architecture name which is used to get the list of possible hosts.
From that list the rup(1) command is run to determine the host with the lowest load, which is in turn used
as the first argument of the eventual rsh(1) command.

COOKBOOKS
In order to make use of this program, somewhere in your cookbook, you need to add a line which reads

parallel_rsh = "cook";
If the host chosen is the same as the caller (build host) then this program just exec the command skipping
the rsh. So it costs nothing to use this in a one machine network!

For each recipe you want distributed to a remote host, you need to add a host-binding attribute to. Typical
usage is where you have a muti-architecture build.

%1/%0%.o: %0%.c
host-binding %1 {
cc -o [target] -c [resolve %0%.c]; }

In the recipe given here, each architecture has its object files placed into a separate architecture-specific
directory tree. The architecture name (%1) is used in the host-binding, so that the compiles may be load-
balanced to all machines of that architecture.

If you need a command to run on a specific host (say, because that’s where a specific application license
resides), then simply use the host name in the host-binding attribute, rather than an architecture name.

DEFINING THE CLASSES
The /usr/local/share/cook/host_lists.pl file is expected to exist, and to contain variable definitions used to
determine if hosts are members of particular architectures.

The /usr/local/share/cook/host_lists.pl file defines a perl HOL "hash of lists" The hash is %ArchNames
and it maps names of architectures as user want to see them, to list references as the actual lists are stored.

The names of each architecture could be any form you wish but the convention is to use the GNUish names
such as "sparc-sun-solaris2.8".

For each architecture, define one or more lists of machines according to what function each machine set
may do. This can be as simple or as elaborate as required. The form of the list variable name can be any
valid perl identifier but may as well be like the architecture name with dash changed to underbar and dot
removed, and the type added. For example one might define solaris hosts as:

@sparc_sun_solaris28_hosts = (
"mickey", "minny", "scrooge");

And linux hosts as:
@i386_linux22_hosts = (

"goofy", "scrooge");

If there is a need to define different sets of machines for different types of jobs then add a suffix to the
names in the host-binding directive on each of the recipes, and lists here with the same suffix.

The hash to map argument names to lists is defined like:
%ArchNames = (
"sparc-solaris2.8", => @sparc_solaris28_hosts,
"i586-unknown-linux22", => @i386_linux22_hosts,);

Reference Manual Cook 39

cook_rsh(1) cook_rsh(1)

Of course if users have differing opinions as to what the architecture names should look like, you can define
"alias" mappings as well.

"sun4-SunOS-5.8", => @sparc_solaris28_hosts,
Or maybe the level is of no importance, then define

"sparc-solaris", => @sparc_solaris28_hosts,
"sparc-solaris2.7", => @sparc_solaris28_hosts,

Also, this list isn’t allowed to be empty.

And finally, curtesy of Perl, the last line of the file must read
1; for obscure and magical reasons.

SYSLOG LOGGING
Typical commands seen during a build would look like

sh -c ’cd /aegis/dd/gumby2.2.C079 && \ sh -ce /aegis/dd/gumby2.2.C079/.6.1; \ echo $? >
/aegis/dd/gumby2.2.C079/.6.2’

So we can extract the project/ change from the command quite easily and logging it via syslog would be a
trivial addition.

OPTIONS
This command is not usually given any options.

−h Help - show usage info

−vP Verbose - report choice

−Tn Trace value for testing

FILES
/usr/local/share/cook/exclude.hosts

This file is used to list those host which must not be used by this script. Simply list excuded
hosts, one hostname per line. If the file is absent, all hosts reported by rup(1) may be used.

/usr/local/share/cook/host_lists.pl
This file defines the classes of hosts for each architecture.

AUTHOR
Jerry Pendergraft <jerry@endocardial.com>

40 Cook Reference Manual

cookfp(1) cookfp(1)

NAME
cookfp − calculate file fingerprint

SYNOPSIS
cookfp [option...][filename...]
cookfp -Help
cookfp -VERSion

DESCRIPTION
The cookfp program is used to calculate the fingerprints of files. A fingerprint is a hash of the contents of a
file. The default fingerprint is cryptographically strong, so the probability of two different files having the
same fingerprint is less than 1 in 2**200.

The fingerprint is based on Dan Berstien <djb@silverton.berkeley.edu> public domain fingerprint 0.50 beta
package 930809, posted to the alt.sources newsgroup. This program produces identical results; the
expected test results were generated using Dan’s package.

The fingerprint is a base-64-sanely-encoded fingerprint of the input. Imagine this fingerprint as something
universal and permanent. A fingerprint is 76 characters long, containing the following:

1. A Snefru-8 (version 2.5, 8 passes, 512->256) hash. (Derived from the Xerox Secure Hash Function.)

2. An MD5 hash, as per RFC 1321. (Derived from the RSADSI MD5 Message-Digest Algorithm.)

3. A CRC checksum, as in the new cksum utility.

4. Length modulo 2ˆ40.

The output format is not expected to be compatible with anything. However, options are available to
produce the purported output of Merkle’s snefru program, the purported output of RSADSI’s mddriver -x,
or the purported output of the POSIX cksum program.

If no files are named as input, the standard input will be used. The special file name ‘‘-’’ is understood to
mean the standard input.

OPTIONS
The following options are understood:

-Checksum
Print the CRC32 checksum and length of the named file(s).

-Identifier
Print a condensed form of the fingerprint (obtained by performing a CRC32 checksum on the full
fingerprint described above - a definite overkill). This is an 8-digit hexadecimal number, useful
for generating unique short identifiers out of long names. The first character is forced to be a
letter (g-p), so there is no problem in using the output as a variable name.

-Help
Provide some help with using the cookfp program.

-Message_Digest
Print the RSA Data Security, Inc. MD5 Message-Digest Algorithm hash of the named file(s).

-Snefru Print the Snefru hash of the named file(s), derived from the Xerox Secure Hash Function.

-VERSion
Print the version of the cookfp program being executed.

All other options will produce a diagnostic error.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case
letters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments "-help", "-HEL" and "-h" are all interpreted to mean the -Help option. The

Reference Manual Cook 41

cookfp(1) cookfp(1)

argument "-hlp" will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line.

The GNU long option names are understood. Since all option names for cookfp are long, this means
ignoring the extra leading ’-’. The "--option=value" convention is also understood.

EXIT STATUS
The cookfp command will exit with a status of 1 on any error. The cookfp command will only exit with a
status of 0 if there are no errors.

COPYRIGHT
cookfp version 2.25
Copyright © 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
2003, 2004 Peter Miller; All rights reserved.

The cookfp program comes with ABSOLUTELY NO WARRANTY; for details use the ’cookfp -VERSion
License’ command. This is free software and you are welcome to redistribute it under certain conditions;
for details use the ’cookfp -VERSion License’ command.

AUTHOR
Peter Miller E-Mail: millerp@canb.auug.org.au
/\/* WWW: http://www.canb.auug.org.au/˜millerp/

Portions of this program are derived from sources from other people, sometimes with liberal copyrights,
and sometimes in the public domain. These include:

Dan Bernstien
See common/fp/README for details.

Gary S Brown.
See common/fp/crc32.c for details.

RSA Data Security, Inc.
See common/fp/md5.c for details.

Xerox Corporation
See common/fp/snefru.c for details.

In addition to the above copyright holders, there have been numerous authors and contributors, see the
named files for details. Files names are relative to the root of the cook distribution.

42 Cook Reference Manual

COOKTIME(1) COOKTIME(1)

NAME
cooktime − set file times

SYNOPSIS
cooktime [option...] filename...
cooktime -Help
cooktime -VERSion

DESCRIPTION
The cooktime program is used to set the modified time or access time of a file. This can be used to defend
against unwanted logical dependencies when making "minor" changes to files.

If no option is specified, the default action is as if "−Modify now" was specified.

OPTIONS
The following options are understood.

-Access date
This option may be used to set the last-access time of the files. The date is relatively free-format;
rember to use quotes to insulate spaces from the shell.

-Modify date
This option may be used to set the last-modify time of the files. The date is relatively free-
format; rember to use quotes to insulate spaces from the shell.

-Report
When use alone, produces a listing of access times and modify times for the named files. When
used with -Access or -Modify, produces a listing of the changes made.

-Help
Give some information on how to use the cooktime command.

Any other option will generate a diagnostic error.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case
letters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments "-help", "-HEL" and "-h" are all interpreted to mean the -Help option. The
argument "-hlp" will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line.

The GNU long option names are understood. Since all option names for cooktime are long, this means
ignoring the extra leading ’-’. The "--option=value" convention is also understood.

EXIT STATUS
The cooktime command will exit with a status of 1 on any error. The cooktime command will only exit
with a status of 0 if there are no errors.

COPYRIGHT
cooktime version 2.25
Copyright © 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
2003, 2004 Peter Miller; All rights reserved.

The cooktime program comes with ABSOLUTELY NO WARRANTY; for details use the ’cooktime
-VERSion License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the ’cooktime -VERSion License’ command.

Reference Manual Cook 43

COOKTIME(1) COOKTIME(1)

AUTHOR
Peter Miller E-Mail: millerp@canb.auug.org.au
/\/* WWW: http://www.canb.auug.org.au/˜millerp/

44 Cook Reference Manual

FIND_LIBS(1) FIND_LIBS(1)

NAME
find_libs − find pathnames of libraries

SYNOPSIS
find_libs [-Lpath ...][-lname ...]
find_libs -Help
find_libs -VERSion

DESCRIPTION
The find_libs program is used to find the actual pathname of a library specified on a cc(1) command line.
This allows cook(1) to know these dependencies.

OPTIONS
The following options are understood.

-Lpath
Specify a path to search for libraries on. If more than one is specified, they will be scanned in the
order given before the standard /usr/lib and /lib places. This is like the same argument to cc(1),
and the usual find_libs option abbreviation rules do not apply.

-lname
Name a library to be searched for. This is like the same argument to cc(1), and the usual find_libs
option abbreviation rules do not apply.

-Help
Give some information on how to use the find_libs command.

-VERSion
Tell the version of the find_libs command currently executing.

All other options will result in a diagnostic error.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case
letters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments "-help", "-HEL" and "-h" are all interpreted to mean the -Help option. The
argument "-hlp" will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line.

The GNU long option names are understood. Since all option names for find_libs are long, this means
ignoring the extra leading ’-’. The "--option=value" convention is also understood.

EXIT STATUS
The find_libs command will exit with a status of 1 on any error. The find_libs command will only exit
with a status of 0 if there are no errors.

COPYRIGHT
find_libs version 2.25
Copyright © 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
2003, 2004 Peter Miller; All rights reserved.

The find_libs program comes with ABSOLUTELY NO WARRANTY; for details use the ’find_libs
-VERSion License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the ’find_libs -VERSion License’ command.

Reference Manual Cook 45

FIND_LIBS(1) FIND_LIBS(1)

AUTHOR
Peter Miller E-Mail: millerp@canb.auug.org.au
/\/* WWW: http://www.canb.auug.org.au/˜millerp/

46 Cook Reference Manual

make2cook(1) make2cook(1)

NAME
make2cook − translate makefiles into cookbooks

SYNOPSIS
make2cook [option...][infile [outfile]]
make2cook -Help
make2cook -VERSion

DESCRIPTION
The make2cook program is used to translate Makefiles into cookbooks. This command is provided to ease
the transition to using the cook command.

If no input file is named, or the special name ‘‘-’’ is used, input will be taken from the standard input. If no
output file is named, or the special name ‘‘-’’ is used, output will be taken from the standard output.

SEMANTICS
There is no one-to-one semantic mapping between make semantics and cook semantics, so the results will
probably need some manual editing.

The functionality provided by classic make (1) implementations is accurately reproduced. Extensions, such
as those offered by GNU Make or BSD make, are not always understood, or are sometimes not reproduced
identically.

The following subsections enumerate a few of the things which are understood and not understood. They
are probably not complete.

Understood
The cook program requires variables to be defined before they are used, whereas make will default them to
be empty. This is understood, and empty definitions are inserted as required.

Most of the builtin variables of GNU Make are understood.

Most of the builtin rules of classic make, GNU Make and BSD make are reproduced.

For best results there should be a blank line after every rule, so that there can be no confusion where one
rule ends and a new one begins.

Builtin variables are defaulted from the environment, if an environment variable of the same name is set.

The GNU Make override variable assignment is understood.

The GNU Make ‘‘+=’’ assignment is understood.

The GNU Make ‘‘:=’’ variable assignment is understood.

Traditional make assignments are macros, they are expanded on use, rather than on assignment. The cook
program has only variables. Assignment statements are re-arranged to ensure the correct results when
variables are referenced.

Single and double suffix rules are understood. The .SUFFIXES rules are understood and honoured. Hint:
if you want to suppress the builtin-recipes, use a .SUFFIXES rule with no dependencies.

The .PHONY rule is understood, and is translated into a set forced flag in appropriate recipes, except files
from implicit recipes.

The .PRECIOUS rule is understood, and is translated into a set precious flag in the appropriate recipes,
except files from implicit recipes.

The .DEFAULT rule is understood, and is translated into an implicit recipe.

The .IGNORE rule is understood, and is translated into a set errok statement.

The .SILENT rule is understood, and is translated into a set silent statement.

Most GNU Make functions are understood. The filter and filter-out functions only understand a single
pattern. The sort function does not remove duplicates (wrap the stringset function around it if you need
this).

Reference Manual Cook 47

make2cook(1) make2cook(1)

The GNU Make static pattern rules are understood. They are translated into recipe predicates.

The GNU Make and BSD make include variants are understood.

The bizarre irregularities surrounding archive files in automatic variables and suffix rules are understood,
and translated into consistent readable recipes. The make semantics are preserved.

The BSD make .CURDIR variable is understood, and translated to an equivalent expression. It cannot be
assigned to.

The GNU Make and BSD make conditionals are understood, provided that they bracket whole segments of
the makefile, and that these segments are syntactically valid. Cconditionals may also appear within rule
body commands. Conditionals are not understood within the lines of a define.

The GNU Make define is understood, but its use as a kind of ‘‘function definition’’ is not understood.

The GNU Make export and unexport directives are understood.

Not Understood
The cook program tokenizes its input, whereas make does textual replacement. The shennanigans required
to construct a make macro containing a single space are not understood. The translation will result in a
cook variable which is empty.

References to automatic variables within macro definitions will not work.

The GNU Make foreach function is olny partially understood. This has no exact cook equivalent.

The GNU Make origin function is not understood. This has no cook equivalent.

The archive((member)) notation is not understood. These semantics are not available from cook.

The MAKEFILES and MAKELEVEL variables are not translated, If you wish to reproduce this
functionality, you must edit the output.

The MAKEFLAGS and MFLAGS variables will be translated to use the Cook options function, which has a
different range of values.

Many variants of make can use builtin rules to make the Makefile if it is absent. Cook is unable to cook the
cookbook if it is absent.

Wildcards are not understood in rule targets, rule dependencies or include directives. If you want these,
you will have to edit the output to use the [wildcard] function.

Home directory tildes (˜) are not understood in targets and dependencies. If you want this, you will have to
edit the output to use the [home] function.

The -lhome dependency is not understood to mean a library. If you want this, you will have to edit the
output to use the [collect findlibs -lname] function.

The .EXPORT_ALL_VARIABLES rule is not understood. This has no cook equivalent.

OPTIONS
The following options are understood:

-Help
Provide some help with using the make2cook command.

-Environment
This option causes fragments to test for environment variables when performing the default
settings for variables. (This corresponds to the make -e option.)

-History_Commands
This option causes make2cook to include recipes for RCS and SCCS in the output.

-Line_Numbers
Insert line number directives into the output, so that it is possible to tell where the lines came
from. Most useful when debugging. make2cook program.

48 Cook Reference Manual

make2cook(1) make2cook(1)

-No_Internal_Rules
This option may be used to supress all generation of recipes corresponding to make’s internal
rules. (This corresponds to the make -r option.)

-VERSion
Print the version of the make2cook program being executed.

All other options will produce a diagnostic error.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case
letters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments "-help", "-HEL" and "-h" are all interpreted to mean the -Help option. The
argument "-hlp" will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line.

The GNU long option names are understood. Since all option names for make2cook are long, this means
ignoring the extra leading ’-’. The "--option=value" convention is also understood.

EXIT STATUS
The make2cook command will exit with a status of 1 on any error. The make2cook command will only exit
with a status of 0 if there are no errors.

COPYRIGHT
make2cook version 2.25
Copyright © 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
2003, 2004 Peter Miller; All rights reserved.

The make2cook program comes with ABSOLUTELY NO WARRANTY; for details use the ’make2cook
-VERSion License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the ’make2cook -VERSion License’ command.

AUTHOR
Peter Miller E-Mail: millerp@canb.auug.org.au
/\/* WWW: http://www.canb.auug.org.au/˜millerp/

Reference Manual Cook 49

ROFFPP(1) ROFFPP(1)

NAME
roffpp − replace .so requests within *roff sources

SYNOPSIS
roffpp [option...][infile [outfile]]
roffpp -Help
roffpp -VERSion

DESCRIPTION
The roffpp command may be used to copies the input file to the output file, including files named using .so
directives along the way, and removing the .so directives.

This is useful when processing large multi-file documents with filters such as tbl(1) or eqn(1) which do not
understand the .so directive. The .nx directive is not understood. The roffpp program is not a general *roff
interpreter, so many constructs will be beyond it, fortunately, most of them have nothing to do with include
files. Include files which cannot be found, probably from uninterpreted *roff constructs, if the files really
does exist, will simply be passed through unchanged, for *roff to interpret at a later time.

The roffpp program also allows the user to specify an include search path. This allows, for example,
common files to be kept in a central location.

Only directives of the form
.so filename

are processed. If the directive is introduced using the single quote form, or the dot is not the first character
of the line, the directive will be ignored.

Any extra arguments on the line are ignored, and quoting is not understood. All characters are interpreted
literally.

Examples of directives which will be ignored include
’so /usr/lib/tmac/tmac.an
.if n .so yuck

This list is not exhaustive.

The special file name ‘−’ on the command line means the standard input or standard output, as appropriate.
Files which are omitted are also assumed to be the standard input or standard output, as appropriate.

The output attempts to keep file names and line numbers in sync by using the .lf directive. The .lf directive
is also understood as input. This is compatible with groff (1) and the other GNU text utilities included in
the groff package.

OPTIONS
The following options are understood.

-Ipath
Specify include path, a la cc(1). Include paths are searched in the order specified. The include
search path defaults to the current directory if and only if the user does not specify any include
search paths.

-Help
Give information on how to use roffpp.

-VERSion
Tell what version of roffpp is being run.

Any other option will generate a diagnostic error.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case
letters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments "-help", "-HEL" and "-h" are all interpreted to mean the -Help option. The
argument "-hlp" will not be understood, because consecutive optional characters were not supplied.

50 Cook Reference Manual

ROFFPP(1) ROFFPP(1)

Options and other command line arguments may be mixed arbitrarily on the command line.

The GNU long option names are understood. Since all option names for roffpp are long, this means
ignoring the extra leading ’-’. The "--option=value" convention is also understood.

EXIT STATUS
The roffpp command will exit with a status of 1 on any error. The roffpp command will only exit with a
status of 0 if there are no errors.

COPYRIGHT
roffpp version 2.25
Copyright © 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
2003, 2004 Peter Miller; All rights reserved.

The roffpp program comes with ABSOLUTELY NO WARRANTY; for details use the ’roffpp -VERSion
License’ command. This is free software and you are welcome to redistribute it under certain conditions;
for details use the ’roffpp -VERSion License’ command.

AUTHOR
Peter Miller E-Mail: millerp@canb.auug.org.au
/\/* WWW: http://www.canb.auug.org.au/˜millerp/

Reference Manual Cook 51

ROFFPP(1) ROFFPP(1)

1000 Cook Reference Manual

