University of Amsterdam

Dept. of Social Science Informatics (SWI)
Roeterstraat 15, 1018 WB Amsterdam
The Netherlands
Tel. (+31) 20 5256121

USTS%

SWI-Prolog 4.0

Reference Manual
Updated for version 4.0.11, December 2001

Jan Wielemaker

jan@swi.psy.uva.nl http://www.swi.psy.uva.nl/projects/SWI-Prolog/

SWI-Prolog is a Prolog implementation based on a subset of the WAM (Warren Ab-
stract Machine). SWI-Prolog was developed apanProlog environment, providing

a powerful and bi-directional interface to C in an era this was unknown to other Prolog
implementations. This environment is required to deal with XPCE, an object-oriented
GUI system developed at SWI. XPCE is used at SWI for the development of knowledge-
intensive graphical applications.

As SWI-Prolog became more popular, a large user-community provided requirements
that guided its development. Compatibility, portability, scalability, stability and provid-
ing a powerful development environment have been the most important requirements.
Edinburgh, Quintus, SICStus and the ISO-standard guide the development of the SWI-
Prolog primitives.

This document gives an overview of the features, system limits and built-in predicates.

Copyright(© 1990-2001, University of Amsterdam

Contents

1 Introduction 7
1.1 SWI-Prolog. e e e e e e e e 7
1.1.1 OtherbooksaboutProlog 7

1.2 Status. e e e e e e 8
1.3 CompliancetothelSOstandard. 8
1.4 Shouldyoube using SWI-Prolog?., 8
1.5 The XPCE GUIsystemforProlog 9
1.6 Release Notes e e e 10
1.6.1 Versionl.8ReleaseNotes. 10
1.6.2 Versionl9ReleaseNotes. 10
1.6.3 Version2.0ReleaseNotes. 11
1.6.4 Version25ReleaseNotes. 11
1.6.5 Version2.6ReleaseNotes. 12
1.6.6 \Version2.7ReleaseNotes. 12
1.6.7 Version2.8ReleaseNotes. 12
1.6.8 Version29ReleaseNotes. 12
1.6.9 Version3.0ReleaseNotes. 13
1.6.10 Version3.1ReleaseNotes. 13
1.6.11 Version3.3ReleaseNotes. 13
1.6.12 Version3.4ReleaseNotes. 14
1.6.13 Version4.0Release Notes.o 15

1.7 Acknowledgements e e e e 15
2 OQOverview 16
2.1 Gettingstarted quickly. L L 16
2.1.1 Starting SWI-Prolog. e 16
2.1.2 Executingaquery. v v i it e e e e 17

2.2 Theusersinitialisationfile 17
2.3 Initialisationfilesandgoals. 17
24 Commandlineoptions. e 18
25 GNUEmacsiInterface. e 20
26 OnlineHelp. e 21
2.7 Query Substitutions e e e 22
2.7.1 Limitations of the History System 22

2.8 Reuseoftoplevelbindings e 23
2.9 OverviewoftheDebugger. e 24
2.10 Compilation. e e e 27
2.10.1 During programdevelopment oL 27
2.10.2 Forrunningtheresult. o 27

2.11 Environment Control (Prologflags) 30

SWI-Prolog 4.0 Reference Manual

Contents 3

2.12 Anoverview of hook predicates e 35
2.13 Automatic loading of libraries. o oL 36
2.14 Garbage Collection e 37
2.15 Syntax NOtes. e e e 37
2.15.1 I1SO Syntax SUPPOIt. o o e e e e e 37
2.16 SystemIlimits. e 39
2.16.1 LiMtSONMEMOryareas v v v v v v e e e e e e e e 39
2.16.2 OtherLimits e 39
2.16.3 Reserved Names i i e e 41
Built-in predicates 42
3.1 Notation of Predicate Descriptions. it 42
3.2 Characterrepresentation e 42
3.3 Loading Prolog sourcefiles. e 43
3.3.1 Quickloadfiles 48
3.4 Listingand Editor Interface 49
3.5 VMerify TypeofaTerm e e e 51
3.6 Comparison and UnificationorTerms. 51
3.6.1 Standard Orderof Terms. 51
3.7 Control Predicates. e 53
3.8 Meta-Call Predicates 54
3.9 ISO compliant Exceptionhandling. 56
3.9.1 Debuggingandexceptions. e 57
3.9.2 Theexceptionterm i 57
3.9.3 Priningmessages 57
3.10 Handlingsignals. e e 59
3.10.1 Notesonsignalhandling. 61
3.11 The ‘block’ control-structure e 61
3.12 DCG Grammarrules. e e 62
313 Database e 63
3.13.1 Updateview. e e e 65
3.13.2 Indexingdatabases. 65
3.14 Declaring predicates properties e 66
3.15 Examiningthe program. e 67
3.16 Inputand OUPUL o e e e e e 69
3.16.1 Input and output using implicit source and destination 69
3.16.2 Explicit Inputand Output Streams. 71
3.16.3 Switching Between Implicit and Explicitl/Q 74
3.17 Statusofstreams 74
3.18 Primitive character I/O. 75
3.19 Termreadingand writing L 78
3.20 Analysing and Constructing Terms. oo 82
3.21 Analysing and constructingatoms.00 e e 83
3.22 Classifyingcharacters. e 86
3.23 Representing textin strings. 88
3.24 Operators. i e e e e e e e e e e e 89
3.25 Character Conversion. v i i i i e e e e e 89

SWI-Prolog 4.0 Reference Manual

3.26 Arithmetic. 90
3.27 Arithmetic Functions. e 91
3.28 Adding Arithmetic Functionso o 95
3.29 ListManipulation. 95
3.30 SetManipulation. e 97
3.31 Sorting LiSts L e 97
3.32 Finding all SolutionstoaGoal 98
3.33 Invoking Predicates on all MembersofalList. 99
3.34 Forall e e e 99
3.35 Formatted Write L 99
3.35.1 Writef. e 100
3.35.2 Format. e e 101
3.35.3 Programming Format. 103

3.36 Terminal Control. e 104
3.37 Operating System Interaction. e 104
3.38 File System Interaction 107
3.39 Multi-threading (alphacode) 110
3.39.1 Thread communication. 112
3.39.2 Thread synchronisation. 113
3.39.3 Thread-support library(threadutil). 114
3.39.4 Status of the thread implementation 115
3.40 User Toplevel Manipulation. 115
3.41 Creating a Protocol of the User Interaction 116
3.42 Debugging and Tracing Programs. o v v vt i 116
3.43 Obtaining Runtime Statistics 118
3.44 Finding Performance Bottlenecks L. 120
3.45 Memory Management. e e e 121
3.46 Windows DDE interface. e 122
3.46.1 DDEclientinterface. e 122
3.46.2 DDEservermode. 123
3.47 Miscellaneous L e 124
4 Using Modules 126
4.1 WhyUsingModules? e 126
4.2 Name-based versus Predicate-based Modules. 126
4.3 DefiningaModule. e 127
4.4 Importing PredicatesintoaModule, 127
441 ReservedModules 128

45 Usingthe Module System. 128
4.5.1 ObjectOriented Programming. 129

4.6 Meta-PredicatesinModules 130
4.6.1 Definitionand ContextModule., 130
4.6.2 Overruling Module Boundaries, 131

4.7 DynamicModules e 131
4.8 Module Handling Predicates 132
4.9 Compatibility of the Module System 133
4.9.1 Emulatingneta _predicate/l 0 0. 135

SWI-Prolog 4.0 Reference Manual

Contents 5
5 Foreign Language Interface 136
5.1 Overviewofthelnterface 136
5.2 Linking ForeignModules 136
5.2.1 Whatlinkingisprovided?. 0 137
5.2.2 Whatkind of loading should | beusing? 137

5.3 Dynamic Linking of shared libraries 137
5.4 Usingthe library shlib foDLL and.so files. 138
5.4.1 StaticLinking. 139

5.5 Interface Datatypes. o e 140
5.5.1 Typeterm _t: areferencetoaPrologterm. 140
5.5.2 Otherforeigninterfacetypes. 0. 142

5.6 TheForeignincludeFile. 143
5.6.1 ArgumentPassingandControl 143
5.6.2 Atomsandfunctors. 144
5.6.3 Analysing Terms via the ForeignInterface 146
5.6.4 ConstructingTerms. e 151
5.6.5 Unifyingdata. 155
5.6.6 Calling PrologfromC., 159
5.6.7 DiscardingData. 161
5.6.8 ForeignCodeandModules 162
5.6.9 Prolog exceptionsinforeigncode. 163
5.6.10 Foreign code and Prologthreads 165
5.6.11 Miscellaneous. L 166
5.6.12 Catching Signals (Software Interrupts) 168
5.6.13 Errorsandwarnings.o e e 168
5.6.14 Environment Control from ForeignCode. 168
5.6.15 QueryingProlog. 168
5.6.16 Registering Foreign Predicates 170
5.6.17 Foreign Code HOOKS i 171
5.6.18 Storingforeigndata. o 172
5.6.19 Embedding SWI-ProloginaC-program 175

5.7 Linking embedded applicationsusingplld. 177
5.71 Asimpleexample. 179

5.8 The Prolog ‘home’directory. e 181
5.9 Example of Using the Foreign Interface. 181
5.10 NotesonUsing ForeignCode 184
5.10.1 Memory Allocation e 184
5.10.2 Debugging ForeignCode. 184
5.10.3 Name ConflictsinCmodules 184
5.10.4 Compatibility of the ForeignInterface. 184

6 Generating Runtime Applications 186
6.1 Limitations of gsavgrogram. L e e 188
6.2 Runtimesand ForeignCode e 188
6.3 Using program reSOUICES v v v v v v e e e e e e e e 189
6.3.1 Predicates Definitions. L L 190
6.3.2 Theplrc program. i e e e 191

SWI-Prolog 4.0 Reference Manual

6.4 Finding Applicationfiles.
6.4.1 Passing a path to the application
6.5 The Runtime Environment e
6.5.1 TheRuntimeEmulator

A The SWI-Prolog library
A.1 library(check): Elementary completenesschecks.
A.2 library(readutil): Reading lines, streams andfiles.
A.3 library(netscape): Activating your Web-browser.
A.4 library(registry): Manipulating the Windows registry
A.5 library(url): Analysing and constructing URL

B Hackers corner
B.1 Examining the EnvironmentStack.
B.2 Interceptingthe Tracer. e
B.3 Hooks using thexception/3 predicate
B.4 Hooks forintegrating libraries. o
B.5 ReadlineInteraction. e e

C Glossary of Terms

D Summary
D.1 Predicates. e e e e

D.2 Librarypredicates
D.2.1 librarygheck) e
D.2.2 libraryfeadutil)
D.2.3 libraryfetscape) e

D.2.4 libraryfegistry)
D.25 libraryQrl)
D.3 Arithmetic Functions. e
D.4 Operators. i e

SWI-Prolog 4.0 Reference Manual

Introduction

1.1 SWiI-Prolog

SWI-Prolog has been designed and implemented to get a Prolog implementation which can be used
for experiments with logic programming and the relation to other programming paradigms. The inten-
tion was to build a Prolog environment which offers enough power and flexibility to write substantial
applications, but is straightforward enough to be modified for experiments with debugging, optimi-
sation or the introduction of non-standard data types. Performance optimisation is limited due to the
main objectives: portability (SWI-Prolog is entirely written in C and Prolog) and modifiability.
SWiI-Prolog is based on a very restricted form of the WAM (Warren Abstract Machine) described
in [} which defines only 7 instructions. Prolog can easily be compiled into this
language and the abstract machine code is easily decompiled back into Prolog. As it is also possible
to wire a standard 4-port debugger in the WAM interpreter there is no need for a distinction between
compiled and interpreted code. Besides simplifying the design of the Prolog system itself this ap-
proach has advantages for program development: the compiler is simple and fast, the user does not
have to decide in advance whether debugging is required and the system only runs slightly slower
when in debug mode. The price we have to pay is some performance degradation (taking out the
debugger from the WAM interpreter improves performance by about 20%) and somewhat additional
memory usage to help the decompiler and debugger.
SWiI-Prolog extends the minimal set of instructions describedimj } to im-
prove performance. While extending this set care has been taken to maintain the advantages of de-
compilation and tracing of compiled code. The extensions include specialised instructions for unifi-
cation, predicate invocation, some frequently used built-in predicates, arithmetic, and cgatrpl (
|/2), if-then (->/2) and negation-by-failuré{/1).

1.1.1 Other books about Prolog

This manual does not describe the full syntax and semantics of Prolog, nor how one should write a pro-
gram in Prolog. These subjects have been described extensively in the literaturer:See [L98§,

[Joand [J. For more advanced Prolog material see
[]. Syntax and standard operator declarations confirm to the ‘Edinburgh standard’.
Most built in predicates are compatible with those describedCin(I. SWI-
Prolog also offers a number of primitive predicates compatible with Quintus Prlog] and
BIM _Prologd [].

ISO compliant predicates are based on “Prolog: The Standardi'a[], validated
using [&

1Quintus is a trademark of Quintus Computer Systems Inc., USA
2BIM is a trademark of BIM sa/nv., Belgium

SWI-Prolog 4.0 Reference Manual

8 CHAPTER 1. INTRODUCTION

1.2 Status

This manual describes version 4.0 of SWI-Prolog. SWI-Prolog has been used now for many years.
The application range includes Prolog course material, meta-interpreters, simulation of parallel Pro-
log, learning systems, natural language processing and two large workbenches for knowledge en-
gineering. Although we experienced rather obvious and critical bugs can remain unnoticed for a
remarkable long period, we assume the basic Prolog system is fairly stable. Bugs can be expected in
infrequently used built-in predicates.

Some bugs are known to the author. They are described as footnotes in this manual.

1.3 Compliance to the ISO standard

SWI-Prolog 3.3.0 implements all predicates described in “Prolog: The Standard”
[1.

Exceptions and warning are still weak. Some SWI-Prolog predicates silently fail on conditions
where the ISO specification requires an exceptiandtor/3 for example). Many predicates print
warnings rather than raising an exception. All predicates where exceptions may be caused due to a
correct program operating in an imperfect world (I/O, arithmetic, resource overflows) should behave
according to the ISO standard. In other words: SWI-Prolog should be able to execute any program
conforming to [] that does not rely on exceptions generated by errors in the
program.

1.4 Should you be using SWI-Prolog?

There are a number of reasons why you better choose a commercial Prolog system, or another aca-
demic product:

e SWI-Prolog is not supported
Although | usually fix bugs shortly after a bug report arrives, | cannot promise anything. Now
that the sources are provided, you can always dig into them yourself.

e Memory requirements and performance are your first concerns
A number of commercial compilers are more keen on memory and performance than SWI-
Prolog. | do not wish to sacrifice some of the nice features of the system, nor its portability to
compete on raw performance.

e You need features not offered by SWI-Prolog
In this case you may wish to give me suggestions for extensions. If you have great plans, please
contact me (you might have to implement them yourself however).

On the other hand, SWI-Prolog offers some nice facilities:

¢ Nice environment
This includes ‘Do What | Mean’, automatic completion of atom names, history mechanism and
a tracer that operates on single key-strokes. Interfaces to some standard editors are provided
(and can be extended), as well as a facility to maintain programsr(ake/O).

SWI-Prolog 4.0 Reference Manual

1.5. THE XPCE GUI SYSTEM FOR PROLOG 9

e Very fast compiler
Even very large applications can be loaded in seconds on most machines. If this is not enough,
there is a Quick Load Format that is slightly more compact and loading is almost always /O
bound.

e Transparent compiled code
SWiI-Prolog compiled code can be treated just as interpreted code: you can list it, trace it, etc.
This implies you do not have to decide beforehand whether a module should be loaded for
debugging or not. Also, performance is much better than the performance of most interpreters.

e Profiling
SWI-Prolog offers tools for performance analysis, which can be very useful to optimise pro-
grams. Unless you are very familiar with Prolog and Prolog performance considerations this
might be more helpful than a better compiler without these facilities.

o Flexibility
SWiI-Prolog can easily be integrated with C, supporting non-determinism in Prolog calling C as
well as C calling Prolog (see sectiénlt can also bembedde@mbedded in external programs
(see sectiok.?). System predicates can be redefined locally to provide compatibility with other
Prolog systems.

e Integration with XPCE
SWI-Prolog offers a tight integration to the Object Oriented Package for User Interface De-

velopment, called XPCE] J9XPCE allows you to implement
graphical user interfaces that are source-code compatible over Unix/X11 and Win32 (Windows
95 and NT).

1.5 The XPCE GUI system for Prolog

The XPCE GUI system for dynamically typed languages has been with SWI-Prolog for a long time.
It is developed by Anjo Anjewierden and Jan Wielemaker from the department of SWI, University of
Amsterdam. It aims at a high-productive development environment for graphical applications based
on Prolog.

Object oriented technology has proven to be a suitable model for implementing GUIs, which
typically deal with things Prolog is not very good at: event-driven control and global state. With
XPCE, we designed a system that has similar characteristics that make Prolog such a powerful tool:
dynamic typing, meta-programming and dynamic modification of the running system.

XPCE is an object-system written in the C-language. It provides for the implementation of meth-
ods in multiple languages. New XPCE classes may be defined from Prolog using a simple, natural
syntax. The body of the method is executed by Prolog itself, providing a natural interface between the
two systems. Below is a very simple class definition.

.- pce_begin_class(prolog_lister, frame,
"List Prolog predicates").

initialise(Self) :->
"As the C++ constructor":
send(Self, send_super, initialise, 'Prolog Lister’),

SWI-Prolog 4.0 Reference Manual

10 CHAPTER 1. INTRODUCTION

send(Self, append, new(D, dialog)),
send(D, append,

text_item(predicate, message(Self, list, @argl))),
send(new(view), below, D).

list(Self, From:name) :->
"List predicates from specification":
(catch(term_to_atom(Term, From), _, fail)
-> get(Self, member, view, V),
pce_open(V, write, Fd),
set_output(Fd),
listing(Term),
close(Fd)
; send(Self, report, error, 'Syntax error’)

).
.- pce_end_class.
test :- send(new(prolog_lister), open).

Its 165 built-in classes deal with the meta-environment, data-representation and—of course—
graphics. The graphics classes concentrate on direct-manipulation of diagrammatic representations.

Availability. XPCE runs on most Uni®* platforms, Windows 95, 98 and Windows NT. It has been
connected to SWI-Prolog, SICStifsand Quintu¥” Prolog as well as some Lisp dialects and C++.
The Quintus version is commercially distributed and supported as Prowind6ws-3

Info. further information is available fromnttp://www.swi.psy.uva.nl/projects/xpce/
or by E-mail toxpce-request@swi.psy.uva.nl . There are demo versions for Windows 95,
98, NT and i386/Linux available from the XPCE download page.

1.6 Release Notes

Collected release-notes. This section only contains some highlights. Smaller changes to especially
older releases have been removed. For a complete log, see @BhditgelLog from the distribution.

1.6.1 Version 1.8 Release Notes

Version 1.8 offers a stack-shifter to provide dynamically expanding stacks on machines that do not
offer operating-system support for implementing dynamic stacks.

1.6.2 Version 1.9 Release Notes

Version 1.9 offers better portability including an MS-Windows 3.1 version. Changes to the Prolog
system include:

SWI-Prolog 4.0 Reference Manual

1.6. RELEASE NOTES 11

e Redefinition of system predicates
Redefinition of system predicates was allowed silently in older versions. Version 1.9 only allows
it if the new definition is headed by aredefine _system _predicate/1 directive.

e ‘Answer’ reuse
The toplevel maintains a table of bindings returned by toplevel goals and allows for reuse of
these bindings by prefixing the variables with the $ sign. See seztibn

e Better source code administration
Allows for proper updating of multifile predicates and finding the sources of individual clauses.

1.6.3 Version 2.0 Release Notes

New features offered:

e 32-bit Virtual Machine
Removes various limits and improves performance.

e Inline foreign functions
‘Simple’ foreign predicates no longer build a Prolog stack-frame, but are directly called from
the VM. Notably provides a speedup for the test predicates suehrés , etc.

e Various compatibility improvements

e Stream based /O library
All SWI-Prolog’s I/O is now handled by the stream-package defined in the foreign include
file SWI-Stream.h . Physical I/O of Prolog streams may be redefined through the foreign
language interface, facilitating much simpler integration in window environments.

1.6.4 Version 2.5 Release Notes

Version 2.5 is an intermediate release on the path from 2.1 to 3.0. All changes are to the foreign-
language interface, both to user- and system-predicates implemented in the C-language. The aim
is twofold. First of all to make garbage-collection and stack-expansion (stack-shifts) possible while
foreign code is active without the C-programmer having to worry about locking and unlocking C-
variables pointing to Prolog terms. The new approach is closely compatible to the Quintus and SIC-
Stus Prolog foreign interface using therm argument specification (see their respective manuals).
This allows for writing foreign interfaces that are easily portable over these three Prolog platforms.
Apart from various bug fixes listed in the Changelog file, these are the main changes since 2.1.0:

e ISO compatibility
Many ISO compatibility features have been addepken/4 , arithmetic functions, syntax, etc.

e Win32
Many fixes for the Win32 (NT, '95 and win32s) platforms. Notably many problems related to
pathnames and a problem in the garbage collector.

e Performance
Many changes to the clause indexing system: added hash-tables, lazy computation of the index
information, etc.

SWI-Prolog 4.0 Reference Manual

12 CHAPTER 1. INTRODUCTION

¢ Portable saved-states
The predicategsave _program/[1,2] allows for the creating of machine independent
saved-states that load very quickly.

1.6.5 Version 2.6 Release Notes

Version 2.6 provides a stable implementation of the features added in the 2.5.x releases, but at the
same time implements a number of new features that may have impact on the system stability.

e 32-bit integer and double float arithmetic
The biggest change is the support for full 32-bit signed integers and raw machine-format double
precision floats. The internal data representation as well as the arithmetic instruction set and
interface to the arithmetic functions has been changed for this.

e Embedding for Win32 applications
The Win32 version has been reorganised. The Prolog kernel is now implemented as Win32 DLL
that may be embedded in C-applications. Two front ends are provided, one for window-based
operation and one to run as a Win32 console application.

e Creating stand-alone executables
Version 2.6.0 can create stand-alone executables by attaching the saved-state to the emulator.
Seegsave _program/2

1.6.6 Version 2.7 Release Notes

Version 2.7 reorganises the entire data-representation of the Prolog data itself. The aim is to remove
most of the assumption on the machine’s memory layout to improve portability in general and enable
embedding on systems where the memory layout may depend on invocation or on how the executable
is linked. The latter is notably a problem on the Win32 platforms. Porting to 64-bit architectures is
feasible now.

Furthermore, 2.7 lifts the limits on arity of predicates and number of variables in a clause consid-
erably and allow for further expansion at minimal cost.

1.6.7 Version 2.8 Release Notes

With version 2.8, we declare the data-representation changes of 2.7.x stable. Version 2.8 exploits the
changes of 2.7 to support 64-bit processors like the DEC Alpha. As of version 2.8.5, the representation
of recorded terms has changed, and terms on the heap are now represented in a compiled format. SWI-
Prolog no longer limits the use ofialloc() or uses assumptions on the addresses returned by this
function.

1.6.8 Version 2.9 Release Notes

Version 2.9 is the next step towards version 3.0, improving ISO compliance and introducing ISO com-
pliant exception handling. New aatch/3 , throw/1 , abolish/1 , write _term/[2,3]

write _canonical/[1,2] and the C-functiong’L_exception() and PL_throw() . The
predicatedisplay/[1,2] and displayq/[1,2] have been moved to libradyéickcomp),

so old code referring to them will autoload them.

SWI-Prolog 4.0 Reference Manual

1.6. RELEASE NOTES 13

The interface td°L_open _query() has changed. Th#ebugargument is replaced by a bitwise
or'ed flagsargument. The valueSALSE and TRUEhave their familiar meaning, making old code
using these constants compatible. Non-zero values othefMiRBiE(1) will be interpreted different.

1.6.9 Version 3.0 Release Notes

Complete redesign of the saved-state mechanism, providing the possibility of ‘program resources’.
Seeresource/3 , open _resource/3 , andgsave _program/[1,2]

1.6.10 Version 3.1 Release Notes

Improvements on exception-handling. Allows relating software interrupts (signals) to exceptions,
handling signals in Prolog and C (see_signal/3 andPL_signal()). Prolog stack overflows
now raise theesource _error exception and thus can be handled in Prolog usatgh/3

1.6.11 Version 3.3 Release Notes

Version 3.3 is a major release, changing many things internally and externally. The highlights are a
complete redesign of the high-level 1/O system, which is now based on explicit streams rather then
current input/output. The old Edinburgh predicatesel , tell/l , etc.) are now defined on top

of this layer instead of the other way around. This fixes various internal problems and removes Prolog
limits on the number of streams.

Much progress has been made to improve ISO compliance: handling strings as lists of one-
character atoms is now supported (next to character codes as integers). Many more exceptions have
been added and printing of exceptions and messages is rationalised using Quintus and SICStus Pro-
log compatibleprint _message/2 , message _hook/3 andprint _message lines/3 . All
predicates descriped i§] are now implemented.

As of version 3.3, SWI-Prolog adheres the I8Qical update viewfor dynamic predicates. See
section3.13.1for details.

SWiI-Prolog 3.3 includes garbage collection on atoms, removing the last serious memory leak
especially in text-manipulation applications. See sechigh2 In addition, both the user-level and
foreign interface supports atoms holdidgpytes

Finally, an alpha version of a multi-threaded SWI-Prolog for Linux is added. This version is still
much slower than the single-threaded version due to frequent access to ‘thread-local-data’ as well as
some too detailed mutex locks. The basic thread API is ready for serious use and testing however. See
section3.39

Incompatible changes

A number of incompatible changes result from this upgrade. They are all easily fixed however.

e /0 ,call/l
The cut now behaves according to the 1ISO standard. This implies it works in compound goals
passed taeall/l and is local to theonditionpart of if-then-else as well as the argument of
\+/1 .

e atom _chars/2
This predicate is now ISO compliant and thus generates a list of one-character atoms. The

SWI-Prolog 4.0 Reference Manual

14 CHAPTER 1. INTRODUCTION

behaviour of the old predicate is available in the —also ISO compliaatem _codes/2
predicate. Safest repair is a replacement ohtdin _chars into atom _codes . If you do not
want to change any souce-code, you might want to use

user:goal_expansion(atom_chars(A,B), atom_codes(A,B)).

e number _chars/2
Same applies fonumber _chars/2 andnumber _codes/2 .

o feature/2 ,set _feature/2
These are replaced by the ISO complianturrent _prolog _flag/2 and
set _prolog _flag/2 . The library librarypackcomp) provides definitions for
feature/2 andset _feature/2 , so no sourcéasto be updated.

e Accessing command-line arguments
This used to be provided by the undocumented '$argv’/1 and Quintus compatible library
unix/1 . Now there is also documentedrrent _prolog _flag (argv, Argy.

e dup _stream/2
Has been deleted. New stream-aliases can deal with most of the problems for which
dup _stream/2 was designed andup/2 from theclib package can with most others.

e 0p/3
Operators are novocal to modules This implies any modification of the operator-table does
not influence other modules. This is consistent with the proposed ISO behaviour and a necessity
to have any usable handling of operators in a multi-threaded environment.

e setprolog flag(characterescapes, Bool)
This prolog flag is now an interface to changing attributes on the current source-module, effec-
tively making this flag module-local as well. This is required for consistent handling of sources
written with ISO (obligatory) character-escape sequences together with old Edinburgh code.

e current _stream/3 and streamposition
These predicates have been moved to libiuiy(tus).

1.6.12 \Version 3.4 Release Notes

The 3.4 release is a consolidation release. It consolidates the improvements and standard conformance
of the 3.3 releases. This version is closely compatible with the 3.3 version except for one important
change:

e Argument order irselect/3
The list-processing predicaselect/3 somehow got into a very early version of SWI-Prolog
with the wrong argument order. This has been fixed in 3.4.0. The correct order is select(?Elem,
?List, ?Rest).

As select/3 has no error conditions, runtime checking cannot be done. To simplify debug-
ging, the library module librargheckselect) will print references teselect/3 in your

source code and install a version of select that enters the debugger if select is called and the
second argument is not a list.

This library can be loaded explicitely or by calliepeck _old _select/0

SWI-Prolog 4.0 Reference Manual

1.7. ACKNOWLEDGEMENTS 15

1.6.13 Version 4.0 Release Notes

As of version 4.0 the standard distribution of SWI-Prolog is bundled with a number of its popular
extension packages, among which the now open source XPCE GUI toolkit (see seBJioMNo
significant changes have been made to the basic SWI-Prolog engine.

Some useful tricks in the integrated environment:

e Register the GUI tracer
Using a call toguitracer/0 , hooks are installed that replace the normal command-line

driven tracer with a graphical forntend.

¢ Register PceEmacs for editing files
From your initialisation file. you can load librashacs/swi _prolog) that causedit/1
to use the built-in PceEmacs editor.

1.7 Acknowledgements

Some small parts of the Prolog code of SWI-Prolog are modified versions of the corresponding Ed-
inburgh C-Prolog code: grammar rule compilation awitef/2 . Also some of the C-code orig-
inates from C-Prolog: finding the path of the currently running executable and the code underlying
absolute _file _name/2. ldeas on programming style and techniques originate from C-Prolog
and Richard O’Keefe’'shief editor. An important source of inspiration are the programming tech-
niques introduced by Anjo Anjewierden in PCE version 1 and 2.

| also would like to thank those who had the fade of using the early versions of this system, sug-
gested extensions or reported bugs. Among them are Anjo Anjewierden, Huub Knops, Bob Wielinga,
Wouter Jansweijer, Luc Peerdeman, Eric Nombden, Frank van Harmelen, Bert Rengel.

Martin Janschejgnsche@novelll.gs.uni-heidelberg.de) has been so kind to reor-
ganise the sources for version 2.1.3 of this manual.

Horst von Brand has been so kind to fix many typos in the 2.7.14 manual. Thanks!

SWI-Prolog 4.0 Reference Manual

Overview

2.1 Getting started quickly

2.1.1 Starting SWI-Prolog
Starting SWI-Prolog on Unix

By default, SWI-Prolog is installed as ‘pl’, though some administrators call it ‘swipl’ or ‘swi-prolog’.
The command-line arguments of SWI-Prolog itself and its utility programs are documented using
standard Unixnan pages. SWI-Prolog is normally operated as an interactive application simply by
starting the program:

machine% pl

% /staff/jan/.plrc compiled 0.00 sec, 1,260 bytes
Welcome to SWI-Prolog (Version 4.0.3)

Copyright (c) 1990-2000 University of Amsterdam.
Copy policy: GPL-2 (see www.gnu.org)

For help, use ?- help(Topic). or ?- apropos(Word).

1 ?-

After starting Prolog, one normally loads a program into it usiogsult/l , which—for historical
reasons—may be abbreviated by putting the name of the program file between square brackets. The
following goal loads the fildikes.pl containing clauses for the predicaté®s/2

?- [likes].
% likes compiled, 0.00 sec, 596 bytes.

Yes
2.

After this point, Unix and Windows users unite, so if you are using Unix please continue at sec-
tion2.1.2
Starting SWI-Prolog on Windows

After SWI-Prolog has been installed on a Windows system, the following important new things are
available to the user:

o Afolder (calleddirectoryin the remainder of this document) callpd containing the executa-
bles, libraries, etc. of the system. No files are installed outside this directory.

SWI-Prolog 4.0 Reference Manual

2.2. THE USER'’S INITIALISATION FILE 17

e A programplwin.exe , providing a window for interaction with Prolog. The program
plcon.exe is a version of SWI-Prolog that runs in a DOS-box.

e The file-extensionpl is associated with the prograpiwin.exe . Opening apl file will
causeplwin.exe to start, change directory to the directory in which the file-to-open resides
and load this file.

The normal way to start with thikes.pl file mentioned in sectioA.1.1is by simply double-
clicking this file in the Windows explorer.

2.1.2 Executing a query

After loading a program, one can ask Prolog queries about the program. The query below asks Pro-
log to prove whether ‘john’ likes someone and who is liked by ‘john’. The system responds with

X = (value if it can prove the goal for a certald. The user can type the semi-colon (;) if (s)he
wants another solution, ®ETURN if (S)he is satisfied, after which Prolog will saes If Prolog
answerdNo, it indicates it cannot find any more answers to the query. Finally, Prolog can answer
using an error message to indicate the query or program contains an error.

?- likes(john, X).

X = mary

2.2 The user’s initialisation file

After the necessary system initialisation the system consulte(seilt/l) the user’s startup file.

The base-name of this file follows conventions of the operating system. On MS-Windows, it is the
file plini and on Unix systemsplrc . The file is searched using tliee _search _path/2

clauses fouser _profile . The table below shows the default value for this search-path.

Unix | Windows
local | . :
home | © %HOME®6 %HOMEDRIVE%\%HOMEPATH%
global SWI-Home directory oPAWINDIR%r %SYSTEMROOT%

After the first startup file is found it is loaded and Prolog stops looking for further startup files. The
name of the startup file can be changed with tfie ‘file ' option. If File denotes an absolute path,

this file is loaded, otherwise the file is searched for using the same conventions as for the default
startup file. Finally, iffile is none, no file is loaded.

2.3 Initialisation files and goals

Using commandline arguments (see sectiof), SWI-Prolog can be forced to load files and execute
queries for initialisation purposes or non-interactive operation. The most commonly used options are
-f file or-s file to make Prolog load a fileg goal to define an initialisation goal and

-t goal to define theoplevel goal The following is a typical example for starting an application
directly from the commandline.

SWI-Prolog 4.0 Reference Manual

18 CHAPTER 2. OVERVIEW

machine% pl -f load.pl -g go -t halt

It tells SWI-Prolog to loadoad.pl , start the application using tlemtry-pointgo/0 and —instead
of entering the interactive toplevel— exit after completg@/O . The-q may be used to supress all
informational messages.

In MS-Windows, the same can be achieved using a short-cut with appropriately defined comman-
dline arguments. A typically seen alternative is to write affila.pl with content as illustrated
below. Double-clickingun.pl will start the application.

- [load]. % load program
- go. % run it
- halt. % and exit

Section2.10.2discusses further scripting options and chaptdiscusses the generation of runtime
executables. Runtime executables are a mean to deliver executables that do not require the Prolog
system.

2.4 Command line options
The full set of command line options is given below:

-help
When given as the only option, it summarises the most important options.

When given as the only option, it summarises the version and the architecture identifier.

-arch
When given as the only option, it prints the architecture identifier (see cupretag flag(arch,
Arch)) and exits. See alsdump-runtime-variables

-dump-runtime-variables
When given as the only option, it prints a sequence of variable settings that can be used in shell-
scripts to deal with Prolog parameters. This feature is also usqaldy (see sectiorb.7).
Below is a typical example of using this feature.

eval ‘pl -dump-runtime-variables’
cc -I$PLBASE/include -L$PLBASE/runtime/$PLARCH ...

-q
Set the prolog-flagerbose tosilent , supressing informational and banner messages.

-Lsize[km]
Give local stack limit (2 Mbytes default). Note that there is nho space between the size option
and its argument. By default, the argument is interpreted in Kbytes. Postfixing the argument
with mcauses the argument to be interpreted in Mbytes. The following example specifies 32
Mbytes local stack.

SWI-Prolog 4.0 Reference Manual

2.4, COMMAND LINE OPTIONS 19

% pl -L32m

A maximum is useful to stop buggy programs from claiming all memory resourt@s.sets
the limit to the highest possible value. See secdii

-Gsize[km]
Give global stack limit (4 Mbytes default). Sele for more details.

-Tsize[km]
Give trail stack limit (4 Mbytes default). This limit is relatively high because trail-stack over-
flows are not often caused by program bugs. Beéor more details.

-Asize[km]
Give argument stack limit (1 Mbytes default). The argument stack limits the maximum nesting
of terms that can be compiled and executed. SWI-Prolog does ‘last-argument optimisation’ to
avoid many deeply nested structure using this stack. Enlarging this limit is only necessary in
extreme cases. See for more details.

-cfile ...
Compile files into an ‘intermediate code file’. See sectiall

-0 output
Used in combination withc or-b to determine output file for compilation.

-O
Optimised compilation. Semurrent _prolog _flag/2

-sfile
Usefile as a script-file. The script file is loaded after the initialisation file specified with the
-f file option. Unlike-f file , using

-sd
oes not stop Prolog from loaded the personal initialisation file.

-f file
Usefile as initialisation file instead of the defaufplrc (Unix) or pl.ini (Windows).
‘-f none’ stops SWI-Prolog from searching for a startup file. This option can be used as
an alternative tos file that stops Prolog from loading the personal initialisation file. See
also sectior?.2.

-F script
Selects a startup-script from the SWI-Prolog home directory. The script-file is named
(script).rc . The defaultscript name is deduced from the executable, taking the leading al-
phanumerical characters (letters, digits and underscore) from the program-rameone
stops looking for a script. Intended for simple management of slightly different versions.
One could for example write a scrifgo.rc ~ and then select ISO compatibility mode using
pl -F iso or make alink fromso-pl topl .

-g goal
Goalis executed just before entering the top level. Default is a predicate which prints the wel-

come message. The welcome message can thus be suppressed byggiving . goal can

SWI-Prolog 4.0 Reference Manual

20

CHAPTER 2. OVERVIEW

be a complex term. In this case quotes are normally needed to protect it from being expanded
by the Unix shell.

-t goal

-tty

Usegoal as interactive toplevel instead of the default go@log/0 . goal can be a complex
term. If the toplevel goal succeeds SWI-Prolog exits with status 0. If it fails the exit status is
1. This flag also determines the goal startecbbsak/0 andabort/0 . If you want to stop

the user from entering interactive mode start the application wgth §oal ' and give ‘halt’ as
toplevel.

Unix only. Switches controlling the terminal for allowing single-character commands to the
tracer andget _single _char/1 . By default manipulating the terminal is enabled unless the
system detects it is not connected to a terminal or it is running as a GNU-Emacs inferior process.
This flag is sometimes required for smooth interaction with other applications.

-X bootfile

Boot from bootfile instead of the system’s default boot file. A bootfile is a file result-
ing from a Prolog compilation using theb or -c option or a program saved using
gsave _program/[1,2]

-p alias=pathl[:path2 ...]

Define a path alias for filsearchpath. aliasis the name of the aliapathl ...is a: separated

list of values for the alias. A value is either a term of the form alias(value) or pathname. The
computed aliases are addedfte _search _path/2 usingasserta/1 , so they precede
predefined values for the alias. Skle _search _path/2 for details on using this file-
location mechanism.

Stops scanning for more arguments, so you can pass arguments for your application after this
one. Seeurrent _prolog _flag/l2 using the flagargv for obtaining the commandline
arguments.

The following options are for system maintenance. They are given for reference only.

-binitfile ...-c file ...

Boot compilation.initfile ... are compiled by the C-written bootstrap compifée ... by the
normal Prolog compiler. System maintenance only.

-d level

Set debug level ttevel Only has effect if the system is compiled with tHeO_DEBUGlag.
System maintenance only.

2.5 GNU Emacs Interface

The default Prolog mode for GNU-Emacs can be activated by adding the following rules to your
Emacs initialisation file:

SWI-Prolog 4.0 Reference Manual

2.6. ONLINE HELP 21

(setq auto-mode-alist
(append
("\.pI" . prolog-mode))
auto-mode-alist))
(setq prolog-program-name "pl")
(setq prolog-consult-string "[user].\n")
;If you want this. Indentation is either poor or | don't use
it as intended.
;(setq prolog-indent-width 8)

Unfortunately the default Prolog mode of GNU-Emacs is not very good.
An alternative prolog.el fle for GNU-Emacs 20 is available from
http://www.freesoft.cz/ pdm/software/emacs/prolog-mode/ and for GNU-
Emacs 19 froninttp://w1.858.telia.com/ u85810764/Prolog-mode/index.html

2.6 Online Help

Online help provides a fast lookup and browsing facility to this manual. The online manual can show
predicate definitions as well as entire sections of the manual.

The online help is displayed from the file libral WANUAL'). The file librarypelpidx) pro-
vides an index into this file. librarlMJANUAL’) is created from theAIeX sources with a modified
version ofdvitty , using overstrike for printing bold text and underlining for rendering italic text.
XPCE is shipped with librangwi _help), presenting the information from the online help in a hyper-
text window. The prolog-flagvrite _help _with _overstrike controls whether or ndielp/1
writes its output using overstrike to realise bold and underlined output or not. If this prolog-flag is
not set it is initialised by the help library toue if the TERMvariable equalsterm andfalse
otherwise. If this default does not satisfy you, add the following line to your personal startup file (see
section2.2):

.- set_prolog_flag(write_help_with_overstrike, true).

help
Equivalent tohelp(help/1)

help(+What)
Show specified part of the manusi/hatis one of:

(Name/(Arity) Give help on specified predicate

(Name Give help on named predicate with any arity or C interface
function with that name
(Section Display specified section. Section numbers are dash-

separated numberg:3 refers to section 2.3 of the man-
ual. Section numbers are obtained usapgopos/1

Examples:

SWI-Prolog 4.0 Reference Manual

22 CHAPTER 2. OVERVIEW

?- help(assert). Give help on predicate assert

?- help(3-4). Display section 3.4 of the manual

?- help(PL _retry’). Give help on interface functioRL _retry()
See also apropos/l , and the SWiI-Prolog home page at
http://www.swi.psy.uva.nl/projects/SWI-Prolog/ , which provides a
FAQ, an HTML version of manual for online browsing and HTML and PDF versions for
downloading.

apropos(+Pattern)

Display all predicates, functions and sections that HRatternin their name or summary de-
scription. Lowercase letters Patternalso match a corresponding uppercase letter. Example:

?- apropos(file). Display predicates, functions and sections that have ‘file’
(or ‘File’, etc.) in their summary description.

explain(+ToExplain)
Give an explanation on the given ‘object’. The argument may be any Prolog data object. If the
argument is an atom, a term of the foName/Arityor a term of the forrModule:Name/Arity
explain will try to explain the predicate as well as possible references to it.

explain(+ToExplain, -Explanatioh
Unify Explanationwith an explanation fofoExplain Backtracking yields further explanations.

2.7 Query Substitutions

SWI-Prolog offers a query substitution mechanism similar to that of Unix csh (csh(1)), called ‘his-
tory’. The availability of this feature is controlled 3et _prolog _flag/2 , using thehistory
prolog-flag. By default, history is available if the prolog-flegadline is false . To enable this
feature, remembering the last 50 commands, put the following into your startup file (see &&ttion

.- set_prolog_flag(history, 50).

The history system allows the user to compose new queries from those typed before and remembered
by the system. It also allows to correct queries and syntax errors. SWI-Prolog does not offer the
Unix csh capabilities to include arguments. This is omitted as it is unclear how the first, second, etc.
argument should be definéd.

The available history commands are shown in table

2.7.1 Limitations of the History System

History expansion is executed aftaw-reading This is the first stage okad _term/2 and friends,
reading the term into a string while deleting comment and canonising blank. This makes it hard to use
it for correcting syntax errors. Command-line editing as provided using the GNU-readline library is
more suitable for this. History expansion is first of all useful for executing or combining commands
from long ago.

10One could choose words, defining words as a sequence of alpha-numeric characters and the word separators as anything
else, but one could also choose Prolog arguments

SWI-Prolog 4.0 Reference Manual

2.8. REUSE OF TOPLEVEL BINDINGS 23

I Repeat last query

Inr. Repeat query numberédr)

Istr. Repeat last query starting witlstr)
I?str. Repeat last query holdingtr)
“old"new. Substitute(old) into (new in last query
Inrold"new. Substitute in query numberédr)
Istr"old"new. Substitute in query starting witfstr)
I?str"old new. Substitute in query holdingstr)

h. Show history list

Ih. Show this list

Table 2.1: History commands
1 ?- maplist(plus(1), "hello", X).
X = [105,102,109,109,112]
Yes
2 ?- format("s™n’, [$X]).
ifmmp
Yes
3 ?-

Figure 2.1: Reusing toplevel bindings

2.8 Reuse of toplevel bindings

Bindings resulting from the successful execution of a toplevel goal are asserted in a database. These
values may be reused in further toplevel queries as $Var. Only the latest binding is available. Example:
Note that variables may be set by executiig :

6 ?- X = statistics.
X = statistics

Yes

7 ?- $X.

28.00 seconds cpu time for 183,128 inferences

4,016 atoms, 1,904 functors, 2,042 predicates, 52 modules
55,915 byte codes; 11,239 external references

Limit Allocated In use
Heap : 624,820 Bytes
Local stack : 2,048,000 8,192 404 Bytes

Global stack : 4,096,000 16,384 968 Bytes

SWI-Prolog 4.0 Reference Manual

24 CHAPTER 2. OVERVIEW

1 ?- visible(+all), leash(-exit).

Yes

2 ?- trace, min([3, 2], X).
Call: (3) min([3, 2], G235) ? creep
Unify: (3) min([3, 2], G235)
Call: (4) min([2], G244) ? creep
Unify: (4) min([2], 2)
Exit: (4) min([2], 2)
Call: (4) min(3, 2, G235) ? creep
Unify: (4) min(3, 2, G235)
Call: (5) 3 <2 ? creep
Fail: (5 3 <2 ? creep
Redo: (4) min(3, 2, G235) ? creep
Exit: (4) min(3, 2, 2)
Exit: (3) min([3, 2], 2)

Yes
[trace] 3 ?-
Figure 2.2: Example trace
Trail stack : 4,096,000 8,192 432 Bytes
Yes
8 ?-

2.9 Overview of the Debugger

SWI-Prolog has a 6-port tracer, extending the standard 4-port traceriq T with

two additional ports. The optionahify port allows the user to inspect the result after unification of
the head. Thexceptiorport shows exceptions raised thyow/1 or one of the built-in predicates.
See sectio.o.

The standard ports are calledll , exit ,redo ,fail andunify . The tracer is started by the
trace/0 command, when a spy point is reached and the system is in debugging modpyKee
anddebug/0) or when an exception is raised.

The interactive toplevel godtace/0 means “trace the next query”. The tracer shows the
port, displaying the port name, the current depth of the recursion and the goal. The goal is printed
using the Prolog predicaterite _term/2 . The style is defined by the prolog-fladgbug-
ger _print _options and can be modified using this flag or using thegp andd commands of
the tracer.

Onleashed portgset with the predicatkeash/1l , default arecall , exit , redo andfail)
the user is prompted for an action. All actions are single character commands which are executed
without waiting for a return, unless the command line optitip is active. Tracer options:

SWI-Prolog 4.0 Reference Manual

2.9. OVERVIEW OF THE DEBUGGER 25

+ (Spy)
Set a spy point (segpy/1) on the current predicate.

- (No spy)
Remove the spy point (se®spy/1) from the current predicate.

/ (Find)
Search for a port. After the /', the user can enter a line to specify the port to search for. This
line consists of a set of letters indicating the port type, followed by an optional term, that should
unify with the goal run by the port. If no term is specified it is taken as a variable, searching for
any port of the specified type. If an atom is given, any goal whose functor has a name equal to
that atom matches. Examples:

If Search for any fail port

ffe solve Search for a fail or exit port of any goal with name
solve

/c solve(a,) Search for a call to solve/2 whose first argument
is a variable or the atora

fa member(_,) Searchforany port omember/2 . This is equiv-

alent to setting a spy point anember/2 .

. (Repeat find)
Repeat the last find command (see ‘/").

A (Alternatives)
Show all goals that have alternatives.

C (Context)
Toggle ‘Show Context’. Ifon the context module of the goal is displayed between square
brackets (see sectia¥). Default isoff .

L (Listing)
List the current predicate witlisting/1

a (Abort)
Abort Prolog execution (sesbort/0).

b (Break)
Enter a Prolog break environment (d@eak/0).

¢ (Creep)
Continue execution, stop at next port. (Also return, space).

d (Display)
Set themax_depth (Depth option of debugger _print _options , limiting the depth to
which terms are printed. See also thandp options.

e (Exit)
Terminate Prolog (sealt/0).

SWI-Prolog 4.0 Reference Manual

26 CHAPTER 2. OVERVIEW

f (Fail)
Force failure of the current goal.

g (Goals)
Show the list of parent goals (the execution stack). Note that due to tail recursion optimization
a number of parent goals might not exist any more.

h (Help)
Show available options (also ‘?").

i (Ignore)
Ignore the current goal, pretending it succeeded.

| (Leap)
Continue execution, stop at next spy point.

n (No debug)
Continue execution in ‘no debug’ mode.

p (Print)
Set the prolog-flag debugger _print _options to [quoted(true), por-
tray(true), max _depth(10)] . This is the default.

r (Retry)
Undo all actions (except for database and i/o actions) back to the call port of the current goal
and resume execution at the call port.

s (Skip)
Continue execution, stop at the next portluit goal (thus skipping all calls to children of this
goal).

u (Up)
Continue execution, stop at the next porttieé parent goal (thus skipping this goal and all
calls to children of this goal). This option is useful to stop tracing a failure driven loop.

w (Write)
Set the prolog-flagdebugger _print _options to [quoted(true)] , bypassing
portray/l , etc.

The ideal 4 port model as described in many Prolog booksd Tis not vis-
ible in many Prolog implementations because code optimisation removes part of the choice- and
exit-points. Backtrack points are not shown if either the goal succeeded deterministically or its alter-
natives were removed using the cut. When running in debug netedeiy/0) choice points are only
destroyed when removed by the cut. In debug mode, tail recursion optimisation is switcRed off.
Reference information to all predicates available for manipulating the debugger is in sedfion

2This implies the system can run out of local stack in debug mode, while no problems arise when running in non-debug
mode.

SWI-Prolog 4.0 Reference Manual

2.10. COMPILATION 27

2.10 Compilation

2.10.1 During program development

During program development, programs are normally loaded uzingult/1 , or the list abbre-
viation. It is common practice to organise a project as a collection of source-filesland-file, a
Prolog file containing onlyise _module/[1,2] orensure _loaded/1 directives, possibly with

a definition of theentry-pointof the program, the predicate that is normally used to start the program.
This file is often calledoad.pl . If the entry-point is calledjo, a typical session starts as:

% pl
<banner>

1 ?- [load].
<compilation messages>

Yes
2 ?- go.
<program interaction>

When using Windows, the user may opgead.pl from the Windows explorer, which will cause
plwin.exe to be started in the directory holdihgad.pl . Prolog load$oad.pl before entering
the toplevel.

2.10.2 For running the result

There are various options if you want to make your program ready for real usage. The best choice
depends on whether the program is to be used only on machines holding the SWI-Prolog development
system, the size of the program and the operating system (Unix vs. Windows).

Using PrologScript

New in version 4.0.5 is the possibility to use a Prolog source file directly as a Unix script-file. the
same mechanism is useful to specify additional parameters for running a Prolog file on Windows.

If the first letter of a Prolog file i#, the first line is treated as commehito create a Prolog script,
make the first line start like this:

#l/path/to/pl (optiong -s

Prolog recognises this starting sequence and causes the interpreter to receive the following
argument-list:

/path/to/pl (optiong -s (script) -- (ScriptArguments

Instead ofs , the user may usé to stop Prolog from looking for a personal initialisation file.
Here is a simple script doing expression evaluation:

3The#-sign can be the legal start of a normal Prolog clause. In the unlikely case this is required, leave the first line blank
or add a header-comment.

SWI-Prolog 4.0 Reference Manual

28 CHAPTER 2. OVERVIEW

#l/usr/bin/pl -q -t main -f

eval :-
current_prolog_flag(argv, Argv),
append(_, [--|Args], Argv),
concat_atom(Args, ' ', SingleArg),
term_to_atom(Term, SingleArg),
Val is Term,
format("w™n’, [Val]).

main :-
catch(eval, E, (print_message(error, E), fail)),
halt.

main :-
halt(1).

And here are two example runs:

% eval 1+2

3

% eval foo

ERROR: Arithmetic: ‘foo/0’ is not a function
%

The Windows version supports thet! construct too, but here it serves a rather different role. The
Windows shell already allows the user to start Prolog source-files directly through the Windows file-
type association. Windows however makes it rather complicated to provide additional parameters,
such as the required stack-size for an individual Prolog file.#Théne provides for this, providing a

more flexible approach then changing the global defaults. The following starts Prolog with unlimited
stack-size on the given source-file:

#!/usr/bin/pl -LO -TO -GO -s

Note the use ofusr/bin/pl , which specifies the interpreter. This argument is ignored in the
Windows version, but required to ensure best cross-platform compatibility.

Creating a shell-script

With the introduction ofPrologScript(see sectior?.10.9, using shell-scripts as explained in this
section has become redundant for most applications.

Especially on Unix systems and not-too-large applications, writing a shell-script that simply loads
your application and calls the entry-point is often a good choice. A skeleton for the script is given
below, followed by the Prolog code to obtain the program arguments.

SWI-Prolog 4.0 Reference Manual

2.10. COMPILATION 29

#!/bin/sh

base=<absolute-path-to-source>
PL=pl

exec $PL -f none -g "load_files(['$base/load’],[silent(true)])" \
-t go -- $*

current_prolog_flag(argv, Arguments),
append(_SytemArgs, [--|Args], Arguments), !,
go(Args).

go(Args) :-

On Windows systems, similar behaviour can be achieved by creating a shortcut to Prolog, passing the
proper options or writing abat file.

Creating a saved-state

For larger programs, as well as for programs that are required to run on systems that do not have the
SWiI-Prolog development system installed, creating a saved state is the best solution. A saved state is
created usingisave _program/[1,2] or using the linker plld(1). A saved state is a file containing
machine-independent intermediate code in a format dedicated for fast loading. Optionally, the emu-
lator may be integrated in the saved state, creating a single-file, but machine-dependent, executable.
This process is described in chapger

Compilation using the -c commandline option

This mechanism loads a series of Prolog source files and then creates a saved-state as
gsave _program/2 does. The command syntax is:

% pl [option ...] [-0 output] -c file ...

The optionsargument are options tgsave _program/2 written in the format below. The option-
names and their values are described \yighve _program/2

-- option-nameoption-value

For example, to create a stand-alone executable that starts by exeoaim@ and for which
the source is loaded throudad.pl , use the command

% pl --goal=main --stand_alone=true -0 myprog -c load.pl

This performs exactly the same as executing

SWI-Prolog 4.0 Reference Manual

30

CHAPTER 2. OVERVIEW

% pl

<banner>
?- [load].
?- gsave_program(myprog,

[goal(main),
stand_alone(true)

D

?- halt.

2.11 Environment Control (Prolog flags)

The predicatesurrent _prolog _flag/2 andset _prolog _flag/2 allow the user to examine

and modify the execution environment. It provides access to whether optional features are available
on this version, operating system, foreign-code environment, command-line arguments, version, as
well as runtime flags to control the runtime behaviour of certain predicates to achieve compatibility
with other Prolog environments.

current _prolog_flag(?Key, -Valug

The predicateeurrent _prolog _flag/2 defines an interface to installation features: op-
tions compiled in, version, home, etc. With both arguments unbound, it will generate all defined
prolog-flags. With the ‘Key’ instantiated it unify the value of the prolog-flag. Features come
in three types: boolean prolog-flags, prolog-flags with an atom value and prolog-flags with an
integer value. A boolean prolog-flag is true iff the prolog-flag is presextthe Valueis the
atomtrue . Currently defined keys:

arch (atom)
Identifier for the hardware and operating system SWI-Prolog is running on. Used to de-
termine the startup file as well as to select foreign files for the right architecture. See also
section5.4.

version (integer)
The version identifier is an integer with value:

10000 x Major + 100 x Minor + Patch

Note that in releases up to 2.7.10 this prolog-flag yielded an atom holding the three
numbers separated by dots. The current representation is much easier for implementing
version-conditional statements.

home (atom)
SWiI-Prolog’s notion of the home-directory. SWI-Prolog uses it's home directory to
find its startup file aghome/startup/startup. (arch) and to find its library as

(home/library
executable(atom)
Path-name of the running executable. Usedjbgve _program/2 as default emulator.
argv (list)
List is a list of atoms representing the command-line arguments used to invoke SWI-
Prolog. Please note thall arguments are included in the list returned.

SWI-Prolog 4.0 Reference Manual

2.11. ENVIRONMENT CONTROL (PROLOG FLAGS) 31

pipe (bool, changeable)
If true, open(pipe(command), mode, Stream) , etc. are supported. Can be
changed to disable the use of pipes in applications testing this feature. Not recommended.

open.sshared.object (bool)
If true, open _shared _object/2 and friends are implemented, providing access to
shared libraries.¢6o files) or dynamic link libraries.DLL files).

shared object extension(atom)
Extension used by the operating system for shared objesds.for most Unix systems
and.dll for Windows. Used for locating files using tlidle _type executable
See alsabsolute _file _name/3.

dynamic_stacks(bool)
If true , the system uses some form of ‘sparse-memory management’ to realise the stacks.
If false, malloc()/realloc() are used for the stacks. In earlier days this had consequenses
for foreign code. As of version 2.5, this is no longer the case.
Systems using ‘sparse-memory management’ are a bit faster as there is no stack-shifter,
and checking the stack-boundary is often realised by the hardware using a ‘guard-page’.
Also, memory is actually returned to the system after a garbage collection or call to
trim _stacks/O (called byprolog/0 after finishing a user-query).

c_libs (atom)
Libraries passed to the C-linker when SWI-Prolog was linked. May be used to determine
the libraries needed to create statically linked extensions for SWI-Prolog. See $ection

c_cc(atom)
Name of the C-compiler used to compile SWI-Prolog. Normally either gcc or cc. See
section5.7.

c_ldflags (atom)
Special linker flags passed to link SWI-Prolog. See sedtidn

readline (bool)
If true, SWI-Prolog is linked with the readline library. This is done by default if you have
this library installed on your system. It is also true for the Win32 plwin.exe version of
SWI-Prolog, which realises a subset of the readline functionality.

savedprogram (bool)
If true, Prolog is started from a state saved vgjfave _program/[1,2]

runtime (bool)
If true, SWI-Prolog is compiled with -DARUNTIME, disabling various useful develop-
ment features (currently the tracer and profiler).

max_integer (integer)
Maximum integer value. Most arithmetic operations will automatically convert to floats if
integer values above this are returned.

min _integer (integer)
Minimum integer value.

max_tagged.integer (integer)
Maximum integer value represented as a ‘tagged’ value. Tagged integers require 4-bytes
storage and are used for indexing. Larger integers are represented as ‘indirect data’ and
require 16-bytes on the stacks (though a copy requires only 4 additional bytes).

SWI-Prolog 4.0 Reference Manual

32

CHAPTER 2. OVERVIEW

min_tagged.integer (integer)
Start of the tagged-integer value range.

float_format (atom, changeable)
C printf() format specification used lwrite/1 and friends to determine how float-
ing point numbers are printed. The defaulttg The specified value is passed to printf()
without further checking. For example, if you want more digits pringéd,2g will print
all floats using 12 digits instead of the default 6. See &dsmat/[1,2] , write/1
print/1 andportray/1

toplevel print _options (term, changeable)
This argument is given as option-list tarite _term/2 for printing results of queries.
Default is[quoted(true), portray(true), max _depth(10)]

debugger print _options (term, changeable)
This argument is given as option-list write _term/2 for printing goals by the de-
bugger. Modified by the ‘w’, ‘p’ and (N) d’ commands of the debugger. Default is
[quoted(true), portray(true), max _depth(10)]

debuggershow.context (bool, changeable)
If true , show the context module while printing a stack-frame in the tracer. Normally
controlled using the ‘C’ option of the tracer.

compiled._at (atom)
Describes when the system has been compiled. Only available if the C-compiler used to
compile SWI-Prolog provides theDATE__ and__TIME__ macros.

character_escapegbool, changeable)
If true (default),read/1 interprets\ escape sequences in quoted atoms and strings.
May be changed. This flag is local to the module in which it is changed.

double_quotes(codes,chars,atom,string, changeable)
This flag determines how double-quotes strings are read by Prolog and is —like charac-
ter escapes— maintained for each modulecdfles (default), a list of character-codes
is returned, ifchars a list of one-character atoms,atom double quotes are the same
as single-quotes and finallstring reads the text into a Prolog string (see sectdiB).
See als@tom _chars/2 andatom _codes/2 .

allow_variable_name as functor (bool, changeable)
If true (default is false)Functor(arg) is read as if it was writtefiFunctor’(arg)
Some applications use the Prologpd/1 predicate for reading an application defined
script language. In these cases, it is often difficult to explain to non-Prolog users of the
application that constants and functions can only start with a lowercase letter. Variables
can be turned into atoms starting with an uppercase atom by cedian _term/2 using
the optionvariable _names and binding the variables to their name. Using this feature,
F(x) can be turned into valid syntax for such script languages. Suggested by Robert van
Engelen. SWI-Prolog specific.

history (integer, changeable)
If integer> 0, support Unixcsh(1) like history as described in secti@n?. Otherwise,
only support reusing commands through the commandline editor. The default is to set this
prolog-flag to 0 if a commandline editor is provided (see prolog4ftegiline) and 15
otherwise.

SWI-Prolog 4.0 Reference Manual

2.11. ENVIRONMENT CONTROL (PROLOG FLAGS) 33

gc (bool, changeable)
If true (default), the garbage collector is active. If false, neither garbage-collection, nor
stack-shifts will take place, even not on explicit request. May be changed.

agc.margin (integer, changeable)
If this amount of atoms has been created since the last atom-garbage collection, perform
atom garbage collection at the first opportunity. Initial value is 10,000. May be changed.
A value of 0 (zero) disables atom garbage collection. SeeRilseegister _atom() .

iso (bool, changeable)
Include some weird ISO compatibility that is incompatible to normal SWI-Prolog be-
haviour. Currently it has the following effect:

e is/2 and evaluation unddtag/3 do not automatically convert floats to integers
if the float represents an integer.
e The//2 (float division)alwaysreturn a float, even if applied to integers that can be
divided.
¢ In the standard order of terms (see sectidhl), all floats are before all integers.
e atom _length/2 vyields an instantiation error if the first argument is a number.
e clause/[2,3] raises a permission error when accessing static predicates.
e abolish/[1,2] raises a permission error when accessing static predicates.
optimise (bool, changeable)
If true , compile in optimised mode. The initial valuetisie if Prolog was started with
the-O commandline option.
Currently optimise compilation implies compilation of arithmetic, and deletion of redun-
danttrue/0 that may result fronexpand _goal/2
Later versions might imply various other optimisations such as integrating small predi-
cates into their callers, eliminating constant expressions and other predictable constructs.
Source code optimisation is never applied to predicates that are declared dynamic (see
dynamic/1l).
char_conversion(bool, changeable)
Determines whether character-conversion takes place while reading terms. See also
char _conversion/2
autoload (bool, changeable)
If true (default) autoloading of library functions is enabled. See seé&ith

verboseautoload (bool, changeable)
If true the normal consult message will be printed if a library is autoloaded. By default
this message is suppressed. Intended to be used for debugging purposes.

verbosefile_search(bool, changeable)
If true (default false), print messages indicating the progress of
absolute _file _name/[2,3] in locating files. Intended for debugging com-
plicated file-search paths. See alé® _search _path/2

trace_gc (bool, changeable)
If true (false is the default), garbage collections and stack-shifts will be reported on the
terminal. May be changed.

max_arity (unbounded)
ISO prolog-flag describing there is no maximum arity to compound terms.

SWI-Prolog 4.0 Reference Manual

34

CHAPTER 2. OVERVIEW

integer_rounding _function (down,towardzero)
ISO prolog-flag describing rounding By andrem arithmetic functions. Value depends
on the C-compiler used.

bounded (true)
ISO prolog-flag describing integer representation is boundnbg _integer and
min _integer

tty _control (bool)
Determines whether the terminal is switched to raw modegédr _single _char/1 ,
which also reads the user-actions for the trace. May be set. See alsd-tiye
command-line option.

unknown (fail,warning,error, changeable)
Determines the behaviour if an undefined procedure is encounteréall If, the pred-
icates fails silently. Ifwarn, a warning is printed, and execution continues as if the
predicate was not defined andeifror (default), anexistence _error exception is
raised. This flag is local to each module.

debug(bool, changeable)
Switch debugging mode on/off. If debug mode is activated the system traps encountered
spy-points (sespy/l) and trace-points (sdeace/l). In addition, tail-recursion op-
timisation is disabled and the system is more conservative in destroying choice-points to
simplify debugging.
Disabling these optimisations can cause the system to run out of memory on programs
that behave correctly if debug mode is off.

tail _recursion_optimisation (bool, changeable)
Determines whether or not tail-recursion optimisation is enabled. Normally the value of
this flag is equal to theebug flag. As programs may run out of stack if tail-recursion
optimisation is omitted, it is sometimes necessary to enable it during debugging.

abort_with _exception(bool, changeable)
Determines hovabort/0 is realised. See the descriptionadfort/0 for details.

debug.on_error (bool, changeable)
If true , start the tracer after an error is detected. Otherwise just continue execution. The
goal that raised the error will normally fail. See afdeerrors/2 and the prolog-flag
report _error . May be changed. Defaulttsue , except for the runtime version.

report_error (bool, changeable)
If true , print error messages, otherwise suppress them. May be changed. See also the
debug _on _error prolog-flag. Default igrue , except for the runtime version.

verbose(Atom, changeable)
This flags is used byprint _message/2 . If its value issilent , messages of type
informational andbanner are supressed. Thg switches the value from the initial
normal to silent

file_name.variables (bool, changeable)
If true (defaultfalse), expand$varname and”™ in arguments of builtin-predicates
that accept a file namegpen/3 , exists _file/l ,access _file/2 ,etc.). The pred-
icateexpand _file _name/2 should be used to expand environment variables and wild-
card patterns. This prolog-flag is intended for backward compatibility with older versions
of SWI-Prolog.

SWI-Prolog 4.0 Reference Manual

2.12.

AN OVERVIEW OF HOOK PREDICATES 35

unix (bool)
If true , the operating system is some version of Unix. Defined if the C-compiler used to
compile this version of SWI-Prolog either definesunix__ orunix .

windows (bool)
If true , the operating system is an implementation of Microsoft Windows (3.1, 95, NT,
etc.).

set prolog_flag(+Key, +Valug

Define a new prolog-flag or change its valu&ey is an atom. If the flag is a system-
defined flag that is not markechangeableabove, an attempt to modify the flag yields
a permission _error . If the providedValue does not match the type of the flag, a
type _error s raised.

In addition to 1SO, SWI-Prolog allows for user-defined prolog flags. The type of the flag is
determined from the initial value and cannot be changed afterwards.

2.12 An overview of hook predicates

SWI-Prolog provides a large number of hooks, mainly to control handling messages, debugging,
startup, shut-down, macro-expansion, etc. Below is a summary of all defined hooks with an indication
of their portability.

portray/1
Hook intowrite _term/3 to alter the way terms are printed (1ISO).

message _hook/3
Hook into print _message/2 to alter the way system messages are printed (Quin-
tus/SICStus).

library _directory/l
Hook intoabsolute _file _name/3 to define new library directories. (most Prolog system).

file _search _path/2
Hook intoabsolute _file _name/3 to define new search-paths (Quintus/SICStus).

term _expansion/2
Hook intoload _files/1 to modify read terms before they are compiled (macro-processing)
(most Prolog system).

goal _expansion/2
Same aserm _expansion/2 for individual goals (SICStus).

prolog _edit:locate/3
Hook intoedit/1 to locate objects (SWI).

prolog _edit:edit _source/1
Hook intoedit/1 to call some internal editor (SWI).

prolog _edit:edit _command/2
Hook intoedit/1 to define the external editor to use (SWI).

SWI-Prolog 4.0 Reference Manual

36 CHAPTER 2. OVERVIEW

e prolog _list _goal/l
Hook into the tracer to list the code associated to a particular goal (SWI).

e prolog _trace _interception/4
Hook into the tracer to handle trace-events (SWI).

e prolog:debug _control _hook/1
Hook in spy/1 , nospy/l , nospyall/O and debugging/0 to extend these control-
predicates to higher-level libraries.

e prolog:help _hook/1
Hook inhelp/0 , help/l andapropos/l to extend the help-system.

e resource/3
Defines a new resource (not really a hook, but similar) (SWI).

e exception/3
Old attempt to a generic hook mechanism. Handles undefined predicates (SWI).

2.13 Automatic loading of libraries

If —at runtime— an undefined predicate is trapped the system will first try to import the predicate
from the module’s default module. If this fails theto loaderis activated. On first activation an index

to all library files in all library directories is loaded in core (ddwary _directory/1). If the
undefined predicate can be located in the one of the libraries that library file is automatically loaded
and the call to the (previously undefined) predicate is resumed. By default this mechanism loads
the file silently. Thecurrent _prolog _flag/2 verbose _autoload is provided to get verbose
loading. The prolog-flagutoload can be used to enable/disable the entire auto load system.

The auto-loader only works if the unknown flag (se&known/2) is set totrace (default). A
more appropriate interaction with this flag will be considered.

Autoloading only handles (library) source files that use the module mechanism described in chap-
ter 4. The files are loaded withse _-module/2 and only the trapped undefined predicate will be
imported to the module where the undefined predicate was called. Each library directory must hold a
file INDEX.pl that contains an index to all library files in the directory. This file consists of lines of
the following format:

index(Name, Arity, Module, File).

The predicatenake/0 scans the autoload libraries and updates the index if it exists, is writable and
out-of-date. It is advised to create an empty file cald®EX.pl in a library directory meant for

auto loading before doing anything else. This index file can then be updated by running the prolog
make_library _index/1 (‘%’ is the Unix prompt):

% mkdir “/lib/prolog
% cd '$
% pl -g true -t 'make_library_index(.)’

If there are more than one library files containing the desired predicate the following search schema
is followed:

SWI-Prolog 4.0 Reference Manual

2.14. GARBAGE COLLECTION 37

1. If there is a library file that defines the module in which the undefined predicate is trapped, this
file is used.

2. Otherwise library files are considered in the order they appear libtlagy ~ _directory/1
predicate and within the directory alphabetically.

make_library _index(+Directory)
Create an index for this directory. The index is written to the file 'INDEX.pI’ in the specified
directory. Fails with a warning if the directory does not exist or is write protected.

2.14 Garbage Collection

SWI-Prolog version 1.4 was the first release to support garbage collection. Together with last-call
optimisation this guarantees forward chaining programs do not waste infinite amounts of memory.

2.15 Syntax Notes

SWI-Prolog uses standard ‘Edinburgh’ syntax. A description of this syntax can be found in the Prolog
books referenced in the introduction. Below are some non-standard or non-common constructs that
are accepted by SWI-Prolog:

e 0’ (char)
This construct is not accepted by all Prolog systems that claim to have Edinburgh compatible
syntax. It describes the ASCII value @fhar). To test whethe€is a lower case character one
can usebetween(0'a, 0z, C)

o [* I LK LK
The/* ...*/ comment statement can be nested. This is useful if some cod& with/
comment statements in it should be commented out.

2.15.1 ISO Syntax Support

SWI-Prolog offers ISO compatible extensions to the Edinburgh syntax.

Character Escape Syntax

Within quoted atoms (using single quotégatom)’ special characters are represented using escape-
sequences. An escape sequence is lead in by the backs)agtatacter. The list of escape sequences

is compatible with the ISO standard, but contains one extension and the interpretation of numerically
specified characters is slightly more flexible to improve compatibility.

\a
Alert character. Normally the ASCII character 7 (beep).

\'b
Backspace character.

SWI-Prolog 4.0 Reference Manual

38 CHAPTER 2. OVERVIEW

\c
No output. All input characters up to but not including the first non-layout character are skipped.
This allows for the specification of pretty-looking long lines. For compatibility with Quintus
Prolog. Not supported by ISO. Example:
format('This is a long line that would look better if it was \c

split across multiple physical lines in the input’)

\ (RETURN)
No output. Skips input till the next non-layout character or to the end of the next line. Same
intention asc but ISO compatible.

\ f
Form-feed character.

\n
Next-line character.

\r
Carriage-return only (i.e. go back to the start of the line).

\'t
Horizontal tab-character.

\v
Vertical tab-character (ASCII 11).

\ x23
Hexadecimal specification of a charact2B is just an example. The ‘X’ may be followed by
a maximum of 2 hexadecimal digits. The closings optional. The cod&a\3 emits the
character 10 (hexadecimal ‘a’) followed by ‘3’. The coa@01 emits 32 (hexadecimal ‘20’)
followed by ‘1’. According to ISO, the closing is obligatory and the number of digits is un-
limited. The SWI-Prolog definition allows for ISO compatible specification, but is compatible
with other implementations.

\ 40

Octal character specification. The rules and remarks for hexadecimal specifications apply to
octal specifications too, but the maximum allowed number of octal digits is 3.

\ (characte}
Any character immediately preceded by and not covered by the above escape sequences is
copied verbatim. Thus\\' is an atom consisting of a singleand’\” and”” both
describe the atom with a single

Character escaping is only available if therent _prolog _flag(character _escapes, true)
is active (default). Seeurrent _prolog _flag/2 . Character escapes conflict wikhitef/2 in
two ways:\40 is interpreted as decimal 40 byritef/2 |, but character escapes handling by read
has already interpreted as 32 (40 octal). Ako,is translated to a single ‘I'. It is advised to use the
more widely supportedormat/[2,3] predicate instead. If you insist upon usingitef/2
either switchcharacter _escapes tofalse |, oruse doubl&\ , as inwritef(\\I')

SWI-Prolog 4.0 Reference Manual

2.16. SYSTEM LIMITS 39

Syntax for non-decimal numbers

SWI-Prolog implements both Edinburgh and ISO representations for non-decimal numbers. Accord-
ing to Edinburgh syntax, such numbers are writterfradix)’ (numbej, where(radix) is a number
between 2 and 36. ISO defines binary, octal and hexadecimal number®{swd (numbej. For
example:A is 0b100 V 0xf00 is a valid expression. Such numbers are always unsigned.

2.16 System limits

2.16.1 Limits on memory areas

SWiI-Prolog has a number of memory areas which are only enlarged to a certain limit. The default
sizes for these areas should suffice for most applications, but big applications may require larger ones.
They are modified by command line options. The table below shows these areas. The first column
gives the option name to modify the size of the area. The option character is immediately followed by
a number and optionally by la or m With k or no unit indicator, the value is interpreted in Kbytes
(1024 bytes), withm the value is interpreted in Mbyte$024 x 1024 bytes).

The local-, global- and trail-stack are limited to 128 Mbytes on 32 bit processors, or more gener-
ally to 2PitS-per-longs pyieg.

The PrologScript facility described in secti@rl0.2provides a mechanism for specifying options
with the load-file. On Windows the default stack-sizes are controlled using the Windows registry
on the keyHKEY_CURRENT_USER\Software\SWI\Prolog using the name$ocalSize ,
globalSize andtrailSize . The value is ®WORBXxpressing the default stack size in Kbytes.
A GUI for modifying these values is provided using the XPCE package. To use this, start the XPCE
manual tools usingnanpce/0 , after which you findPreferencesn the File menu.

The heap

With the heap, we refer to the memory area usedriayioc() and friends. SWI-Prolog uses the
area to store atoms, functors, predicates and their clauses, records and other dynamic data. As of
SWI-Prolog 2.8.5, no limits are imposed on the addresses returnedligc() and friends.

On some machines, the runtime stacks described above are allocated using ‘sparse allocation’.
Virtual space up to the limit is claimed at startup and committed and released while the area grows
and shrinks. On Win32 platform this is realised usWigiualAlloc() and friends. On Unix
systems this is realised usingmap() .

2.16.2 Other Limits

Clauses Currently the following limitations apply to clauses. The arity may not be more than 1024
and the number of variables should be less than 65536.

Atoms and Strings SWI-Prolog has no limits on the sizes of atoms and stringad/1 and its
derivatives however normally limit the number of newlines in an atom or string to 5 to improve
error detection and recovery. This can be switched off wfiffe _check/1

Address spaceSWI-Prolog data is packed in a 32-bit word, which contains both type and value
information. The size of the various memory areas is limited to 128 Mb for each of the areas,
except for the program heap, which is not limited.

SWI-Prolog 4.0 Reference Manual

40 CHAPTER 2. OVERVIEW

Option | Default | Area name Description

-L 2M local stack The local stack is used to store
the execution environments of
procedure invocations. The
space for an environment is re-
claimed when it fails, exits with-
out leaving choice points, the
alternatives are cut of with the
I/0 predicate or no choice points
have been created since the in-
vocation and the last subclause
is started (tail recursion optimir
sation).
-G 4M global stack The global stack is used to store
terms created during Prologls
execution. Terms on this stack
will be reclaimed by backtrack
ing to a point before the term
was created or by garbage col-
lection (provided the term is no
longer referenced).
-T aM trail stack The trail stack is used to store as-
signments during execution. En-
tries on this stack remain alive
until backtracking before the
point of creation or the garbage
collector determines they are nor
needed any longer.
-A 1M argument stack | The argument stack is used to
store one of the intermediate
code interpreter’s registers. The
amount of space needed on this
stack is determined entirely by
the depth in which terms arg
nested in the clauses that con-
stitute the program. Overflow
is most likely when using long
strings in a clause.

Table 2.2: Memory areas

SWI-Prolog 4.0 Reference Manual

2.16. SYSTEM LIMITS 41

Integers Integers are 32-bit to the user, but integers up to the value aghthetagged _integer
prolog-flag are represented more efficiently.

Floats Floating point numbers are represented as C-native double precision floats, 64 bit IEEE on
most machines.

2.16.3 Reserved Names

The boot compiler (seeb option) does not support the module system. As large parts of the sys-
tem are written in Prolog itself we need some way to avoid name clashes with the user’s predicates,
database keys, etc. Like Edinburgh C-Prolegi Jall predicates, database keys, etc. that
should be hidden from the user start with a doligy ign (seestyle _check/1).

SWI-Prolog 4.0 Reference Manual

Built-in predicates

3.1 Notation of Predicate Descriptions

We have tried to keep the predicate descriptions clear and concise. First the predicate name is printed
in bold face, followed by the arguments in italics. Arguments are preceded by a ‘+’, -’ or ?’ sign.

‘+' indicates the argument is input to the predicate, ‘-’ denotes output and ‘?’ denotes ‘either input or
output’! Constructs likeop/3 ’ refer to the predicate ‘op’ with arity ‘3.

3.2 Character representation

In traditional (Edinburgh-) Prolog, characters are represented okargcter-codesCharacter codes
are integer indices into a specific character set. Traditionally the character set was 7-bits US-ASCII.
8-bit character sets have been allowed for a long time, providing support for national character sets,
of which iso-latin-1 (ISO 8859-1) is applicable to many western languages. Text-files are supposed to
represent a sequence of character-codes.

ISO Prolog introduces three types, two of which are used for characters and one for accessing
binary streams (sempen/4). These types are:

e code
A character-codds an integer representing a single character. As files may use multi-byte
encoding for supporting different character sets (utf-8 encoding for example), reading a code
from a text-file is in general not the same as reading a byte.

e char
Alternatively, characters may be representedras-character-atomsThis is a very natural rep-
resentation, hiding encoding problems from the programmer as well as providing much easier
debugging.

e byte
Bytes are used for accessing binary-streams.

The current version of SWI-Prolog does not provide support for multi-byte character encoding.
This implies for example that it is not capable of breaking a multi-byte encoded atom into characters.
For SWI-Prolog, bytes and codes are the same and one-character-atoms are simple atoms containing
one byte.

To ease the pain of these multiple representations, SWI-Prolog’s built-in predicates dealing with
character-data work as flexible as possible: they accept data in any of these formats as long as the
interpretation is unambiguous. In addition, for output arguments that are instantiated, the character

1These marks doot suggest instantiation (e.g. var(+Var)).

SWI-Prolog 4.0 Reference Manual

3.3. LOADING PROLOG SOURCE FILES 43

is extracted before unification. This implies that the following two calls are identical, both testing
whether the next input characters isan

peek_code(Stream, a).
peek_code(Stream, 97).

These multiple-representations are handled by a large number of built-in predicates, all of which are
ISO-compatible. For converting betweem code and character thehaiis_code/2 . For breaking
atoms and numbers into characters areadwen _chars/2 , atom _codes/2 , number _codes/2

and number _chars/2 . For character 1/O on streams there @et _char/[1,2] ,
get _code/[1,2] get _byte/[1,2] , peek _char/[1,2] : peek _code/[1,2] ,
peek _byte/[1,2] , put _code/[1,2] , put _char/[1,2] and put _byte/[1,2] . The

prolog-flag double _quotes (see current _prolog _flag/2) controls how text between
double-quotes is interpreted.

3.3 Loading Prolog source files

This section deals with loading Prolog source-files. A Prolog source file is a text-file (often referred to
asASCII-fil§ containing a Prolog program or part thereof. Prolog source files come in three flavours:

A traditional Prolog source file contains a Prolog clauses and directives, buthodule-
declaration They are normally loaded usirmpnsult/l orensure _loaded/1

A module Prolog source file starts with a module declaration. The subsequent Prolog code is loaded
into the specified module and only thablic predicates are made available to the context load-
ing the module. Module files are normally loaded usiisg _module/[1,2] . See chaptef
for details.

Aninclude Prolog source file is loaded using timelude/1 directive and normally contains only
directives.

Prolog source-files are located usilgsolute _file _name/3 with the following options:

locate_prolog_file(Spec, Path) :-
absolute_file_name(Spec,
[file_type(prolog),
access(read)

1,
Path).

The file _type (prolog) option is used to determine the extension of the file using
prolog _file _type/2 . The default extension ipl . Specallows for the path-alias con-
struct defined byabsolute _file _name/3. The most commonly used path-alias lis
brary (LibraryFile). The example below loads the library fibset.pl ~ (containing predicates for
manipulating ordered sets).

:- use_module(library(oset)).

SWI-Prolog 4.0 Reference Manual

44 CHAPTER 3. BUILT-IN PREDICATES

SWI-Prolog recognises grammar rules (DCG) as definedCind . The

user may define additional compilation of the source file by defining the dynamic predicate
term _expansion/2 . Transformations by this predicate overrule the systems grammar rule trans-
formations. It is not allowed to usassert/1 , retract/1 or any other database predicate in
term _expansion/2 other than for local computational purposes.

Directives may be placed anywhere in a source file, invoking any predicate. They are executed
when encountered. If the directive fails, a warning is printed. Directives are specified by :-/1 or ?-/1.
There is no difference between the two.

SWI-Prolog does not have a separegeonsult/1 predicate. Reconsulting is implied auto-
matically by the fact that a file is consulted which is already loaded.

load_files(+Files, +Optiong
The predicatdoad _files/2 is the parent of all the other loading predicates. It currently
supports a subset of the options of Quiriteed _files/2 . Filesis either specifies a single, or
a list of source-files. The specification for a source-file is handbeslute _file _name/2.
See this predicate for the supported expansi@gionsis a list of options using the format

OptionNaméOptionValug

The following options are currently supported:

if(Condition
Load the file only if the specified condition is satisfied. The value loads the file
unconditionallychanged loads the file if it was not loaded before, or has been modified
since it was loaded the last timagt _loaded loads the file if it was not loaded before.

must_be_module(Bool)
If true , raise an error if the file is not a module file. Useduse _module/[1,2]

imports(ListOrAll)
If all and the file is a module file, import all public predicates. Otherwise import only
the named predicates. Each predicate is refered toase/(arity). This option has no
effect if the file is not a module file.

silent(Bool)
If true , load the file without printing a message. The specified value is the default for all
files loaded as a result of loading the specified files.

consult(+File)
ReadFile as a Prolog source fil&ile may be a list of files, in which case all members are con-
sulted in turn File may start with the csh(1) special sequerices(use) and$(var). File may
also bdibrary(Name) , in which case the libraries are searched for a file with the specified
name. See alslibrary _directory/1 andfile _search _path/2 . consult/l may
be abbreviated by just typing a number of file names in a list. Examples:

?- consult(load). % consultoad orload.pl
?- [library(quintus)] . % load Quintus compatibility library

Equivalent to loadiles(Files, []).

2It does work for normal loading, but not focompile/1

SWI-Prolog 4.0 Reference Manual

3.3. LOADING PROLOG SOURCE FILES 45

ensureloaded@File)
If the file is not already loaded, this is equivalenttmsult/1 . Otherwise, if the file defines a
module, import all public predicates. Finally, if the file is already loaded, is not a module file and
the context module is not the global user modelesure _loaded/1 will call consult/1

With the semantics, we hope to get as closely possible to the clear semantics without
the presence of a module system. Applications using modules should consider using
use _module/[1,2]

Equivalent to loadiles(Files, [if(changed)]).

include(+File)
Pretend the terms iRile are in the source-file in which include(File) appears. The
include construct is only honnoured if it appears as a directive in a source-file. Noifially
contains a sequence of directives.

require(+ListOfNameAndArity
Declare that this file/module requires the specified predicates to be defined “with their com-
monly accepted definition”. This predicate originates from the Prolog portability layer for
XPCE. Itis intended to provide a portable mechanism for specifying that this module requires
the specified predicates.

The implementation normally first verifies whether the predicate is already defined. If not, it
will search the libraries and load the required library.

SWI-Prolog, having autoloading, doest load the library. Instead it creates a procedure header
for the predicate if it does not exist. This will flag the predicate as ‘undefined’. See also
check/0 andautoload/O

make
Consult all source files that have been changed since they were consulted. Itahémkded
source files: files loaded into a compiled state ugihgc ... and files loaded using consult
or one of its derivatives. The predicateake/0 is called afteredit/1 , automatically reload-
ing all modified files. It the user uses an external editor (in a separate windwkg/0 is
normally used to update the program after editing.

library _directory(?Atom
Dynamic predicate used to specify library directories. Defdlit , “/lib/prolog and
the system’s library (in this order) are defined. The user may add library directories using
assert/1 ,asserta/l or remove system defaults usingtract/1

file_search path(+Alias, ?Path
Dynamic predicate used to specify ‘path-aliases’. This feature is best described using an exam-
ple. Given the definition

file_search_path(demo, ’/usr/lib/prolog/demo’).

the file specificatiordemo(myfile) will be expanded tdustr/lib/prolog/demo/
myfile . The second argumentbfe _search _path/2 may be another alias.

Below is the initial definition of the file search path. This path impSes((Path) refers to
a file in the SWI-Prolog home directory. The aliaseign((Path)) is intended for storing
shared libraries.¢0 or.DLL files). See alstoad _foreign _library/[1,2]

SWI-Prolog 4.0 Reference Manual

46 CHAPTER 3. BUILT-IN PREDICATES

user:file_search_path(library, X) :-
library_directory(X).
user:file_search_path(swi, Home) :-
current_prolog_flag(home, Home).
user:file_search_path(foreign, swi(ArchLib)) :-
current_prolog_flag(arch, Arch),
atom_concat(lib/’, Arch, ArchLib).
user:file_search_path(foreign, swi(lib)).

The file _search _path/2 expansion is used by all loading predicates as well as by
absolute _file _name/[2,3]

The prolog-flagverbose _file _search can be set tdrue to help debugging Prolog’s
search for files.

expand file_searchpath(+Spec, -Path
Unifies Path with all possible expansions of the file name specificatBpec See also
absolute _file _name/3.

prolog_file_type(?Extension, ?Type
This dynamic multifile predicate defined in modulkeer determines the extensions considered
byfile _search _path/2 . Extensioris the filename extension without the leading dofpe
denotes the type as used by file _type (Typ@ option offile _search _path/2 . Here
is the initial definition ofprolog _file _type/2

user:prolog_file_type(pl, prolog).
user:prolog_file_type(Ext, prolog) :-
current_prolog_flag(associate, Ext),
Ext \== pl.
user:prolog_file_type(qlf, glf).
user:prolog_file_type(Ext, executable) :-

current_prolog_flag(shared_object_extension, Ext).

Users may wish to change the extension used for Prolog source files to avoid conflicts (for
example withperl) as well as to be compatible with some specific implementation. The
preferred alternative extension.fgo .

sourcefile(?File)
Succeeds ifile is a loaded Prolog source filéile is the absolute and canonical path to the
source-file.

sourcefile(?Pred, ?Filg
Is true if the predicate specified Byedwas loaded from fil&ile, whereFile is an absolute path
name (seabsolute _file _name/2). Can be used with any instantiation pattern, but the
database only maintains the source file for each predicate. Sedalse _property/2

prolog_load_context(?Key, ?Valug
Determine loading context. The following keys are defined:

SWI-Prolog 4.0 Reference Manual

3.3. LOADING PROLOG SOURCE FILES 47

Key Description

module Module into which file is loaded

file File loaded

stream Stream identifier (seeurrent _input/1)

directory Directory in whichFile lives.

term _position Position of last term read. Term of the form
'$stream _position’(0, (Line),0,0,0)

Quintus compatibility predicate. See alsmurce _location/2

sourcelocation(-File, -Line)
If the last term has been read from a physical file (i.e., not from theg$ée or a string), unify
File with an absolute path to the file ahthe with the line-number in the file. New code should
useprolog _load _context/2

term_expansion(-Terml, -Term2
Dynamic predicate, normally not defined. When defined by the user all terms read during
consulting that are given to this predicate. If the predicate succeeds Prolog will Besse2in
the database rather then the read teferi]). Term2may be a term of a the form ‘Zoal
or - Goal. Goalis then treated as a directive. Térm2is a list all terms of the list are stored
in the database or called (for directives).THrm2is of the form below, the system will assert
Clauseand record the indicated source-location with it.

'$source _location’((File), (Line)): (Clause

When compiling a module (see chapteand the directivanodule/2), expand _term/2

will first try term _expansion/2 in the module being compiled to allow for term-expansion
rules that are local to a module. If there is no local definition, or the local definition fails to
translate the termgexpand _term/2 will try term _expansion/2 in moduleuser . For
compatibility with SICStus and Quintus Prolog, this feature should not be used. See also
expand _term/2 , goal _expansion/2 andexpand _goal/2

expand.term(+Term1, -Term2
This predicate is normally called by the compiler to perform preprocessing. First it calls
term _expansion/2 . If this predicate fails it performs a grammar-rule translation. If this
fails it returns the first argument.

goal_expansionfrGoall, -Goal?
Like term _expansion/2 , goal _expansion/2 provides for macro-expansion of Prolog
source-code. Betweaxpand _term/2 and the actual compilation, the body of clauses anal-
ysed and the goals are handedet@and _goal/2 , which uses thgyoal _expansion/2
hook to do user-defined expansion.

The predicatggoal _expansion/2 s first called in the module that is being compiled, and
then on theuser module.

Only goals apearing in the body of clauses when reading a source-file are expanded using mech-
anism, and only if they appear literally in the clause, or as an argument to the meta-predicates
not/l ,call/l orforall/2 . A real predicate definition is required to deal with dynami-
cally constructed calls.

SWI-Prolog 4.0 Reference Manual

48 CHAPTER 3. BUILT-IN PREDICATES

expand.goal(+Goall, -Goal?
This predicate is normally called by the compiler to perform preprocessing. First it calls
goal _expansion/2 . If this fails it returns the first argument.

at_initialization(+Goal)
RegisterGoal to be run when the system initialises. Initialisation takes place after reloading a
.glf (formerly .wic) file as well as after reloading a saved-state. The hooks are run in the order
they were registered. A warning message is issu€bdil fails, but execution continues. See
alsoat _halt/1

at_halt(+Goal)
RegisterGoalto be run when the system halts. The hooks are run in the order they were regis-
tered. Success or failure executing a hook is ignored. These hooks may faizZpl 1]

initialization(+Goal)
Call Goal and register it usingt _initialization/1 . Directives that do other things
than creating clauses, records, flags or setting predicate attributes should normally be written
using this tag to ensure the initialisation is executed when a saved system starts. See also
gsave _program/[1,2]

compiling
Succeeds if the system is compiling source files with-theoption into an intermediate code
file. Can be used to perform code optimisationsxpand _term/2 under this condition.

preprocessor(Old, +New)
Read the input file via a Unix process that acts as preprocessor. A preprocessor is specified as
an atom. The first occurrence of the strifgf' is replaced by the name of the file to be loaded.
The resulting atom is called as a Unix command and the standard output of this command is
loaded. To use the Unix C preprocessor one should define:

?- preprocessor(0Old, ’/lib/cpp -C -P %f’), consult(...).

Old = none

3.3.1 Quick load files

SWI-Prolog supports compilation of individual or multiple Prolog source files into ‘Quick Load Files’.
A 'Quick Load Files’ (glf file) stores the contents of the file in a precompiled format.

These files load considerably faster than source files and are normally more compact. They are
machine independent and may thus be loaded on any implementation of SWI-Prolog. Note however
that clauses are stored as virtual machine instructions. Changes to the compiler will generally make
old compiled files unusable.

Quick Load Files are created usigqgompile/l . They are loaded usingonsult/l or one
of the other file-loading predicates described in seclidh If consult is given the explicitpl file,
it will load the Prolog source. When given thedf file, it will load the file. When no extension is
specified, it will load theqlf file when present and thpl file otherwise.

SWI-Prolog 4.0 Reference Manual

3.4. LISTING AND EDITOR INTERFACE 49

gcompile(+File)
Takes a single file specification likeconsult/1 (i.e., accepts constructs like
library(LibFile) and creates a Quick Load File froffile. The file-extension of
this file is.qlf . The base name of the Quick Load File is the same as the input file.

If the file contains - consult(+File)’or‘:- [+File]’ statements, the referred files
are compiled into the samg|lf file. Other directives will be stored in thelf file and
executed in the same fashion as when loadingghefile.

Forterm _expansion/2 , the same rules as described in secfigiDapply.

Source referencesdurce _file/2) in the Quick Load File refer to the Prolog source file
from which the compiled code originates.

3.4 Listing and Editor Interface

SWI-Prolog offers an extensible interface which allows the user to edit objects of the program: predi-
cates, modules, files, etc. The editor interface is implementediish ~ and consists of three parts:
locating selectingandstarting the editor

Any of these parts may be extended or redefined by adding clauses to various multi-file (see

multifile/1) predicates defined in the moduyleolog _edit .
The built-in edit specifications faxdit/1 (seeprolog _edit:locate/3) are described be-
low.
Fully specified objects

(Module:(Name/(Arity) | Refers a predicate

module(Module) Refers to a module

file((Path)) Refers to a file

sourcefile({Path)) Refers to a loaded source-file

Ambiguous specifications
(Name/(Arity) Refers this predicate in any module
(Name Refers to (1) named predicate in any module with any|ar-
ity, (2) a (source) file or (3) a module.
edit(+Specification
First exploitsprolog _edit:locate/3 to translateSpecificationinto a list of Locations

If there is more than one ‘hit’, the user is allows to select from the found locations. Finally,
prolog _edit:edit _source/l is used to invoke the user’s preferred editor.

prolog_edit:locate(+Spec, -FullSpec, -Locatidn
WhereSpedis the specification provided througlit/1 . This multifile predicate is used to
enumerate locations at with an object satisfying the giypacan be foundFullSpeds unified
with the complete specification for the object. This distinction is used to allow for ambiguous
specifications. For example, $fpeds an atom, which appears as the base-name of a loaded file
and as the name of a predicafelISpecwill be bound tofile (Path) or NameArity.

Location is a list of attributes of the location. Normally, this list will contain the term
file (File) and —if available— the terrtine (Line).

prolog_edit:locate(+Spec, -Locatioh
Same aprolog _edit:locate/3 , but only deals with fully-sepecified objects.

SWI-Prolog 4.0 Reference Manual

50 CHAPTER 3. BUILT-IN PREDICATES

prolog_edit:edit_sourcef+Location)

Start editor orLocation Seeprolog _edit:locate/3 for the format of a location term.
This multi-file predicate is normally not defined. If it succeesldit/1 assumes the editor is
started.

If it fails, edit/1 will invoke an external editor. The editor to be invoked is determined from
the evironment variabl&DITOR which may be set from the operating system or from the
Prolog initialisation file usingsetenv/2 . If no editor is definedyi is the default in Unix
systems, andotepad on Windows.

The predicatgrolog _edit:edit _command/2 defines how the editor will be invoked.

prolog_edit:edit_command@Editor, -Commandl
Determines hovEditor is to be invoked usinghell/1l . Editor is the determined editor (see
edit _source/l), without the full path specification, and without possible (exe) extension.
Commands an atom describing the command. The pattéfns replaced by the full file-name
of the location, andodby the line number. If the editor can deal with starting at a specified
line, two clauses should be provided, one holding only%fepattern, and one holding both
patterns.

The default contains definitions ferf , emacs, emacsclient , vim andnotepad (latter
without line-number version).

Please contribute your specificationgaa@swi.psy.uva.nl

prolog_edit:load
Normally not-defined multifile predicate. This predicate may be defined to provide loading
hooks for user-extensions to the edit module. For example, XPCE provides the code below to
load library6wi _edit), containing definitions to locate classes and methods as well as to bind
this package to the PceEmacs built-in editor.

- multifile prolog_edit:load/O0.

prolog_edit:load :-
ensure_loaded(library(swi_edit)).

listing(+Pred)
List specified predicates (when an atom is given all predicates with this name will be listed).
The listing is produced on the basis of the internal representation, thus losing user’s layout and
variable name information. See algortray _clause/l

listing
List all predicates of the database uslistjing/1

portray _clause(Clause
Pretty print a clause. A clause should be specified as a t@fleed :- (Body)'. Facts are
represented agHead :- true ’

SWI-Prolog 4.0 Reference Manual

3.5. VERIFY TYPE OF A TERM 51

3.5 \Verify Type of a Term

var(+Term)
Succeeds iTermcurrently is a free variable.

nonvar(+Term)
Succeeds ifermcurrently is not a free variable.

integer(+Term)
Succeeds iTermis bound to an integer.

float(+Term)
Succeeds ifermis bound to a floating point number.

number(+Term)
Succeeds ifermis bound to an integer or a floating point number.

atom(+Term)
Succeeds iffermis bound to an atom.

string(+Term)
Succeeds ifermis bound to a string.

atomic(+Term)
Succeeds ifermis bound to an atom, string, integer or floating point number.

compound@Term)
Succeeds ifermis bound to a compound term. See digonctor/3 and =../2.

callable(+Term)
Succeeds iffermis bound to an atom or a compound term, so it can be handed without type-
error tocall/l , functor/3 and =../2.

ground(+Term)
Succeeds iffermholds no free variables.

3.6 Comparison and Unification or Terms

3.6.1 Standard Order of Terms

Comparison and unification of arbitrary terms. Terms are ordered in the so called “standard order”.
This order is defined as follows:

1. Variables< Atoms< Strings< Numbers< Terms
2. Old Variable < New Variablé

3. Atomsare compared alphabetically.

3Strings might be considered atoms in future versions. See also s@cidn
“In fact the variables are compared on their (dereferenced) addresses. Variables living on the global stack ate always
than variables on the local stack. Programs should not rely on the order in which variables are sorted.

SWI-Prolog 4.0 Reference Manual

52 CHAPTER 3. BUILT-IN PREDICATES

4. Stringsare compared alphabetically.
5. Numbersare compared by value. Integers and floats are treated identically.

6. Compounderms are first checked on their arity, then on their functor-name (alphabetically) and
finally recursively on their arguments, leftmost argument first.

If the prologflag (seecurrent _prolog _flag/l2)iso is defined, all floating point numbers
precede all integers.

+Terml== +Term2
Succeeds iTerm1is equivalent toferm2 A variable is only identical to a sharing variable.

+Terml\== +Term2
Equivalent to+Terml == Term2 .

+Terml= +Term2
Unify Termlwith Term2 Succeeds if the unification succeeds.

unify _with _occurs check@Term1, +Term2
As =/2 , but usingsound-unificationThat is, a variable only unifies to a term if this term does
not contain the variable itself. To illustrate this, consider the two goals below:

1 7- A = f(A).

A = EEECECEEEECEC.)DMN)
2 ?- unify_with_occurs_check(A, f(A)).

No

I.e. the first creates ayclic-term which is printed as an infinitely nestéfl. term (see the
max_depth option ofwrite _term/2). The second executes logically sound unification and
thus fails.

+Terml\= +Term?2
Equivalentto+Terml = Term2 .

+Terml=@=+Term?2
Succeeds iTermlis ‘structurally equal’ toTerm2 Structural equivalence is weaker than equiv-
alence £€=/2), but stronger than unification={2). Two terms are structurally equal if their
tree representation is identical and they have the same ‘pattern’ of variables. Examples:

a =@= A false
A =@= B true
x(AJA) =@= x(B,C) false
X(AA) =@= x(B,B) true
X(A,B) =@= x(C,D) true

+Terml\=@= +Term?2
Equivalent to\+Terml =@= Term2’

SWI-Prolog 4.0 Reference Manual

3.7. CONTROL PREDICATES 53

+Terml@<+Term2
Succeeds ifferm1lis beforeTerm2in the standard order of terms.

+Terml@=<+Term2
Succeeds if both terms are equak(2) or Termlis beforeTerm2in the standard order of
terms.

+Terml@>+Term?2
Succeeds ifferm1lis afterTerm2in the standard order of terms.

+Terml@>=+Term2
Succeeds if both terms are equat(2) or Termlis afterTerm2in the standard order of terms.

compare(?Order, +Term1, +Termp
Determine or test th®rder between two terms in the standard order of ter@sler is one of
<, > or =, with the obvious meaning.

3.7 Control Predicates

The predicates of this section implement control structures. Normally these constructs are translated
into virtual machine instructions by the compiler. It is still necessary to implement these constructs
as true predicates to support meta-calls, as demonstrated in the example below. The predicate finds
all currently defined atoms of 1 character long. Note that the cut has no effect when called via one of
these predicates (see !/0).

one_character_atoms(As) :-
findall(A, (current_atom(A), atom_length(A, 1)), As).

fail

Always fail. The predicatéail/0O s translated into a single virtual machine instruction.
true

Always succeed. The predicatee/0 is translated into a single virtual machine instruction.
repeat

Always succeed, provide an infinite number of choice points.

Cut. Discard choice points of parent frame and frames created after the parent frame. As of
SWiI-Prolog 3.3, the semantics of the cut are compliant with the ISO standard. This implies that
the cut is transparent té2 ,->/2 and*->/2 . Cuts appearing in theonditionpart of->/2
and*->/2 aswellasin+/1 are local to the condition.

tl :- (a, !, fail ; b). % cuts a/0 and t1/0
t2 - (a->h,! ;o). % cuts b/0 and t2/0
t3 :- call((a, !, fail ; b)). % cuts a/0
t4 - \+(a, !, fail ; b). % cuts a/0

5Up to version 4.0.6, the sequence X=!, X acted as a true cut. This feature has been deleted for ISO compliance.

SWI-Prolog 4.0 Reference Manual

54 CHAPTER 3. BUILT-IN PREDICATES

+Goall, +Goal2
Conjunction. Succeeds if both ‘Goall’ and ‘Goal2’ can be proved. It is defined as (this defini-
tion does not lead to a loop as the second comma is handled by the compiler):

Goall, Goal2 :- Goall, Goal2.

+Goall; +Goal2
The ‘or’ predicate is defined as:

Goall ; Goal2 :- Goall.
_Goall ; Goal2 :- Goal2.

+Goall| +Goal2
Equivalent tg/2 . Retained for compatibility only. New code should y&e .

+Condition-> +Action
If-then and If-Then-Else. The>/2 construct commits to the choices made at its left-hand
side, destroying choice-points created inside the clause/Zby, or by goals called by this
clause. Unlike/0 , the choicepoint of the predicate as a whole (due to multiple clauses) is
destroyed. The combinatigf2 and->/2 is defines as:

If -> Then; _Else :- If, |, Then.
If -> Then; Else :- !, Else.
If -> Then :- If, !, Then.

Note that the operator precedence relation betweand-> ensurdf -> Then ; Else
is actually a term of the form(->(If, Then), Else) . The first two clauses belong to
the definition of,/2), while only the last defines>/2 .

+Condition*-> +Action ; +Else
This construct implements the so-called ‘soft-cut’. The control is defined as follovzaridi-
tion succeeds at least once, the semantics is the san@adifion Action). If Conditiondoes
not succeed, the semantics is that@bdition Elsg. In other words, IiConditionsucceeds at
least once, simply behave as the conjunctio@ohditionandAction otherwise executElse

\+ +Goal
Succeeds if ‘Goal’ cannot be proven (mnemontaefers toprovableand the backslash J is
normally used to indicate negation).

3.8 Meta-Call Predicates

Meta call predicates are used to call terms constructed at run time. The basic meta-call mechanism
offered by SWI-Prolog is to use variables as a subclause (which should of course be bound to a valid
goal at runtime). A meta-call is slower than a normal call as it involves actually searching the database
at runtime for the predicate, while for normal calls this search is done at compile time.

SWI-Prolog 4.0 Reference Manual

3.8. META-CALL PREDICATES 55

call(+Goal)
Invoke Goal as a goal. Note that clauses may have variables as subclauses, which is identical
tocall/l , except when the argument is bound to the cut.!&ee

call(+Goal, +ExtraArgl, ..)
AppendExtraArgl, ExtraArg2, .. 1o the argument list cd6oaland call the result. For example,

call(plus(1), 2, X) will call plus/3 , bindingXto 3.
The call/[2..] construct is handled by the compiler, which implies that redefinition as a predicate
has no effect. The predicatesll/[2-6] are defined as true predicates, so they can be

handled by interpreted code.

apply(+Term, +Lisf)
Append the members dist to the arguments dfermand call the resulting term. For example:
apply(plus(1), [2, X]) will call plus(1, 2, X) . apply/2 isincorporatedinthe
virtual machine of SWI-Prolog. This implies that the overhead can be compared to the overhead
of call/l . New code should use call/[2..] if the lengthldét is fixed, which is more widely
supported and faster because there is no need to build and examine the argument list.

not(+Goal)
Succeeds whe@oal cannot be proven. Retained for compatibility only. New code should use
\+/1 .

once(Goal)
Defined as:

once(Goal) :-
Goal, !.

once/l canin many cases be replaced witi2 . The only difference is how the cut behaves
(see !/0). The following two clauses are identical:

1) a :- once((b, c)), d.
2) a - b c->d

ignore(+Goal)
CallsGoalasonce/l , but succeeds, regardless of whetBerl succeeded or not. Defined as:

ignore(Goal) :-
Goal, .
ignore().

call_with _depth_limit(+Goal, +Limit, -Resul}
If Goal can be proven without recursion deeper thahimit levels,
call _with _depth _limit/3 succeeds, bindindResultto the deepest recursion level
used during the proof. OtherwisResultis unified withdepth _limit _exceeded if the
limit was exceeded during the proof, or the entire predicate fa@®éil fails without exceeding
Limit.

SWI-Prolog 4.0 Reference Manual

56

CHAPTER 3. BUILT-IN PREDICATES

3.9

The depth-limit is guarded by the internal machinery. This differ from the depth computed
based on a theoretical model. For examplge/0 s translated into an inlined virtual machine
instruction. Alsorepeat/0 is not implemented as below, but as a non-deterministic foreign
predicate.

repeat.
repeat :-
repeat.

As a result,call _with _depth _limit/3 may still loop inifitly on programs that should
theoretically finish in finite time. This problem can be cured by using Prolog equivalents to
such built-in predicates.

This predicate may be used for theorem-provers to realise techniquésiiative deepening
It was implemented after discussion with Steve Magieoyle @ermine.ox.ac.uk

ISO compliant Exception handling

SWiI-Prolog defines the predicatestch/3 andthrow/1 for ISO compliant raising and catching of
exceptions. In the current implementation (4.0.6), most of the built-in predicates generate exceptions,
but some obscure predicates merely print a message, start the debugger and fail, which was the normal
behaviour before the introduction of exceptions.

catch(Goal, +Catcher, :Recover

Behaves asgall/l if no exception is raised when executi@pal. If a exception is raised
usingthrow/1 while Goal executes, and th&oal is the innermost goal for whicatcher
unifies with the argument ahrow/1 , all choicepoints generated IBoal are cut, the system
backtracks to the start aatch/3 while preserving the thrown exception term dRelcoveiis
called as ircall/1

The overhead of calling a goal throughtch/3 is very comparable toall/1 . Recovery
from an exception is much slower, especially if the exception-term is large due to the copying
thereof.

throw(+Exception

Raise an exception. The system looks for the inneratsh/3 ancestor for whiclException
unifies with theCatcherargument of theatch/3 call. Seecatch/3 for details.

ISO demandshrow/1 to make a copy oException walk up the stack to aatch/3 call,
backtrack and try to unify the copy @&xceptionwith Catcher SWI-Prolog delays making a

copy of Exceptionand backtracking until it actually found a matchiogtch/3 goal. The
advantage is that we can start the debugger at the first possible location while preserving the
entire exception context if there is no matchiogtch/3 goal. This aproach can lead to
different behaviour iiGoal and Catcherof catch/3 call share variables. We assume this to

be highly unlikely and could not think of a scenario where this is useful.

If an exception is raised in a callback from C (see chapjeand not caught in the same
call-back, PL_next _solution() fails and the exception context can be retrieved using
PL_exception()

51'd like to acknowledge Bart Demoen for his clarifications on these matters.

SWI-Prolog 4.0 Reference Manual

3.9. 1SO COMPLIANT EXCEPTION HANDLING 57

3.9.1 Debugging and exceptions

Before the introduction of exceptions in SWI-Prolog a runtime error was handled by printing an
error message, after which the predicate failed. If the prdllag (seecurrent _prolog _flag/2)
debug _on _error was in effect (default), the tracer was switched on. The combination of the error
message and trace information is generally sufficient to locate the error.

With exception handling, things are different. A programmer may wish to trap an exception using
catch/3 to avoid it reaching the user. If the exception is not handled by user-code, the interactive
toplevel will trap it to prevent termination.

If we do not take special precautions, the context information associated with an unexpected
exception (i.e, a programming error) is lost. Therefore, if an exception is raised, which is not caught
usingcatch/3 and the toplevel is running, the error will be printed, and the system will enter trace
mode.

If the system is in an non-interactive callback from foreign code and theredatob/3 active
in the current context, it cannot determine whether or not the exception will be caught by the external
routine calling Prolog. It will then base its behaviour on the prdlag debugon_error:

e currentprolog_flag(debugon_error, false)
The exception does not trap the debugger and is returned to the foreign routine calling Prolog,
where it can be accessed usiPlg exception() . This is the default.

e currentprolog_flag(debugon_error, true)
If the exception is not caught by Prolog in the current context, it will trap the tracer to help
analysing the context of the error.

While looking for the context in which an exception takes place, it is advised to switch on debug
mode using the predicatkebug/O .

3.9.2 The exception term

Builtin predicates generates exceptions using a temar (Formal, ConteXt The first argument

is the ‘formal’ description of the error, specifying the class and generic defined context information.
When applicable, the ISO error-term definition is used. The second part describes some additional
context to help the programmer while debugging. In its most generic form this is a term of the form
context (Name/Arity, MessagewhereNaméeArity describes the built-in predicate that raised the
error, andMlessagerovides an additional description of the error. Any part of this structure may be a
variable if no information was present.

3.9.3 Printing messages

The predicatgrint _message/2 may be used to print a message term in a human readable for-
mat. The other predicates from this section allow the user to refine and extend the message system.
The most common usage pfint _message/2 is to print error messages from exceptions. The
code below prints errors encountered during the executidgoaf, without further propagating the
exception and without starting the debugger.

catch(Goal, E,
(' print_message(error, E),

SWI-Prolog 4.0 Reference Manual

58 CHAPTER 3. BUILT-IN PREDICATES

fail

),

Another common use is to definetessage _hook/3 for printing messages that are normallient,
suppressing messages, redirecting messages or make something happen in addition to printing the
message.

print _messagetKind, +Term)
The predicatgrint _message/2 is used to print messages, notably from exceptions in a
human-readable formatKind is one ofinformational , banner , warning , error
help orsilent . A human-readable message is printed to the stigsen _error

If the prolog flag (seeurrent _prolog _flag/2) verbose is silent , messages with
Kind informational , orbanner are treated as silent. Seg.

This predicate first translates thderm into a list of ‘message lines’ (see
print _message lines/3 for details). Next it will call the hooknessage _hook/3 to
allow the user intercepting the messagembssage _hook/3 fails it will print the message
unlessKind is silent.

The print _message/2 predicate and its rules are in the file
(plhome/boot/messages.pl , which may be inspected for more information on the
error messages and related error terms.

See alsanessage _to _string/2

print_messagdines(+Stream, +Prefix, +Linek
Print a message (sq®int _message/2) that has been translated to a list of message ele-
ments. The elements of this list are:

(Format-(Args)
WhereFormatis an atom and\rgsis a list of format argument. Handed fiarmat/3
flush

If this appears as the last elemedtreamis flushed (selush _output/1) and nofinal
newline is generated.

at _same_line
If this appears as first element, no prefix is printed for the first line and the line-position is
not forced to 0 (seormat/1 ,"N).

(Format
Handed tdormat/3 asformat(Stream, Format, [])

nl
A new line is started and if the message is not complet@théxis printed too.

See als@rint _message/2 andmessage _hook/3 .

messagehook(+Term, +Kind, +Lineg
Hook predicate that may be define in the moduiser to intercept messages from
print _message/2 . TermandKind are the same as passedtint _message/2 . Lines

SWI-Prolog 4.0 Reference Manual

3.10. HANDLING SIGNALS 59

is a list of format statements as described wpitint _message lines/3 . See also
message _to _string/2

This predicate should be defined dynamic and multifile to allow other modules defining clauses
for it too.

messageo_string(+Term, -String
Translates a message-term into a string object (see set#@n Primarily intended to write
messages to Windows in XPCE (see sectidi) or other GUI environments.

3.10 Handling signals

As of version 3.1.0, SWI-Prolog is capable to handle software interrupts (signals) in Prolog as well as
in foreign (C) code (see sectid@n6.19.

Signals are used to handle internal errors (execution of a non-existing CPU intruction, arithmetic
domain errors, illegal memory access, resource overflow, etc.), as well as for dealing asynchronous
inter-process communication.

Signals are defined by the Posix standard and part of all Unix machines. The MS-Windows Win32
provides a subset of the signal handling routines, lacking the vital funtionality to raise a signal in
another thread for achieving asynchronous inter-process (or inter-thread) communication (Unix kill()
function).

on_signal(+Signal, -Old, :Newy
Determines the reaction @ignal Old is unified with the old behaviour, while the behaviour is
switched toNew As with similar environment-control predicates, the current value is retrieved
usingon _signal(Signal, Current, Current)

The action description is an atom denoting the name of the predicate that will be called if
Signalarrives.on _signal/3 is a meta predicate, which implies théodule:(Name refers
the (Name/1 in the moduleModule.

Two predicate-names have special meanthgow implies Prolog will map the signal onto a
Prolog exception as described in sectifl default resets the handler to the settings active
before SWI-Prolog manipulated the handler.

Signals bound to a foreign function throuBh_signal() are reported using the ter$fior-
eign _function (Address.

After receiving a signal mapped tbrow , the exception raised has the structure
error(signal((SigName, (SigNum), (Contex})

One possible usage of this is, for example, to limit the time spent on proving a goal. This
requires a little C-code for setting the alarm timer (see chapter

#include <SWI-Prolog.h>
#include <unistd.h>

foreign_t
pl_alarm(term_t time)

SWI-Prolog 4.0 Reference Manual

60 CHAPTER 3. BUILT-IN PREDICATES

{ double t;

if (PL_get float(time, &t))
{ alarm((long)(t+0.5));

PL_succeed;

}

PL_falil;
}

install_t
install()
{ PL_reqister_foreign("alarm”, 1, pl_alarm, 0);

}

Next, we can define the following Prolog code:

:- load_foreign_library(alarm).
;- on_signal(alrm, throw).

:- module_transparent
call_with_time_limit/2.

call_with_time_limit(Goal, MaxTime) :-
alarm(MaxTime),
catch(Goal, error(signal(alrm, _), _), fail), !,
alarm(0).

call_with_time_limit(_,) :-
alarm(0),
fail.

The signal names are defined by the C-Posix standards as symbols of the form
SIG _(SIGNAME. The Prolog name for a signal is the lowercase versiofS6&NAME. The
predicatecurrent _signal/3 may be used to map between names and signals.

Initially, some signals are mapped ttrow , while all other signals ardefault . The fol-
lowing signals throw an exceptionll , fpe , segv, pipe , alrm , bus, xcpu , xfsz and
vtalrm

current _signal(?Name, ?1d, ?Handlgr
Enumerate the currently defined signal handliNgmeis the signal namdd is the numerical
identifier andHandleris the currently defined handler (see_signal/3).

SWI-Prolog 4.0 Reference Manual

3.11. THE ‘BLOCK’ CONTROL-STRUCTURE 61

3.10.1 Notes on signal handling

Before deciding to deal with signals in your application, please consider the following:

e Portibility
On MS-Windows, the signal interface is severely limited. Different Unix brands support differ-
ent sets of signals, and the relation between signal name and number may vary.

e Safety
Signal handling is not completely safe in the current implementation, especi#tisoif is
used in combination with external foreign code. The system will use the C longjmp() construct
to direct control to the innermof_next _solution() , thus forcing an external procedure
to be abandoned at an arbitrary moment. Most likely not all SWI-Prologs own foreign code is
(yet) safe too.

e Garbage Collection
The garbage collector will block all signals that are handled by Prolog. While handling a signal,
the garbage-collector is disabled.

e Time of delivery
Normally delivery is immediate (or as defined by the operating system used). Signals are
blocked when the garbage collector is active, and internally delayed if they occur within in
a ‘critical section’. The critical sections are generally very short.

3.11 The ‘block’ control-structure

Theblock/3 predicate and friends have been introduced before ISO compatitde/3 excep-

tion handling for compatibility with some Prolog implementation. The only feature not covered by
catch/3 andthrow/1 is the posibility to execute global cuts. New code should aeteh/3
andthrow/1 to deal with exceptions.

block(+Label, +Goal, -ExitValug
ExecuteGoal in ablock Labelis the name of the blocklLabelis normally an atom, but the
system imposes no type constraints and may even be a variatt¥alueis normally unified
to the second argument of arit/2 call invoked byGoal.

exit(+Label, +Value
Callingexit/2 makes the innermosiiockwhich Labelunifies exit. The block’€xitValueis
unified withValue If this unification fails the block fails.

fail(+Label)
Callingfail/l makes the innermostockwhich Labelunifies fail immediately. Implemented
as

fail(Label) :- !(Label), fail.

I (+Label)
Cut all choice-points created since the entry of the innertolask which Labelunifies.

SWI-Prolog 4.0 Reference Manual

62 CHAPTER 3. BUILT-IN PREDICATES

3.12 DCG Grammar rules

Grammar rules form a comfortable interfacedifference-lists They are designed both to support
writing parsers that build a parse-tree from a list as for generating a flat list from a term. Unfortunately,
Definite Clause Grammar (DCG) handling is not part of the Prolog standard. Most Prolog engines
implement DCG, but the details differ slightly.

Grammar rules look like ordinary clauses usiag/2 for separating the head and body rather
then:-/2 . Expanding grammar rules is done bypand _term/2 , which adds two additional
argument to each term for representing the difference list. We will illustrate the behaviour by defining
a rule-set for parsing an integer.

integer(l) -->
digit(D0),
digits(D),
{ number_chars(l, [DO|D])
}

digits([D|T]) -->
digit(D), !,
digits(T).
digits([]) -->
[-

digit(D) -->
[D],
{ code_type(D, digit)
}

The body of a grammar rule can contain three types of terms. A compound term interpreted as a
reference to a grammar-rule. Code betwé¢en.} is interpreted as a reference to ordinary Prolog
code and finally, a list is interpreted as a sequence of literals. The Prolog control-constiicts (
->[2 ;I 2,,/2 and!/0) can be used in grammar rules.

Grammar rule-sets are called using the builtin predicpltease/2 andphrase/3

phrasetRuleSet, +InputLigt
Equivalent taphrase(RuleSet , InputList , [])

phrase@RuleSet, +InputList, -Rept
Activate the rule-set with given name. ‘InputList’ is the list of tokens to parse, ‘Rest’ is unified
with the remaining tokens if the sentence is parsed correctly. The example below calls the
rule-set ‘integer’ defined above.

?- phrase(integer(X), "42 times", Rest).

X = 42
Rest = [32, 116, 105, 109, 101, 115]

SWI-Prolog 4.0 Reference Manual

3.13. DATABASE 63

3.13 Database

SWI-Prolog offers three different database mechanisms. The first one is the common assert/retract
mechanism for manipulating the clause database. As facts and clauses assertadsgstiily or

one of its derivatives become part of the program these predicates compile the term given to them.
retract/1 andretractall/1 have to unify a term and therefore have to decompile the pro-
gram. For these reasons the assert/retract mechanism is expensive. On the other hand, once compiled,
queries to the database are faster than querying the recorded database discussed below. See also
dynamic/1

The second way of storing arbitrary terms in the database is using the “recorded database”. In this
database terms are associated wikeya A key can be an atom, integer or term. In the last case only
the functor and arity determine the key. Each key has a chain of terms associated with it. New terms
can be added either at the head or at the tail of this chain. This mechanism is considerably faster than
the assert/retract mechanism as terms are not compiled, but just copied into the heap.

The third mechanism is a special purpose one. It associates an integer or atom with a key, which
is an atom, integer or term. Each key can only have one atom or integer associated with it. It is faster
than the mechanisms described above, but can only be used to store simple status information like
counters, etc.

abolish(:Predicatelndicatoy
Removes all clauses of a predicate with fund¢tanctorand arityArity from the database. All
predicate attributes (dynamic, multifile, index, etc.) are reset to their defaults. Abolishing an
imported predicate only removes the import link; the predicate will keep its old definition in its
definition module.

According to the ISO standar@bolish/1 can only be applied to dynamic procedures.
This is odd, as for dealing with dynamic procedures there is alreathact/1 and
retractall/1 . Theabolish/1 predicate has been introduced in DEC-10 Prolog pre-
cisely for dealing with static procedures. In SWI-Prolagplish/1 works on static proce-
dures, unless the prolog flagp is set totrue .

It is advised to useetractall/1 for erasing all clauses of a dynamic predicate.

abolish(+Name, +Arity)
Same asbolish(Name/Arity) . The predicatabolish/2 conforms to the Edinburgh
standard, whil@bolish/1 is ISO compliant.

redefine_systempredicate(+Head)
This directive may be used both in modulger and in normal modules to redefine any system
predicate. If the system definition is redefined in modider , the new definition is the default
definition for all sub-modules. Otherwise the redefinition is local to the module. The system
definition remains in the modukgy/stem .

Redefining system predicate facilitates the definition of compatibility packages. Use in other
context is discouraged.

retract(+Term)
WhenTermis an atom or a term it is unified with the first unifying fact or clause in the database.
The fact or clause is removed from the database.

SWI-Prolog 4.0 Reference Manual

64 CHAPTER 3. BUILT-IN PREDICATES

retractall(+Head)
All facts or clauses in the database for which bleadunifies withHeadare removed.

assert@-Term)
Assert a fact or clause in the databa$ermis asserted as the last fact or clause of the corre-
sponding predicate.

asserta¢-Term)
Equivalent toassert/1 , butTermis asserted as first clause or fact of the predicate.

assertz{Term)
Equivalent toassert/1

assert@-Term, -Referenge
Equivalent toassert/1 , but Referencds unified with a unique reference to the asserted
clause. This key can later be used withuse/3 or erase/l

asserta¢-Term, -Referencge
Equivalent toassert/2 , butTermis asserted as first clause or fact of the predicate.

assertz@-Term, -Referenge
Equivalent toassert/2

recorda(+Key, +Term, -Referenge
AssertTermin the recorded database under k&y. Keyis an integer, atom or terniReference
is unified with a unique reference to the record (sesse/1).

recorda(+Key, +Term
Equivalent tarecorda(Key, Value ,).

recordz(+Key, +Term, -Referenge
Equivalent torecorda/3 , but puts theTermat the tail of the terms recorded undésy.

recordz(+Key, +Term
Equivalent tarecordz(Key, Value ,).

recorded(+Key, -Value, -Referenge
Unify Valuewith the first term recorded und&eywhich does unifyReferencés unified with
the memory location of the record.

recorded(+Key, -Valug
Equivalent tarecorded(Key, Value ,).

erasef-Referencg
Erase a record or clause from the datab&sderencés an integer returned byecorda/3 or
recorded/3 ,clause/3 ,assert/2 ,asserta/2 orassertz/2 . Otherintegers might
conflict with the internal consistency of the system. Erase can only be called once on a record
or clause. A second call also might conflict with the internal consistency of the system.

"BUG: The system should have a special type for pointers, thus avoiding the Prolog user having to worry about consis-
tency matters. Currently some simple heuristics are used to determine whether a reference is valid.

SWI-Prolog 4.0 Reference Manual

3.13. DATABASE 65

flag(+Key, -Old, +New
Keyis an atom, integer or term. Unif@ld with the old value associated wikey. If the key
is used for the first tim®ld is unified with the integer 0. Then store the valud\aw which
should be an integer, float, atom or arithmetic expression, ukeerflag/3 is a very fast
mechanism for storing simple facts in the database. Example:

:- module_transparent succeeds_n_times/2.

succeeds_n_times(Goal, Times) :-
(flag(succeeds n_times, Old, 0),
Goal,
flag(succeeds_n_times, N, N+1),
fail
; flag(succeeds_n_times, Times, Old)

3.13.1 Update view

Traditionally, Prolog systems used timmediate update viewnew clauses became visible to predi-
cates backtracking over dynamic predicates immediately and retracted clauses became invisible im-
mediately.

Starting with SWI-Prolog 3.3.0 we adhere tbgical update viewwhere backtrackable predicates
that enter the definition of a predicate will not see any changes (either causasbéng/1 or
retract/1) to the predicate. This view is the ISO standard, the most commonly used and the
most ‘safe’® Logical updates are realised by keeping reference-counts on predicatgsramdtion
information on clauses. Each change to the database causes an increment of the generation of the
database. Each goal is tagged with the generation in which it was started. Each clause is flagged
with the generation it was created as well as the generation it was erased. Only clauses with ‘created’
...'erased’ interval that encloses the generation of the current goal are considered visible.

3.13.2 Indexing databases

By default, SWI-Prolog, as most other implementations, indexes predicates on their first argument.
SWI-Prolog allows indexing on other and multiple arguments using the declamatier/1
For advanced database indexing, it definash _term/2

hashterm(+Term, -HashKey
If Termis a ground term (seground/1), HashKeyis unified with a positive integer value
that may be used as a hash-key to the valueTelinis not ground, the predicate succeeds
immediately, leavindHashKeyan unbound variable.

This predicate may be used to build hash-tables as well as to exploit argument-indexing to find
complex terms more quickly.

The hash-key does not rely on temporary information like addresses of atoms and may be as-
sumed constant over different invocations of SWI-Prolog.

8For example, using the immediate update view, no call to a dynamic predicate is deterministic.

SWI-Prolog 4.0 Reference Manual

66 CHAPTER 3. BUILT-IN PREDICATES

3.14 Declaring predicates properties

This section describes directives which manipulate attributes of predicate definitions. The functors
dynamic/l , multifile/1 anddiscontiguous/1 are operators of priority 1150 (see/3),
which implies the list of predicates they involve can just be a comma separated list:

:- dynamic
fool/0,
baz/2.

On SWI-Prolog all these directives are just predicates. This implies they can also be called by a pro-
gram. Do not rely on this feature if you want to maintain portability to other Prolog implementations.

dynamic +Functor/+Arity, ...
Informs the interpreter that the definition of the predicate(s) may change during execution (us-
ing assert/1 and/orretract/1). Currentlydynamic/l only stops the interpreter from
complaining about undefined predicates (se&nown/2). Future releases might prohibit
assert/1 andretract/1 for not-dynamic declared procedures.

multifile +Functor/+Arity, ...
Informs the system that the specified predicate(s) may be defined over more than one file. This
stopsconsult/l from redefining a predicate when a new definition is found.

discontiguous+Functor/+Arity, . ..
Informs the system that the clauses of the specified predicate(s) might not be together in the
source file. See alsstyle _check/1

index(+Head)
Index the clauses of the predicate with the same name and afitgafon the specified argu-
ments. Headis a term of which all arguments are either ‘1’ (denoting ‘index this argument’)
or ‘0’ (denoting ‘do not index this argument’). Indexing has no implications for the semantics
of a predicate, only on its performance. If indexing is enabled on a predicate a special purpose
algorithm is used to select candidate clauses based on the actual arguments of the goal. This
algorithm checks whether indexed arguments might unify in the clause head. Only atoms, in-
tegers and compound terms are considered. Compound terms are indexed on the combination
of their name and arity. Indexing is very useful for predicates with many clauses representing
facts.

Due to the representation technique used at most 4 arguments can be indexed. All indexed
arguments should be in the first 32 arguments of the predicate. If more than 4 arguments are
specified for indexing only the first 4 will be accepted. Arguments above 32 are ignored for
indexing.

By default all predicates witkiarity) > 1 are indexed on their first argument. It is possible to
redefine indexing on predicates that already have clauses attached to them. This will initiate
a scan through the predicates clause list to update the index summary information stored with
each clause.

If—for example—one wants to represents sub-types using a fact listygd{Sub, Super)’ that
should be used both to determine sub- and super types one should declpessias follows:

SWI-Prolog 4.0 Reference Manual

3.15. EXAMINING THE PROGRAM 67

- index(sub_type(1, 1)).

sub_type(horse, animal).

3.15 Examining the program

current_atom(-Atom)
Successively unifieAtomwith all atoms known to the system. Note tlwarrent _atom/1
always succeeds Atomis instantiated to an atom.

current_functor(?Name, ?Arity
Successively unifiedlamewith the name andirity with the arity of functors known to the
system.

current _flag(-FlagKey)
Successively unifieBlagKeywith all keys used for flags (sékag/3).

current_key(-Key)
Successively unifieKeywith all keys used for records (seecorda/3 , etc.).

current_predicate(?Name, ?Head
Successively unifieblamewith the name of predicates currently defined atehd with the
most general term built frorilameand the arity of the predicate. This predicate succeeds for
all predicates defined in the specified module, imported to it, or in one of the modules from
which the predicate will be imported if it is called.

predicate_property(?Head, ?Property
Succeeds iHeadrefers to a predicate that has propd?tpperty Can be used to test whether a
predicate has a certain property, obtain all properties knowréad find all predicates having
propertyor even obtaining all information available about the current progRwpertyis one
of:

interpreted
Is true if the predicate is defined in Prolog. We return true on this because, although the
code is actually compiled, it is completely transparent, just like interpreted code.

built _in
Is true if the predicate is locked as a built-in predicate. This implies it cannot be redefined
in its definition module and it can normally not be seen in the tracer.

foreign
Is true if the predicate is defined in the C language.
dynamic
Is true if the predicate is declared dynamic usingdizeamic/1 declaration.

multifile
Is true if the predicate is declared multifile using thaltifile/1 declaration.

SWI-Prolog 4.0 Reference Manual

68

CHAPTER 3. BUILT-IN PREDICATES

undefined
Is true if a procedure definition block for the predicate exists, but there are no clauses in it
and it is not declared dynamic. This is true if the predicate occurs in the body of a loaded
predicate, an attempt to call it has been made via one of the meta-call predicates or the
predicate had a definition in the past. See the library packlgekfor example usage.

transparent
Is true if the predicate is declared transparent usingrtbdule _transparent/1 dec-
laration.

exported
Is true if the predicate is in the public list of the context module.

imported _from(Modulg
Is true if the predicate is imported into the context module from mollddule

indexedHead
Predicate is indexed (seedex/1) according toHead Headis a term whose name
and arity are identical to the predicate. The arguments are unified with ‘1’ for indexed
arguments, ‘0’ otherwise.

file(FileNamg
Unify FileNamewith the name of the source file in which the predicate is defined. See
alsosource _file/2

line_count(LineNumbey
Unify LineNumbemwith the line number of the first clause of the predicate. Fails if the
predicate is not associated with a file. See alsarce _file/2

number_of_clausesClauseCount
Unify ClauseCounto the number of clauses associated with the predicate. Fails for for-
eign predicates.

dwim _predicate(+Term, -Dwim)

‘Do What | Mean’ (‘dwim’) support predicatelermis a term, which name and arity are used as
a predicate specificatiomwim s instantiated with the most general term built frdlameand

the arity of a defined predicate that matches the predicate specifiéerinin the ‘Do What

| Mean’ sense. Sedwim_match/2 for ‘Do What | Mean’ string matching. Internal sys-
tem predicates are not generated, unkgle _check(+dollar) is active. Backtracking
provides all alternative matches.

clause(’Head, ?Body

Succeeds wheHeadcan be unified with a clause head @adywith the corresponding clause
body. Gives alternative clauses on backtracking. For fBotdyis unified with the atontrue.
Normally clause/2 is used to find clause definitions for a predicate, but it can also be used
to find clause heads for some body template.

clause?Head, ?Body, ?Reference

Equivalent taclause/2 , but unifiesReferencevith a unique reference to the clause (see also
assert/2 ,erase/l). If References instantiated to a reference the clause’s head and body
will be unified with HeadandBody.

SWI-Prolog 4.0 Reference Manual

3.16. INPUT AND OUTPUT 69

nth_clause(Pred, ?Index, ?Reference
Provides access to the clauses of a predicate using their index number. Counting starts at 1.
If Referencas specified it unifiedPred with the most general term with the same name/arity
as the predicate ariddexwith the index-number of the clause. Otherwise the name and arity
of Pred are used to determine the predicate.Infiexis providedReferencewill be unified
with the clause reference. Ihdexis unbound, backtracking will yield both the indices and
the references of all clauses of the predicate. The following example finds the 2nd clause of
member/2 :

?- nth_clause(member(_,), 2, Ref), clause(Head, Body, Ref).

Ref = 160088
Head = system : member(G575, [G578|G579])
Body = member(G575, G579)

clauseproperty(+ClauseRef, -Proper)y
Queries properties of a claugélauseReis a reference to a clause as producedlayse/3
nth _clause/3 orprolog _frame _attribute/3 . Propertyis one of the following:

file(FileNamg
Unify FileNamewith the name of the source file in which the clause is defined. Fails if
the clause is not associated to a file.

line_count(LineNumbey
Unify LineNumbemith the line number of the clause. Fails if the clause is not associated
to afile.

fact
True if the clause has no body.

erased
True if the clause has been erased, but not yet reclaimed because it is referenced.

3.16 Input and output

SWI-Prolog provides two different packages for input and output. One confirms to the Edinburgh
standard. This package has a notion of ‘current-input’ and ‘current-output’. The reading and writing
predicates implicitly refer to these streams. In the second package, streams are opened explicitly and
the resulting handle is used as an argument to the reading and writing predicate to specify the source
or destination. Both packages are fully integrated; the user may switch freely between them.

3.16.1 Input and output using implicit source and destination

The package for implicit input and output destination is upwards compatible to DEC-10 and C-Prolog.
The reading and writing predicates refer to resp. the current input- and output stream. Initially
these streams are connected to the terminal. The current output stream is changeelllising
orappend/1 . The current input stream is changed usseg/1 . The streams current value can be
obtained usingelling/1 for output- andseeing/1 for input streams. The table below shows the
valid stream specifications. The reserved namses _input , user _output anduser _error

are for neat integration with the explicit streams.

SWI-Prolog 4.0 Reference Manual

70 CHAPTER 3. BUILT-IN PREDICATES

user This reserved name refers to the terminal
user _input Input from the terminal

user _output Output to the terminal

user _error Unix error stream (output only)

(Atom) Name of a Unix file

pipe((Atom) | Name of a Unix command

Source and destination are either a file, one of the reserved words above, or a term
‘pipe(Commandl. In the predicate descriptions below we will call the source/destination argument
‘SrcDest Below are some examples of source/destination specifications.

?- see(data). % Start reading from file ‘data’.
?- tell(user _error). % Start writing on the error stream.
?- tell(pipe(lpr)). % Start writing to the printer.

Another example of using thEpe/l construct is shown below. Note that thipe/1 construct
is not part of Prolog’s standard 1/O repertoire.

getwd(Wd) :-
seeing(Old), see(pipe(pwd)),
collect_wd(String),
seen, see(Old),
atom_codes(Wd, String).

collect wd([CIR]) :-
get0(C), C \== -1, |
collect wd(R).
collect_wd([]).

seefSrcDes)
Make SrcDesthe current input stream. 8rcDestwas already opened for reading witbe/1
and has not been closed since, reading will be resumed. OthesvaBesiwill be opened and
the file pointer is positioned at the start of the file.

tell(+SrcDes}
Make SrcDestthe current output stream. BrcDestwas already opened for writing with
tell/l orappend/1 and has not been closed since, writing will be resumed. Otherwise
the file is created o—when existing—truncated. See ajpgend/1 .

append@File)
Similar totell/1 , but positions the file pointer at the end kife rather than truncating an
existing file. The pipe construct is not accepted by this predicate.

seeingPSrcDest
Unify the name of the current input stream wiihcDest

telling(?SrcDest
Unify the name of the current output stream w&ttDest

SWI-Prolog 4.0 Reference Manual

3.16. INPUT AND OUTPUT 71

seen
Close the current input stream. The new input stream becosezs

told
Close the current output stream. The new output stream beagsees

3.16.2 Explicit Input and Output Streams

The predicates below are part of the Quintus compatible stream-based 1/0O package. In this package
streams are explicitly created using the prediagien/3 . The resulting stream identifier is then
passed as a parameter to the reading and writing predicates to specify the source or destination of the
data.

open@SrcDest, +Mode, -Stream, +Optiohs
ISO compliant predicate to open a stredancDesis either an atom, specifying a Unix file, or
a term pipe(Command’, just like see/l andtell/l . Modeis one ofread , write
append orupdate . Modeappend opens the file for writing, positioning the file-pointer at
the end. Modeipdate opens the file for writing, positioning the file-pointer at the beginning
of the file without truncating the file. See alstream _position/3 . Streamis either a
variable, in which case it is bound to an integer identifying the stream, or an atom, in which
case this atom will be the stream identifier. TOptionslist can contain the following options:

type(Typ¢
Using typetext (default), Prolog will write a text-file in an operating-system compatible

way. Using typebinary the bytes will be read or written without any translation. Note
there is no difference between the two on Unix systems.

alias(Atom)
Gives the stream a name. Below is an example. Be careful with this option as stream-
names are global. See alset _stream/2

?- open(data, read, Fd, [alias(input)]).

read(input, Term),

eof action(Action)
Defines what happens if the end of the input stream is reached. Asdforcode makes
get0/1 and friends return -1 anckad/1 and friends return the atoend _of _file
Repetitive reading keeps yielding the same result. Aatioor s like eof _code , but
repetitive reading will raise an error. With actioeset , Prolog will examine the file
again and return more data if the file has grown.

buffer(Buffering
Defines output buffering. The atofmll (default) defines full bufferindine buffering
by line, andfalse implies the stream is fully unbuffered. Smaller buffering is useful
if another process or the user is waiting for the output as it is being produced. See also
flush _output/[0,1] . This option is not an ISO option.

SWI-Prolog 4.0 Reference Manual

72 CHAPTER 3. BUILT-IN PREDICATES

closeon_abort(Bool)
If true (default), the stream is closed on an abort @eert/0). If false |, the stream
is not closed. If it is an output stream, it will be flushed however. Useful for logfiles and
if the stream is associated to a process (usingibe/l construct).

lock(LockingMode
Try to obtain a lock on the open file. Defaultnene, which does not lock the file. The
valueread or shared means other processes may read the file, but not write it. The
valuewrite orexclusive means no other process may read or write the file.

Locks are acquired through the POSIX function fcntl() using the comnraB&TLKW
which makes a blocked call wait for the lock to be released. Please note that fcntl() locks
areadvisoryand therefore only other applications using the same advisory locks honour
your lock. As there are many issues around locking in Unix, expecially related to NFS
(network file system), please study the fcntl() manual page before trusting your locks!

Thelock option is a SWI-Prolog extension.

The optionreposition is not supported in SWI-Prolog. All streams connected to a file may
be repositioned.

open@SrcDest, +Mode, ?Stream
Equivalent toopen/4 with an empty option-list.

open.null _stream(?Stream
Open a stream that produces no output. All counting functions are enabled on such a stream.
An attempt to read from a null-stream will immediately signal end-of-file. Similar to Unix
/dev/null . Streamcan be an atom, giving the null-stream an alias name.

closef+Stream
Close the specified stream. Streamis not open an error message is displayed. If the closed
stream is the current input or output stream the terminal is made the current input or output.

closef-Stream, +Option¥
Providesclose (Stream, [force(true)]as the only option. Called this way, any resource error
(such as write-errors while flushing the output buffer) are ignored.

stream_property(?Stream, ?StreamPropejty
ISO compatible predicate for querying status of open I/O stre&tnsamPropertys one of:

file_name(Atom)
If Streamis associated to a file, unitomto the name of this file.

mode(OMode
Unify IOModeto the mode given topen/4 for opening the stream. Values aread |,
write , append and the SWI-Prolog extensiarpdate .

input
True if Streamhas modeead .

output
True if Streamhas modevrite , append or update .

SWI-Prolog 4.0 Reference Manual

3.16. INPUT AND OUTPUT 73

alias(Atom
If Atomis bound, test of the stream has the specified alias. OtherwiseAmoifywith the
first alias of the strearh.
position(Term)
Unify Term with the current stream-position. A stream-position is a term of format
$stream _position (Charindex, LineNo, LinePysSee alsaerm _position/3

end of_stream(E)
If Streamis an input stream, uniffe with one of the atomsiot , at or past . See also
at _end _of _stream/[0,1]

eof action(A)
Unify Awith one ofeof _code ,reset orerror . Seeopen/4 for details.
reposition(Bool)
Unify Boolwith trueif the position of the stream can be set (seek/4). It is assumed
the position can be set if the stream hasegk-functiorand is not based on a POSIX
file-descriptor that is not associated to a regular file.

type(T)
Unify Boolwith text or binary

file_no(Intege))
If the stream is associated with a POSIX file-descriptor, uhifggerwith the descriptor
number. SWI-Prolog extension used primarily for integration with foreign code. See also
Sfileno() fromSWI-Stream.h

buffer(Buffering
SWI-Prolog extension to query the buffering mode of this stre@ufferingis one of
full ,line orfalse . See alsmpen/4 .

current_stream(?Object, ?Mode, ?Stregm
The predicatecurrent _stream/3 is used to access the status of a stream as well as to
generate all open stream@bjectis the name of the file opened if the stream refers to an open
file, an integer file-descriptor if the stream encapsulates an operating-system stream or the atom
[] ifthe stream refers to some other objddbdeis one ofread or write

set stream_position(+Stream, +Po3}
Set the current position @treamto Pos Posis a term as returned kstream _property/2
using theposition (Pog property. See alsseek/4 .

seek(Stream, +Offset, +Method, -NewLocatipn
Reposition the current point of the giv&tream Methodis one ofbof , currentor eof indicat-
ing positioning relative to the start, current point or end of the underlying objestiLocation
is unified with the new offset, relative to the start of the stream.

If the seek modifies the current location, the line number and character position in the line are
setto 0.

If the stream cannot be repostionedgaosition error is raised. The predicaseek/4 is
compatible to Quintus Prolog, though the error conditions and signalling is ISO compliant. See
alsostream _position/3

SBUG: Backtracking does not give other aliases.

SWI-Prolog 4.0 Reference Manual

74 CHAPTER 3. BUILT-IN PREDICATES

set stream(+Stream, +Attribut@
Modify an attribute of an existing streamittribute specifies the stream property to set. See
alsostream _property/2 andopen/4 .

alias(AliasNameg
Set the alias of an already created stream\liisNames the name of one of the standard
streams is used, this stream is rebound. Thes,_stream(S, current _input) is
the same aset _input/1 and by setting the alias of a streamuger _input , etc. all
user terminal input is read from this stream. See adtgractor/0

buffer(Buffering
Set the buffering mode of an already created stream. Buffering is ofudi of, line or
false

eof action(Action)
Set end-of-file handling to one ebf _code , reset or error

closeon_abort(Bool)
Determine whether or not the stream is closedabprt/0 . By default streams are
closed.

3.16.3 Switching Between Implicit and Explicit 1/0

The predicates below can be used for switching between the implicit- and the explicit stream based
I/O predicates.

setinput(+Streamn)
Set the current input stream to beco8teeam Thus, open(file, read, Stream), seput(Stream)
is equivalent to see(file).

setoutput(+Strean)
Set the current output stream to becoBieeam

current_input(-Strean)
Get the current input stream. Useful to get access to the status predicates associated with
streams.

current_output(-Stream
Get the current output stream.

3.17 Status of streams

wait_for _input(+ListOfStreams, -ReadyList, +TimeQut
Wait for input on one of the streamsliistOfStreamsind return a list of streams on which input
is available inReadyList wait _for _input/3 waits for at mosfTimeOutseconds.Timeout
may be specified as a floating point number to specify fractions of a secohichdbutequals
0, wait _for _input/3 waits indefinitely. This predicate can be used to implement timeout
while reading and to handle input from multiple sources. The following example will wait for
input from the user and an explicitly opened second terminal. On rdtypatsmay holduser
or P4 or both.

SWI-Prolog 4.0 Reference Manual

3.18. PRIMITIVE CHARACTER I/O 75

?- open(/devittyp4’, read, P4),
wait_for_input([user, P4], Inputs, 0).

This predicate relies on the select() call on most operating systems. On Unix this call is imple-
mented for any stream referring to a file-handle, which implies all OS-based streams: sockets,
terminals, pipes, etc. On non-Unix systems select() is generally only implemented for socket-
based streams. See also librangket) from theclib package.

character_count(+Stream, -Count
Unify Countwith the current character index. For input streams this is the number of characters
read since the open, for output streams this is the number of characters written. Counting starts
at 0.

line_count(+Stream, -Courjt
Unify Countwith the number of lines read or written. Counting starts at 1.

line_position(+Stream, -Count
Unify Countwith the position on the current line. Note that this assumes the position is 0 after
the open. Tabs are assumed to be defined on each 8-th character and backspaces are assumed to
reduce the count by one, provided it is positive.

fileerrors(-Old, +New)
Define error behaviour on errors when opening a file for reading or writing. Valid values are the
atomson (default) andoff . FirstOld is unified with the current value. Then the new value is
set toNew?'®

3.18 Primitive character 1/0
See sectio.2for an overview of supported character representations.

nl
Write a newline character to the current output stream. On Unix sysi#ths is equivalent to
put(10)

nl(+Stream)
Write a newline tdStream

put(+Char)
Write Char to the current output strear@har is either an integer-expression evaluating to an
ASCIl value 0 < Char < 255) or an atom of one character.

put(+Stream, +Chayj
Write Charto Stream

put_byte(+Byte)
Alias for put/1

Note that Edinburgh Prolog definékeerrors/0 andnofileerrors/0 . As this does not allow you to switch
back to the old mode | think this definition is better.

SWI-Prolog 4.0 Reference Manual

76 CHAPTER 3. BUILT-IN PREDICATES

put_byte(+Stream, +Byt¢
Alias for put/2

put_char(+Char)
Alias for put _char/1

put(+Stream, +Chayj
Alias for put/2

put_code(Code
Alias for put/1

put_code(+Stream, +Codg
Alias for put/2

tab(+Amoun)
Writes Amountspaces on the current output streakmountshould be an expression that eval-
uates to a positive integer (see sectioho).

tab(+Stream, +Amourjt
Writes Amountspaces t&tream

flush_output
Flush pending output on current output stredlosh _output/0 is automatically generated
byread/l and derivatives if the current input strearmuser and the cursor is not at the left
margin.

flush_output(+Stream)
Flush output on the specified stream. The stream must be open for writing.

ttyflush
Flush pending output on streamer. See alsdlush _output/[0,1]

get byte(-Byte
Read the current input stream and unify the next byte Bitte(an integer between 0 and 255.
Byteis unified with -1 on end of file.

get byte(+Stream, -Bytg
Read the next byte fror8tream

get.codefCode
Read the current input stream and un@gdewith the character code of the next character.
Charis unified with -1 on end of file. See alget _char/1

get.codef+Stream, -Code
Read the next character-code fr@tmweam

getchar(-Char)
Read the current input stream and urfigar with the next character as a one-character-atom.
See als@tom _chars/2 . On end-of-file Charis unified to the atonend _of _file

SWI-Prolog 4.0 Reference Manual

3.18. PRIMITIVE CHARACTER I/O 77

get.char(+Stream, -Chay
Unify Char with the next character fronBtreamas a one-character-atom. See also
get char/2 ,get _byte/2 andget _code/2 .

getO(Char)
Edinburgh version of the ISQet _byte/1 predicate.

getO@+Stream, -Chay
Edinburgh version of the ISQet _byte/2 predicate.

get(-Char)
Read the current input stream and unify the next non-blank characte€héth Charis unified
with -1 on end of file.

get(+Stream, -Chay
Read the next non-blank character fr&meam

peek byte(-Byte
Reads the next input byte lilget _byte/1 , but does not remove it from the input stream.

peek byte(+Stream, -Bytg
Reads the next input byte lilget _byte/2 , but does not remove it from the stream.

peek codefCode
Reads the next input code lilget _code/l |, but does not remove it from the input stream.

peek codefStream, -Code
Reads the next input code liket _code/2 |, but does not remove it from the stream.

peek char(-Char)
Reads the next input character liget _char/1 , but does not remove it from the input stream.

peek char(+Stream, -Chay
Reads the next input character liget _char/2 , but does not remove it from the stream.

skip(+Char)
Read the input untiChar or the end of the file is encountered. A subsequent cajeto/1
will read the first character aft€har.

skip(+Stream, +Chaj}
Skip input (asskip/1) on Stream

getsingle char(-Char)
Get a single character from input stream ‘user’ (regardless of the current input stream). Unlike
get0/1 this predicate does not wait for a return. The character is not echoed to the user’s
terminal. This predicate is meant for keyboard menu selection etc. If SWI-Prolog was started
with the-tty option this predicate reads an entire line of input and returns the first non-blank
character on this line, or the ASCII code of the newline (10) if the entire line consisted of blank
characters.

at_end_of_stream
Succeeds after the last character of the current input stream has been read. Also succeeds if
there is no valid current input stream.

SWI-Prolog 4.0 Reference Manual

78 CHAPTER 3. BUILT-IN PREDICATES

at_end_of_stream(+Strean)
Succeeds after the last character of the named stream is re8tteamis not a valid input
stream. The end-of-stream test is only available on buffered input stream (unbuffered input
streams are rarely used, sggen/4).

copy_stream_data(+Streamln, +StreamOut, +Lén
CopyLenbytes from streanStreaminto StreamOut

copy._stream_data(+Streamin, +StreamOit
Copy data all (remaining) data from stre@treaminto StreamOut

3.19 Term reading and writing

This section describes the basic term reading and writing predicates. The predicates
term _to _atom/2 , atom _to _term/3 andsformat/3 provide means for translating atoms and

strings to terms. The predicatBsmat/[1,2] andwritef/2 provide formatted output.
There are two ways to manipulate the output format. The predjmate/[1,2] may be
programmed usingortray/l . The format of floating point numbers may be manipulated using

the prologflag (seecurrent _prolog _flag/2)float _format .
Reading is sensitive to the proldtag character _escapes , which controls the interpretation
of the\ character in quoted atoms and strings.

write _term(+Term, +Option3
The predicatevrite _term/2 is the generic form of all Prolog term-write predicates. Valid
options are:

guoted(rue or false)
If true , atoms and functors that needs quotes will be quoted. The deféailsés .

character_escapedfue orfalse)
If true , andquoted (true) is active, special characters in quoted atoms and strings are
emitted as ISO escape-sequences. Default is taken from the reference module (see below).

ignore_opsfrue orfalse)
If true , the generic term-representatidfuficton ((args . ..)) will be used for all terms,
Otherwise (default), operators, list-notation ghd’1 will be written using their special
syntax.

module(Modulg
Define the reference module (defauster). This defines the default value for thiar-
acter _escapes option as well as the operator definitions to use. Seeaptd .

numbervars(true or false)
If true , terms of the forma$VAR(N) , where(N) is a positive integer, will be written as
a variable name. The defaultfalse

portray(true or false)
If true , the hookportray/1 is called before printing a term that is not a variable. If
portray/l succeeds, the term is considered printed. Seemlat’l . The default
is false . This option is an extension to the ISO wrii&rm options.

SWI-Prolog 4.0 Reference Manual

3.19. TERM READING AND WRITING 79

max_depth(Integei)
If the term is nested deeper tharieger, print the remainder as eclipse (...). A 0 (zero)
value (default) imposes no depth limit. This option also delimits the number of printed for
a list. Example:

?- write_term(a(s(s(s(s(0)))), [a,b,c,d,e,f]), [max_depth(3)]).
a(s(s(...)), [a, b|...])

Yes

Used by the toplevel and debugger to limit screen output. See also the prolog-flags
toplevel _print _options anddebugger _print _options

write _term(+Stream, +Term, +Options
Aswrite _term/2 , but output is sent t&treanrather than the current output.

write _canonicalTerm)
Write Termon the current output stream using standard parenthesised prefix notation (i.e., ig-
noring operator declarations). Atoms that need quotes are quoted. Terms written with this
predicate can always be read back, regardless of current operator declarations. Equivalent to
write _term/2 using the optionggnore _ops andquoted .

write _canonical@*Stream, +Term
Write Termin canonical form orStream

write(+Term)
Write Term to the current output, using brackets and operators where appropriate. See
current _prolog _flag/l2 for controlling floating point output format.

write(+Stream, +Term
Write Termto Stream

writeq(+Term)
Write Termto the current output, using brackets and operators where appropriate. Atoms that
need quotes are quoted. Terms written with this predicate can be read bacleadith
provided the currently active operator declarations are identical.

writeq(+Stream, +Term
Write Termto Stream inserting quotes.

print(+Term)
PrintsTermon the current output stream similarwoite/1 , but for each (sub)term dferm
first the dynamic predicatgortray/1 s called. If this predicate succeepidnt assumes the
(sub)term has been written. This allows for user defined term writing.

print(+Stream, +Term
Print Termto Stream

portray(+Term)
A dynamic predicate, which can be defined by the user to change the behavjmintif
on (sub)terms. For each subterm encountered that is not a vapahtél first calls

SWI-Prolog 4.0 Reference Manual

80 CHAPTER 3. BUILT-IN PREDICATES

portray/1 using the term as argument. For lists only the list as a whole is given to
portray/1 . If portray succeedprint/l ~ assumes the term has been written.

read(-Term)
Read the next Prolog term from the current input stream and unify it Tatihn On a syntax
errorread/1 displays an error message, attempts to skip the erroneous term and fails. On
reaching end-of-fildermis unified with the atonend _of _file

read(+Stream, -Term
ReadTermfrom Stream

read_clausefTerm)
Equivalent toread/1 , but warns the user for variables only occurring once in a term (sin-
gleton variables) which do not start with an underscorstyfe _check(singleton) is
active (default). Used to read Prolog source files (smesult/l). New code should use
read _term/2 with the optionsingletons(warning)

read_clause(Stream, -Term
Read a clause fror8tream Seeread _clause/l

read_term(-Term, +Option$
Read a term from the current input stream and unify the term Wtim The reading is con-
trolled by options from the list 0Options If this list is empty, the behaviour is the same as
forread/1 . The options are upward compatible to Quintus Prolog. The argument order is ac-
cording to the ISO standard. Syntax-errors are always reported using exception-handling (see
catch/3). Options:

variables(Vars)
Unify Varswith a list of variables in the term. The variables appear in the order they have
been read. See aléee _variables/2 . (1SO).

variable_namesy/ar9
Unify Varswith a list of ‘Name= Var, where Nameis an atom describing the variable
name and/ar is a variable that shares with the corresponding variableim (1SO).

singletonsy/ars)
As variable _names, but only reports the variables occurring only once in Teem
read. Variables starting with an underscorg @re not included in this list. (ISO).

syntex errors(Atomn)
If error (default), throw and exception on a syntax error. Other valueadre , which
causes a message to be printed upitigt _message/2 , after which the predicate fails,
quiet which causes the predicate to fail silently atet10 which causes syntax errors
to be printed, after whichead _term/[2,3] continues reading the next term. Using
decl0, read _term/[2,3] never fails. (Quintus, SICStus).

module(Modulg
SpecifyModulefor operatorscharacter _escapes flag anddouble _quotes flag.
The value of the latter two is overruled if the correspondiegd _term/3 option is
provided. If no module is specified, the current ‘source-module’ is used. (SWI-Prolog).

SWI-Prolog 4.0 Reference Manual

3.19. TERM READING AND WRITING 81

character_escaped8ool)
Defines how to reall escape-sequences in quoted atoms. See the prologsflagec-
ter _escapes ,current _prolog _flag/2 . (SWI-Prolog).

double_quotesBool)
Defines how to read ”...” strings. See the prolog-flageuble _quotes ,
current _prolog _flag/2 . (SWI-Prolog).

term_position(Po9
UnifiesPoswith the starting position of the term redeosif of the same format as use by
stream _position/3

subterm_positions(TermPo3
Describes the detailed layout of the term. The formats for the various types of terms if
given below. All positions are character positions. If the input is related to a normal
stream, these positions are relative to the start of the input, when reading from the terminal,
they are relative to the start of the term.

From-To
Used for primitive types (atoms, numbers, variables).
string _position(From, To)
Used to indicate the position of a string enclosed in double qubles (
brace_term_position(From, To, Arg)
Term of the form{... }, as used in DCG ruled\rg describes the argument.
list_position(From, To, EIms Tail)
A list. Elmsdescribes the positions of the elements. If the list specifies the tail
as| (TailTerm), Tail is unified with the term-position of the tail, otherwise with the
atomnone.
term_position(From, To, FFrom FTo, SubPo}¥
Used for a compound term not matching one of the ab&%Fom andFTo describe
the position of the functor.SubPosis a list, each element of which describes the
term-position of the corresponding subterm.

read_term(+Stream, -Term, +Options
Read term with options frorBtream Seeread _term/2

read_history(+Show, +Help, +Special, +Prompt, -Term, -Bindings
Similar toread _term/2 using the optiorvariable _names, but allows for history substi-
tutions.read _history/6 is used by the top level to read the user’s acti@tsowis the com-
mand the user should type to show the saved evéidtp is the command to get an overview
of the capabilitiesSpecialis a list of commands that are not saved in the histBrgmptis the
first prompt given. Continuation prompts for more lines are determingordaypt/2 . A %w
in the prompt is substituted by the event number. See seztitior available substitutions.

SWiI-Prolog callgead _history/6 as follows:

read_history(h, 'lh’, [trace], '%w ?- ’, Goal, Bindings)

prompt(-Old, +New)
Set prompt associated witlead/1 and its derivatives.Old is first unified with the current

SWI-Prolog 4.0 Reference Manual

82 CHAPTER 3. BUILT-IN PREDICATES

prompt. On success the prompt will be setNew if this is an atom. Otherwise an error
message is displayed. A prompt is printed if one of the read predicates is called and the cursor
is at the left margin. It is also printed whenever a newline is given and the term has not been
terminated. Prompts are only printed when the current input streaseis

promptl(+Prompf)
Sets the prompt for the next line to be read. Continuation lines will be read using the prompt
defined byprompt/2

3.20 Analysing and Constructing Terms

functor(?Term, ?Functor, ?Arity
Succeeds iTermis a term with functoFunctorand arityArity. If Termis a variable it is unified
with a new term holding only variable$unctor/3 silently fails on instantiation faults If
Termis an atom or numbeFunctorwill be unified with Termand arity will be unified with the
integer O (zero).

arg(?Arg, ?Term, ?Value
Term should be instantiated to a termArg to an integer between 1 and the arity Tdrm
Valueis unified with theArg-th argument ofTerm Arg may also be unbound. In this case
Value will be unified with the successive arguments of the term. On successful unifica-
tion, Arg is unified with the argument number. Backtracking yields alternative solutfons.
The predicatearg/3 fails silently if Arg = 0 or Arg > arity and raises the exception
domain _error(not _less _then _zero, Arg) if Arg <D0.

setarg@Arg, +Term, +Valug
Extra-logical predicate. Assigns tideg-th argument of the compound teffarmwith the given
Value The assignment is undone if backtracking brings the state back into a position before the
setarg/3 call.

This predicate may be used for destructive assignment to terms, using them as and extra-logical
storage bin.

?Term=.. ?List
Listis a list which head is the functor @ermand the remaining arguments are the arguments
of the term. Each of the arguments may be a variable, but not both. This predicate is called
‘Univ’. Examples:
?- foo(hello, X) =.. List.
List = [foo, hello, X]

?- Term =.. [baz, foo(1)]

Term = baz(foo(1))

1In version 1.2 instantiation faults led to error messages. The new version can be used to do type testing without the
need to catch illegal instantiations first.
12The instantiation pattern (-, +, ?) is an extension to ‘standard’ Prolog.

SWI-Prolog 4.0 Reference Manual

3.21. ANALYSING AND CONSTRUCTING ATOMS 83

numbervars(+Term, +Functor, +Start, -Enjl
Unify the free variables ofermwith a term constructed from the atdrunctorwith one argu-
ment. The argument is the number of the variable. Counting staBisett Endis unified with
the number that should be given to the next variable. Example:

?- numbervars(foo(A, B, A), this_is_a variable, 0, End).

A = this_is_a_variable(0)
B = this_is_a variable(1)
End = 2

In Edinburgh Prolog the second argument is missing. It is fixed B\WER

free_variables(+Term, -Lis)
Unify List with a list of variables, each sharing with a unique variabl&éam For example:

?- free_variables(a(X, b(Y, X), 2), L).

L = [G367, G366, G371]
X = G367
Y = G366
Z = G371

copy_term(+In, -Out)
Make a copy of ternin and unify the result wittDut Ground parts ofn are shared bput
Providedn andOuthave no sharing variables before this call they will have no sharing variables
afterwardscopy _term/2 is semantically equivalent to:

copy_term(ln, Out) :-
recorda(copy_key, In, Ref),
recorded(copy_key, Out, Ref),
erase(Ref).

3.21 Analysing and constructing atoms

These predicates convert between Prolog constants and lists of ASCII values. The predicates
atom _codes/2 , number _codes/2 andname/2 behave the same when converting from a con-
stant to a list of ASCII values. When converting the other way aroatmin _codes/2 will generate

an atomnumber _codes/2 will generate a number or exception amame/2 will return a number

if possible and an atom otherwise.

The ISO standard definegom _chars/2 to describe the ‘broken-up’ atom as a list of one-
character atoms instead of a list of codes. Upto version 3.2.x, SWI-Pradbgra _chars/2
behaved, compatible to Quintus and SICStus Prolog, like atodes. As of 3.3.x SWI-Prolog
atom _codes/2 andatom _chars/2 are compliant to the ISO standard.

To ease the pain of all variations in the Prolog community, all SWI-Prolog predicates behave as
flexible as possible. This implies the ‘list-side’ accepts either a code-list or a char-list and the ‘atom-
side’ accept all atomic types (atom, number and string).

SWI-Prolog 4.0 Reference Manual

84 CHAPTER 3. BUILT-IN PREDICATES

atom_codesPAtom, ?Striny
Convert between an atom and a list of ASCII valuegtmis instantiated, if will be translated
into a list of ASCII values and the result is unified wisitring If Atomis unbound andtring
is a list of ASCII values, it willAtomwill be unified with an atom constructed from this list.

atom_chars(?Atom, ?CharList

As atom _codes/2 , butCharListis a list of one-character atoms rather than a list of ASCI|I
valuess.

?- atom_chars(hello, X).

X =1h, e I, 1, 0]

char_code(Atom, ?ASC)
Convert between character and ASCII value for a single charécter.

number_chars(?Number, ?CharLi3gt
Similar to atom _chars/2 , but converts between a number and its representation as a list
of one-character atoms. Fails withr@gpresentation _error if Numberis unbound and
CharListdoes not describe a number.

number_codesPNumber, ?CodeLipt
Asnumber _chars/2 , but converts to a list of character codes (normally ASCII values) rather
than one-character atoms. In the mode -, +, both predicates behave identically to improve
handling of non-ISO source.

name(?AtomOrInt, ?Striny
String is a list of ASCII values describindtom Each of the arguments may be a vari-
able, but not both. WheString is bound to an ASCII value list describing an integer and
Atom is a variableAtom will be unified with the integer value described I8tring (e.g.
‘name(N, "300"), 400 is N + 100 ' succeeds).

int_to_atom(+Int, +Base, -Aton)
Convertint to an Ascll representation using bag&aseand unify the result withAtom If
Base= 10 the base will be prepended &gdom Base= 0 will try to interpretint as an ASCII
value and returi®’ (c). Otherwise2 < Base< 36. Some examples are given below.

int_to_.atom(45,2,A) — A =2101101
int_to.atom(97,0,A) — A=00a
int_to_.atom(56, 10,A) — A =56

int_to_atom(+Int, -Atom)
Equivalent taint _to _atom(Int, 10, Atom)

18Upto version 3.2.xatom _chars/2 behaved as the curremtom _codes/2 . The current definition is compliant with
the 1ISO standard

This is also callecatom _char/2 in older versions of SWI-Prolog as well as some other Prolog implementations.
atom _char/2 is available from the librarppackcomp.pl

SWI-Prolog 4.0 Reference Manual

3.21. ANALYSING AND CONSTRUCTING ATOMS 85

term_to_atom(?Term, ?Atom
Succeeds iAtomdescribes a term that unifies willerm WhenAtomis instantiatedAtomis
converted and then unified witferm If Atomhas no valid syntax, gyntax _error exception
is raised. Otherwis&ermis “written” on Atomusingwrite/1

atom_to_term(+Atom, -Term, -Bindings
UseAtomas input toread _term/2 using the optiorvariable _names and return the read
term in Termand the variable bindings iBindings Bindingsis a list of Name= Var couples,
thus providing access to the actual variable names. Seeeddo_term/2 . If Atomhas no
valid syntax, ssyntax _error exception is raised.

atom_concat(?Atom1, ?Atom2, ?Atom3
Atom3forms the concatenation éftomlandAtom2 At least two of the arguments must be
instantiated to atoms, integers or floating point numbers. For ISO compliance, the instantiation-
pattern -, -, + is allowed too, non-deterministically splitting the 3-th argument into two parts (as
append/3 does for lists). See alsiring _concat/3

concatatom(+List, -Atom)
List is a list of atoms, integers or floating point numbers. Succeedgadin can be uni-
fied with the concatenated elementsLidt. If List has exactly 2 elements it is equivalent to
atom _concat/3 , allowing for variables in the list.

concatatom(?List, +Separator, ?Atoin

Creates an atom just likeoncat _atom/2 , but insertsSeparatoetween each pair of atoms.
For example:

?- concat_atom([gnu, gnat], ’, ', A).

A = ’gnu, gnat’

This predicate can also be used to split atoms by instantiSépgratorand Atom
?- concat_atom(L, -, 'gnu-gnat’).

L = [gnhu, gnat]

atom_length(+Atom, -Length
Succeeds iAtomis an atom of_engthcharacters long. This predicate also works for integers
and floats, expressing the number of characters output when givenitedl

atom_prefix(+Atom, +Prefiy
Succeeds ifAtom starts with the characters fromrefix Its behaviour is equivalent to
?- concat(Prefix , _, Atom), but avoids the construction of an atom for the ‘remain-

der'.

sub_atom(+Atom, ?Before, ?Len, ?After, ?Sub
ISO predicate for breaking atoms. It maintains the following relat®urbis a sub-atom ofAtom
that starts aBefore hasLencharacters andtomcontainsAfter characters after the match.

SWI-Prolog 4.0 Reference Manual

86

CHAPTER 3. BUILT-IN PREDICATES

?- sub_atom(abc, 1, 1, A, 9).

The implementation minimalises non-determinism and creation of atoms. This is a very flexible
predicate that can do search, prefix- and suffix-matching, etc.

3.22 Classifying characters

SWI-Prolog offers two comprehensive predicates for classifying characters and character-codes.
These predicates are defined as built-in predicates to exploit the C-character classification’s handling
of locale (handling of local character-sets). These predicates are fast, logical and deterministic if
applicable.

In addition, there is the library librargfype) providing compatibility to some other Prolog

systems. The predicates of this library are defined in terncodé _type/2

char_type(?Char, ?Typg

Tests or generates alternatiisgpes or Chars. The character-types are inspired by the standard
C <ctype.h> primitives.

alnum
Charis a letter (upper- or lowercase) or digit.

alpha
Charis a letter (upper- or lowercase).

csym
Charis a letter (upper- or lowercase), digit or the underscoje These are valid C- and
Prolog symbol characters.

csymf
Charis a letter (upper- or lowercase) or the underscoje These are valid first characters
for C- and Prolog symbols

ascii
Charis a 7-bits ASCII character (0..127).
white
Charis a space or tab. E.i. white space inside a line.
cntrl
Charis an ASCII control-character (0..31).
digit
Charis a digit.
digit(Weigth
Char is a digit with valueWeigth I.e. char _type(X, digit(6) yields X ='6’
Useful for parsing numbers.
xdigit(Weigth

Char is a haxe-decimal digit with valué/eigth l.e. char _type(a, xdigit(X)
yieldsX ="10" . Useful for parsing numbers.

SWI-Prolog 4.0 Reference Manual

3.22. CLASSIFYING CHARACTERS 87

graph
Charproduces a visible mark on a page when printed. Note that the space is not included!

lower
Charis a lower-case letter.

lower(Uppen
Charis a lower-case version @fpper. Only true if Char is lowercase antpperupper-
case.

to_lower(Uppe
Charis a lower-case version @dpper. For non-letters, or letter without cagehar and
Lowerare the same.

upper
Charis an upper-case letter.

upper(Lower)
Charis an upper-case version bbwer. Only true ifCharis uppercase andowerlower-
case.

to_upper(Lower)
Charis an upper-case version bbwer. For non-letters, or letter without caseghar and
Lowerare the same.

punct
Charis a punctuation character. This igeaph character that is not a letter or digit.

space
Charis some form of layout character (tab, vertical-tab, newline, etc.).

end_of_file
Charis -1.

end.of_line
Charends a line (ASCII: 10..13).

newline
Charis a the newline character (10).

period
Charcounts as the end of a sentence (.,!,?).

quote
Charis a quote-charactef (’ ,*).

paren(Closé@
Charis an open-parenthesis aitbseis the corresponding close-parenthesis.

codetype(?Code, ?Type
As char _type/2 , but uses character-codes rather than one-character atoms. Please note that
both predicates are as flexible as possible. They handle either representation if the argument
is instantiated and only will instantiate with an integer code or one-character atom depend-
ing of the version used. See also the prolog-flmyble _quotes , atom chars/2 and
atom _codes/2 .

SWI-Prolog 4.0 Reference Manual

88 CHAPTER 3. BUILT-IN PREDICATES

3.23 Representing text in strings

SWI-Prolog supports the data typ#ing. Strings are a time and space efficient mechanism to handle
text text in Prolog. Strings are stores as a byte array on the global (term) stack and thus destroyed on
backtracking and reclaimed by the garbage collector.

Strings were added to SWI-Prolog based on an early draft of the ISO standard, offerring a mech-
anism to represent temporary character data efficiently. As SWI-Prolog strings can handle 0-bytes,
they are frequently used through the foreign language interface (ségtionstoring arbitrary byte-
sequences.

Starting with version 3.3, SWI-Prolog offers garbage collection on the atom-space as well as
representing O-bytes in atoms. Although strings and atoms still have different features, new code
should consider using atoms to avoid too many representations for text as well as for compatibility to
other Prolog systems. Below are some of the differences:

e creation
Creating strings is fast, as the data is simply copied to the global stack. Atoms are unique and
therefore more expensive in terms of memory and time to create. On the other hand, if the same
text has to be represented multiple times, atoms are more efficient.

e destruction
Backtracking destroys strings at no cost. They are cheap to handle by the garbage collector,
but it should be noted that extensive use of strings will cause many garbage collections. Atom
garbage collection is generally faster.

See also the prolog-fladpuble _quotes .

string_to_atom(?String, ?Atom
Logical conversion between a string and an atom. At least one of the two arguments must be
instantiated Atomcan also be an integer or floating point number.

string _to_list(?String, ?Lis}
Logical conversion between a string and a list of ASCII characters. At least one of the two
arguments must be instantiated.

string _length(+String, -Length
Unify Lengthwith the number of characters 8tring This predicate is functionally equivalent
toatom _length/2 and also accepts atoms, integers and floats as its first argument.

string_concat(?String1, ?String2, ?String3
Similar toatom _concat/3 , but the unbound argument will be unified with a string object
rather than an atom. Also, if boBtringlandString2are unbound an8tring3is bound to text,
it breaksString3 unifying the start withStringland the end wittstring2as append does with
lists. Note that this is not particularly fast on long strings as for each redo the system has to
create two entirely new strings, while the list equivalent only creates a single new list-cell and
moves some pointers around.

sub_string(+String, ?Start, ?Length, ?After, ?Sub
Subis a substring oString starting atStart, with lengthLengthandString hasAfter characters
left after the match. See alsob _atom/5 .

SWI-Prolog 4.0 Reference Manual

3.24. OPERATORS 89

3.24 Operators

Operators are defined to improve the readibility of source-code. For example, without operators, to
write 2*3+4*5 one would have to write-(*(2,3),*(4,5)) . In Prolog, a number of operators
have been predefined. All operators, except for the comma (,) can be redefined by the user.

Some care has to be taken before defining new operators. Defining too many operators might
make your source ‘natural’ looking, but at the same time lead to hard to understand the limits of your
syntax. To ease the pain, as of SWI-Prolog 3.3.0, operators are local to the module in which they are
defined. The module-table of the modulger acts as default table for all modules. This global table
can be modified explictly from inside a module:

- module(prove,
[prove/l

D).
- 0p(900, xfx, user:(=>)).

Unlike what many users think, operators and quoted atoms have no relation: defining a atom as an
operator doesot influence parsing characters into atoms and quoting an atomnaasop it from
acting as an operator. To stop an atom acting as an operator, enclose it in braces like this: (myop).

op(+Precedence, +Type, :Nare
DeclareNameto be an operator of typ&ypewith precedenc®recedenceNamecan also be
a list of names, in which case all elements of the list are declared to be identical operators.
Precedencés an integer between 0 and 1200. Precedence 0 removes the declafgiers
one of:xf , yf , xfx , xfy ,yfx ,yfy ,fy orfx . The ' indicates the position of the functor,
while x andy indicate the position of the argumentsy’ 'should be interpreted as “on this
position a term with precedence lower or equal to the precedence of the functor should occur”.
For ‘x’ the precedence of the argument must be strictly lower. The precedence of a term is 0,
unless its principal functor is an operator, in which case the precedence is the precedence of this
operator. A term enclosed in brackéts) has precedence 0.

The predefined operators are shown in téblie Note that all operators can be redefined by the
user.

current_op(?Precedence, ?Type, ?:Namne
Succeeds wheNameis currently defined as an operator of typgewith precedenc®rece-
dence See als@p/3 .

3.25 Character Conversion

Although | wouldn't really know for what you would like to use these features, they are provided for
ISO complicancy.

char_conversionCharin, +CharOu)
Define that term-input (seead _term/3) maps each character read@sarinto the character
CharOut Character conversion is only executed if the prolog-flagr _conversion is set
to true and not inside quoted atoms or strings. The initial table maps each character onto
itself. See als@urrent _char _conversion/2

SWI-Prolog 4.0 Reference Manual

90 CHAPTER 3. BUILT-IN PREDICATES

1200 | zfx | --> ,:-
1200 fx | - 2
1150 fz | dynamic , multifile , module _transparent , discon-
tiguous ,volatile , initialization
1100 | =zfy | ;.|
1050 | zfy | ->
1000| =xfy |,
954 | zfy |\
900 fy | \+
900 fx |~
700 xfxr | <, =, =. ,=@5==,=<,==,=\= |, >, >=, @< @=5 @> @>=
=,\==,IS
600 | =xfy |:
500| yfx | +,-,N,V ,xor
500 fx | +,-,2,\
400 | yfx | *,/,ll ,<<,>>,mod rem
200 xfx | **
200 xfy |~

Table 3.1: System operators

current_char_conversion(?Charln, ?CharOut
Queries the current character conversion-table.cBae _conversion/2 for details.

3.26 Arithmetic

Arithmetic can be divided into some special purpose integer predicates and a series of general pred-
icates for floating point and integer arithmetic as appropriate. The integer predicates are as “logical’
as possible. Their usage is recommended whenever applicable, resulting in faster and more “logical”
programs.

The general arithmetic predicates are optionally compiled nowdqseeprolog _flag/l2 and
the-O command line option). Compiled arithmetic reduces global stack requirements and improves
performance. Unfortunately compiled arithmetic cannot be traced, which is why it is optional.

The general arithmetic predicates all hanelt@ressionsAn expression is either a simple number
or afunction The arguments of a function are expressions. The functions are described in 3&tion

betweengLow, +High, ?Valug
Low andHigh are integersHigh > Low. If Valueis an integerLow < Value < High. When
Valueis a variable it is successively bound to all integers betwammandHigh.

succIntl, ?Int?
Succeeds ifnt2 = Intl + 1. At least one of the arguments must be instantiated to an integer.

plus(?Intl, ?Int2, ?Int3
Succeeds ifnt3 = Intl + Int2. At least two of the three arguments must be instantiated to
integers.

SWI-Prolog 4.0 Reference Manual

3.27. ARITHMETIC FUNCTIONS 91

+EXxprl> +Expr2
Succeeds when expressiBrprlevaluates to a larger number thaxpr2

+EXxprl < +Expr2
Succeeds when expressiBrprlevaluates to a smaller number thaxpr2

+Exprl =< +Expr2
Succeeds when expressiBrprlevaluates to a smaller or equal numbeEigr2

+Exprl >= +Expr2
Succeeds when expressiBrprlevaluates to a larger or equal numbeEtqpr2

+Exprl=\= +Expr2
Succeeds when expressiBrprlevaluates to a number non-equaBxpr2

+Exprl=:= +Expr2
Succeeds when expressiBrprlevaluates to a number equal Expr2

-Numberis +Expr
Succeeds wheNumberhas successfully been unified with the numBepr evaluates to. If
Expr evaluates to a float that can be represented using an integer (i.e, the value is integer and
within the range that can be described by Prolog’s integer representafigpjjs unified with
the integer value.

Note that normallyjs/2 will be used with unbound left operand. If equality is to be tested,
=:=/2 should be used. For example:

?- 1.0 is sin(pi/2). Fails!. sin(pi/2) evaluates to 1.0, but
is/2 will represent this as the integer 1,
after which unify will fail.

?- 1.0 is float(sin(pi/2)). Succeeds, as thdloat/1 function
forces the result to be float.
?- 1.0 == sin(pi/2). Succeeds as expected.

3.27 Arithmetic Functions

Arithmetic functions are terms which are evaluated by the arithmetic predicates described above.
SWI-Prolog tries to hide the difference between integer arithmetic and floating point arithmetic from
the Prolog user. Arithmetic is done as integer arithmetic as long as possible and converted to floating
point arithmetic whenever one of the arguments or the combination of them requires it. If a function
returns a floating point value which is whole it is automatically transformed into an integer. There are
three types of arguments to functions:

Expr Arbitrary expression, returning either a floating point value or an

integer.
IntExpr Arbitrary expression that should evaluate into an integer.
Int An integer.

SWI-Prolog 4.0 Reference Manual

92 CHAPTER 3. BUILT-IN PREDICATES

In case integer addition, subtraction and multiplication would lead to an integer overflow the
operands are automatically converted to floating point numbers. The floating point funstighs (,
exp/l , etc.) form a direct interface to the corresponding C library functions used to compile SWI-
Prolog. Please refer to the C library documentation for details on precision, error handling, etc.

- +Expr
Result= —Expr

+Exprl + +Expr2
Result= Exprl+ Expr2

+Exprl- +Expr2
Result= Exprl— Expr2

+Exprl* +Expr2
Result= Exprl x Expr2

+Exprl/ +Expr2

_ Exprl
Result= Expr2

+IntExprl mod +IntExpr2
Modulo: Result= IntExprl- (IntExprl// IntExpr2 x IntExpr2 The functionmod/2 is imple-
mented using the Cooperator. It's behaviour with negtive values is illustrated in the table

below.
2 = 17 mod 5
2 = 17 mod -5
-2 = -17 mod 5
-2 = -17 mod 5

+IntExprl rem +IntExpr2
Remainder of divisionResult= float fractional part(ntExpr/IntExpr2

+INtExprl// +IntExpr2
Integer division:Result= truncateExprl/Expr2

abs@Expr)
EvaluateExprand return the absolute value of it.

sign(+Expr)
Evaluate to -1 ifexpr < 0, 1 if Expr > 0 and O ifExpr = 0.

max(+Exprl, +Exprd
Evaluates to the largest of botxprlandExpr2

min(+Exprl, +Expr2
Evaluates to the smallest of bdixprlandExpr2

SWI-Prolog 4.0 Reference Manual

3.27. ARITHMETIC FUNCTIONS 93

. (+Int, 1)

A list of one element evaluates to the element. This imples evaluates to the ASCII
value of the letter ‘a’ (97). This option is available for compatibility only. It will not work
if ‘ style _check(+string) "is active as'a" will then be transformed into a string object.
The recommended way to specify the ASCII value of the letter ‘@’as.

random(+Int)
Evaluates to a random integeefor which0 < i < Int. The seed of this random generator is
determined by the system clock when SWI-Prolog was started.

round(+Expr)
Evaluate€Exprand rounds the result to the nearest integer.

integer(+Expr)
Same asound/1 (backward compatibility).

float(+Expr)
Translate the result to a floating point number. Normally, Prolog will use integers whenever
possible. When used around the 2nd argumeis/af , the result will be returned as a floating
point number. In other contexts, the operation has no effect.

float_fractional _part(+Expr)
Fractional part of a floating-point number. Negativ&xpris negative, 0 iExpris integer.

float_integer_part(+Expr)
Integer part of floating-point number. NegativeEitpris negative Expr if Expris integer.

truncate(+Expr)
TruncateExprto an integer. Same dloat _integer _part/1

floor(+Expr)
Evaluate€Exprand returns the largest integer smaller or equal to the result of the evaluation.

ceiling(+Expr)
Evaluate€xprand returns the smallest integer larger or equal to the result of the evaluation.

ceil(+Expr)
Same ageiling/1 (backward compatibility).

+IntExpr >> +IntExpr
Bitwise shiftIntExprlby IntExpr2bits to the right.

+IntExpr << +IntExpr
Bitwise shiftIntExprlby IntExpr2bits to the left.

+IntExprV/ +IntExpr
Bitwise ‘or’ IntExprlandIntExpr2

+IntExpr A +IntExpr
Bitwise ‘and’ IntExprlandIntExpr2

+IntExpr xor +IntExpr
Bitwise ‘exclusive or'IntExprlandIntExpr2

SWI-Prolog 4.0 Reference Manual

94 CHAPTER 3. BUILT-IN PREDICATES

\' +IntExpr

Bitwise negation.
sqrt(+Expr)

Result= /Expr
sin(+Expr)

Result= sin Expr. Expris the angle in radians.

COS(Expr)
Result= cos Expr. Expris the angle in radians.

tan(+Expr)
Result= tan Expr. Expris the angle in radians.

asin(+Expr)

Result= arcsin Expr. Resultis the angle in radians.
acos{Expr)

Result= arccos Expr. Resultis the angle in radians.

atan(+Expr)
Result= arctan Expr. Resultis the angle in radians.

atan(+YExpr, +XExp)
Result = arctan \X(E% Resultis the angle in radians. The return value is in the range
[—7...w]. Used to convert between rectangular and polar coordinate system.
log(+Expr)
Result= In Expr
log10(#Expr)
Result= 1g Expr
exp(+Expr)
Result= ¢EXPr

+Exprli** +Expr2

Result= Expr1EXPr2

+Exprl”™ +Expr2
Same as **/2. (backward compatibility).

pi

Evaluates to the mathematical constar{8.141593).
e

Evaluates to the mathematical constaf2.718282).
cputime

Evaluates to a floating point number expressingdhe time (in seconds) used by Prolog up
till now. See alscstatistics/2 andtime/1

SWI-Prolog 4.0 Reference Manual

3.28. ADDING ARITHMETIC FUNCTIONS 95

3.28 Adding Arithmetic Functions

Prolog predicates can be given the role of arithmetic function. The last argument is used to return
the result, the arguments before the last are the inputs. Arithmetic functions are added using the
predicatearithmetic ~ _function/1 , which takes the head as its argument. Arithmetic functions
are module sensitive, that is they are only visible from the module in which the function is defined and
declared. Global arithmetic functions should be defined and registered from masule Global
definitions can be overruled locally in modules. The builtin functions described above can be redefined
as well.

arithmetic _function(+Head)
Register a Prolog predicate as an arithmetic functioni@ge , >/2 , etc.). The Prolog predi-
cate should have one more argument than specifi¢didag which it either a terniName/Arity
an atom or a complex term. This last argument is an unbound variable at call time and should
be instantiated to an integer or floating point number. The other arguments are the parameters.
This predicate is module sensitive and will declare the arithmetic function only for the context
module, unless declared from modulger . Example:

1 ?- [user].
.- arithmetic_function(mean/2).

mean(A, B, C) :-
C is (A+B)/2.
user compiled, 0.07 sec, 440 bytes.

Yes
2 ?- A is mean(4, 5).

A = 4500000

current _arithmetic _function(?Head
Successively unifies all arithmetic functions that are visible from the context moduléfestti

3.29 List Manipulation

is_list(+Term)
Succeeds ifermis bound to the empty lisf)() or a term with functor.'’ and arity 2.

proper _list(+Term)
Equivalent tas _list/1 , but also requires the tail of the list to be a list (recursively). Exam-
ples:

is_list([x|A]) % true
proper_list([x|A]) % false

SWI-Prolog 4.0 Reference Manual

96 CHAPTER 3. BUILT-IN PREDICATES

append(?Listl, ?List2, ?ListB
Succeeds whehist3 unifies with the concatenation &istl andList2. The predicate can be
used with any instantiation pattern (even three variables).

member(?Elem, ?List
Succeeds wheBlemcan be unified with one of the membersLdgt. The predicate can be used
with any instantiation pattern.

memberchk(?Elem, +Lis})
Equivalent tomnember/2 , but leaves no choice point.

delete(Listl, ?Elem, ?List?
Delete all members dfistlthat simultaneously unify witklemand unify the result withist2.

selectElem, ?List, ?Rept
SelectElemfrom List leavingRest It behaves amember/2 , returning the remaining elements
in Rest Note that besides selecting elements from a list, it can also be used to insert efements.

nthO(?Index, ?List, ?Elein
Succeeds when tHadexth element oList unifies withElem Counting starts at 0.

nth1l(?Index, ?List, ?Elein
Succeeds when tHadexth element oList unifies withElem Counting starts at 1.

last(?Elem, ?Lisk
Succeeds iElemunifies with the last element dfist. If Listis a proper listast/2 is deter-
ministic. If List has an unbound tail, backtracking will caudst to grow.

reverse(Listl, -List2)
Reverse the order of the elementd.istl and unify the result with the elementslast2.

flatten(+List1, -List2)
TransformListl, possibly holding lists as elements into a ‘flat’ list by replacing each list with
its elements (recursively). Unify the resulting flat list witlst2. Example:

?- flatten([a, [b, [c, d], €]], X).

X =[a, b, ¢, d, €]

length(?List, ?In)
Succeeds int represents the number of elements ofllist. Can be used to create a list holding
only variables.

merge@Listl, +List2, -List3
Listl andList2 are lists, sorted to the standard order of terms (see segtinList3 will be
unified with an ordered list holding both the elementd.istl andList2. Duplicates aranot
removed.

15BUG: Upto SWI-Prolog 3.3.10, the definition of this predicate was not according to the de-facto standard. The first two
arguments were in the wrong order.

SWI-Prolog 4.0 Reference Manual

3.30. SET MANIPULATION 97

3.30 Set Manipulation

is_set(+Se
Succeeds iSetis a proper list (seproper _list/1) without duplicates.

list_to_set(+List, -Se)
Unifies Setwith a list holding the same elements last in the same order. Ifist contains
duplicates, only the first is retained. See asat/2 . Example:

?- list_to_set([a,b,a], X)
X = [a,b]

intersection(+Setl, +Set2, -Sej}3
Succeeds iSet3unifies with the intersection ddetlandSet2 SetlandSet2are lists without
duplicates. They need not be ordered.

subtract(+Set, +Delete, -Resylt
Delete all elements of set ‘Delete’ from ‘Set’ and unify the resulting set with ‘Result’.

union(+Setl, +Set2, -Sej3
Succeeds iSet3unifies with the union oBetlandSet2 SetlandSet2are lists without dupli-
cates. They need not be ordered.

subset{rSubset, +Sgt
Succeeds if all elements 8ubsetre elements dbetas well.

merge set(#*Setl, +Set2, -Se}3
SetlandSet2are lists without duplicates, sorted to the standard order of teBetSis unified
with an ordered list without duplicates holding the union of the elemenBetfandSet2

3.31 Sorting Lists

sort(+List, -Sorted
Succeeds iSortedcan be unified with a list holding the elementd.ddt, sorted to the standard
order of terms (see secti@n6). Duplicates are removed. Implemented by translating the input
list into a temporary array, calling the C-library functigsort(3) usingPL_compare()
for comparing the elements, after which the result is translated into the result list.

msort(+List, -Sorted
Equivalent tosort/2 , but does not remove duplicates.

keysort(+List, -Sorted
List is a proper list whose elements d&ey- Value , that is, terms whose principal functor is
(-)/2, whose first argument is the sorting key, and whose second argument is the satellite data
to be carried along with the kekeysort/2 sortsList like msort/2 , but only compares
the keys. Can be used to sort terms not on standard order, but on any criterion that can be
expressed on a multi-dimensional scale. Sorting on more than one criterion can be done using
terms as keys, putting the first criterion as argument 1, the second as argument 2, etc. The order
of multiple elements that have the saK®yis not changed.

SWI-Prolog 4.0 Reference Manual

98 CHAPTER 3. BUILT-IN PREDICATES

predsort(+Pred, +List, -Sortedl
Sorts similar to sort/2 , but determines the order of two terms by calling
Pred-Delta, +E1, +E2). This call must unifyDelta with one of<, const or =. If built-in
predicatecompare/3 is used, the result is the samesast/2 . See als&eysort/2 .16

3.32 Finding all Solutions to a Goal

findall(+Var, +Goal, -Bag
Creates a list of the instantiatioNar gets successively on backtracking o@al and unifies
the result withBag Succeeds with an empty list @oal has no solutionsfindall/3 is
equivalent tobagof/3 with all free variables bound with the existence operatdr éxcept
thatbagof/3 fails when goal has no solutions.

bagof(+Var, +Goal, -Bag
Unify Bagwith the alternatives ofar, if Goal has free variables besides the one sharing with
Var bagof will backtrack over the alternatives of these free variables, unifgegwith the
corresponding alternatives dar. The construct-Var ~ Goal tells bagof not to bind/ar in
Goal bagof/3 fails if Goalhas no solutions.

The example below illustratdsagof/3 and the” operator. The variable bindings are printed
together on one line to save paper.

2 ?- listing(foo).

foo(a, b, c).
foo(a, b, d).
foo(b, c, e).
foo(b, c, f).
foo(c, ¢, Q).

Yes
3 ?- bagof(C, foo(A, B, C), Cs).

A =a B =Db C=G308 Cs =][c, d] ;
A=b B=c C=G308 Cs = [e, f];
A=¢c¢ B=¢c C=G308, Cs = |[g] ;
No

4 ?- bagof(C, Afoo(A, B, C), Cs).

A =G324, B = b, C = G326, Cs = [c, d] ;
A =G324, B =c¢, C =G326, Cs =[e, f, d] ;
No

5 72-

15please note that the semantics have changed between 3.1.1 and 3.1.2

SWI-Prolog 4.0 Reference Manual

3.33. INVOKING PREDICATES ON ALL MEMBERS OF A LIST 99

setof@+Var, +Goal, -Sej
Equivalent tobagof/3 , but sorts the result usingprt/2 to get a sorted list of alternatives
without duplicates.

3.33 Invoking Predicates on all Members of a List

All the predicates in this section call a predicate on all members of a list or until the predicate called
fails. The predicate is called via call/[2..], which implies common arguments can be put in front of
the arguments obtained from the list(s). For example:

?- maplist(plus(1), [0, 1, 2], X).
X =11, 2, 3]
we will phrase this asPredicateis applied on ...”

checklist(+Pred, +List)
Predis applied successively on each elemenitisf until the end of the list oPredfails. In the
latter case thehecklist/2 fails.

maplist(+Pred, ?List1, ?List2
Apply Predon all successive pairs of elements fraustl andList2. Fails if Pred can not be
applied to a pair. See the example above.

sublist(+Pred, +List1, ?List3
Unify List2 with a list of all elements okist1 to whichPredapplies.

3.34 Forall

forall(+Cond, +Action
For all alternative bindings d€ond Actioncan be proven. The example verifies that all arith-
metic statements in the liktare correct. It does not say which is wrong if one proves wrong.

?- foralllmember(Result = Formula, [2 = 1 + 1, 4 = 2 * 2]),
Result =:= Formula).

3.35 Formatted Write

The current version of SWI-Prolog provides two formatted write predicates. The first is
writef/[1,2] , Which is compatible with Edinburgh C-Prolog. The seconfbisnat/[1,2] ,

which is compatible with Quintus Prolog. We hope the Prolog community will once define a standard
formatted write predicate. If you want performance faenat/[1,2] as this predicate is defined

in C. Otherwise compatibility reasons might tell you which predicate to use.

SWI-Prolog 4.0 Reference Manual

100 CHAPTER 3. BUILT-IN PREDICATES

3.35.1 Writef

write _In(+Term)
Equivalent towrite(Term), nl.

writef(+Atom)
Equivalent towritef(Atom, []).

writef(+Format, +Argumenty
Formatted write. Formatis an atom whose characters will be printdébrmat may contain
certain special character sequences which specify certain formatting and substitution actions.
Argumentghen provides all the terms required to be output.

Escape sequences to generate a single special character:

\n Output a nemline character (see atd0,1])
\l Output a line separator (same\as)

\r Output a carriage-return character (ASCII 13)
\t Output the ASCII character TAB (9)

\\ The charactey is output

\% The characte®bis output
\nnn | where (nnn) is an integer (1-3 digits) the character with
ASCII code(nnn) is output (NB :(nnn) is read asleci-
mal)

Note thafl ,\nnn and\\ are interpreted differently when character-escapes are in effect. See
section2.15.1

Escape sequences to include arguments ffgguments Each time a % escape sequence is
found inFormatthe next argument fromArgumentss formatted according to the specification.

SWI-Prolog 4.0 Reference Manual

3.35. FORMATTED WRITE 101

[

ot print/1 the next item (mnemonic: term)

%w
write/l the next item

%q : _
writeg/1 the next item

%d | Write the term, ignoring operators. See also
write _term/2 . Mnemonic: old Edinburgh
display/1

%p

print/1 the next item (identical t&ot)
%n | Putthe nextitem as a character (i.e., itis an ASCII value)
%r | Write the next item N times where N is the second item
(an integer)
%s | Write the next item as a String (so it must be a list of char-
acters)

%f | Perform attyflush/O (no items used)

%Nc| Write the next item Centered iN columns.

%NI | Write the next item Left justified idvV columns.

%Nr | Write the next item Right justified itV columns. N is a
decimal number with at least one digit. The item must be
an atom, integer, float or string.

swritef(-String, +Format, +Argumenis
Equivalent towritef/2 , but “writes” the result orstringinstead of the current output stream.
Example:

?- swritef(S, '%15L%w’, [Hello’, "World’]).
S = "Hello World"

swritef(-String, +Formaj
Equivalent toswritef(String, Format, []).
3.35.2 Format

format(+Format)
Defined asformat(Format) :- format(Format, []).

format(+Format, +Argument}y
Formatis an atom, list of ASCII values, or a Prolog strinfgrgumentgrovides the arguments

required by the format specification. If only one argument is required and this is not a list of
ASCII values the argument need not be put in a list. Otherwise the arguments are put in a list.

Special sequences start with the tildé, (followed by an optional numeric argument, followed

by a character describing the action to be undertaken. A numeric argument is either a sequence
of digits, representing a positive decimal number, a sequeKciearactel, representing the

ASCII value of the character (only useful fdr) or a asterisk¥), in when the numeric argu-

ment is taken from the next argument of the argument list, which should be a positive integer.
Actions are:

SWI-Prolog 4.0 Reference Manual

102 CHAPTER 3. BUILT-IN PREDICATES

Output the tilde itself.

a Output the next argument, which should be an atom. This option is equivalemt to
Compatibility reasons only.

¢ Output the next argument as an ASCII value. This argument should be an integer in the
range [0, ..., 255] (including 0 and 255).

d Output next argument as a decimal number. It should be an integer. If a numeric argument
is specified a dot is insertesigumenipositions from the right (useful for doing fixed point
arithmetic with integers, such as handling amounts of money).

D Same asl, but makes large values easier to read by inserting a comma every three digits
left to the dot or right.

e Output next argument as a floating point number in exponential notation. The numeric
argument specifies the precision. Default is 6 digits. Exact representation depends on the
C library function printf(). This function is invoked with the form@#t. (precisionje.

E Equivalent toe, but outputs a capital E to indicate the exponent.

f Floating point in non-exponential notation. See C library function printf().
g Floating point ine or f notation, whichever is shorter.

G Floating point inE or f notation, whichever is shorter.

i Ignore next argument of the argument list. Produces no output.

k Give the next argument Wisplayg/l (canonical write).

n Output a newline character.

N Only output a newline if the last character output on this stream was not a newline. Not
properly implemented yet.

p Give the next argument farint/1
g Give the next argument twriteq/1

r Print integer in radix the numeric argument notation. THL@r prints its argument
hexadecimal. The argument should be in the raj2ge. ., 36]. Lower case letters are
used for digits above 9.

R Same as, but uses upper case letters for digits above 9.

s Output a string of ASCII characters or a string (steng/1 and sectior8.23 from
the next argument.

t Allremaining space between 2 tabs tops is distributed equally"bvetatements between
the tabs tops. This space is padded with spaces by default. If an argument is supplied this
is taken to be the ASCII value of the character used for padding. This can be used to do
left or right alignment, centering, distributing, etc. See §|saand™+ to set tab stops. A
tabs top is assumed at the start of each line.

| Set a tabs top on the current position. If an argument is supplied set a tabs top on the
position of that argument. This will cause &ll's to be distributed between the previous
and this tabs top.

+ Set a tabs top relative to the current position. Further the safje.as
w Give the next argument torite/1

SWI-Prolog 4.0 Reference Manual

3.35. FORMATTED WRITE 103

W Give the next two argument teorite _term/2 . This option is SWI-Prolog specific.

Example:

simple_statistics :-
<obtain statistics> % left to the user
format("tStatistics 72| 'n"n’),
format(Runtime: ™.t "2f"'34| Inferences: ™.t "D"72|'n’,
[RunT, Inf]),

Will output
Statistics

Runtime: 3.45 Inferences: 60,345

format(+Stream, +Format, +Argumenjs
Asformat/2 , but write the output on the giveBtream

sformat(-String, +Format, +Argumenis
Equivalent tdformat/2 , but “writes” the result orstringinstead of the current output stream.
Example:

?- sformat(S, "wt"15]"w’, [Hello’, "World’]).
S = "Hello World"

sformat(-String, +Formaj
Equivalent to sformat(String, Format, []). '

3.35.3 Programming Format

format _predicate(+Char, +Head)
If a sequencéc (tilde, followed by some character) is found, the format derivatives will first
check whether the user has defined a predicate to handle the format. If not, the built in format-
ting rules described above are uséthar is either anascii value, or a one character atom,
specifying the letter to be (re)definetlieadis a term, whose name and arity are used to de-
termine the predicate to call for the redefined formatting character. The first argument to the
predicate is the numeric argument of the format command, or the deédaolt if no argu-
ment is specified. The remaining arguments are filled from the argument list. The example
below redefinedn to produceArg times return followed by linefeed (so a (Grr.) DOS machine
is happy with the output).

.- format_predicate(n, dos_newline(_Arg)).

dos_newline(Arg) :-
between(1, Ar,), put(13), put(10), fail ; true.

SWI-Prolog 4.0 Reference Manual

104 CHAPTER 3. BUILT-IN PREDICATES

current _format _predicate(?Code, ?:Heajl
Enumerates all user-defined format predica@sdeis the character code of the format charac-
ter. Headis unified with a term with the same name and arity as the predicate. If the predicate
does not reside in moduleser , Headis qualified with the definition module of the predicate.

3.36 Terminal Control

The following predicates form a simple access mechanism to the Unix termcap library to provide
terminal independent I/O for screen terminals. These predicates are only available on Unix machines.
The SWI-Prolog Windows consoles accepts the ANSI escape sequences.

tty _get capability(+Name, +Type, -Resylt
Get the capability nameNamefrom the termcap library. See termcap(5) for the capability
names. Typespecifies the type of the expected result, and is onstririg , number or
bool . String results are returned as an atom, number result as an integer and bool results as the
atomon or off . If an option cannot be found this predicate fails silently. The results are only
computed once. Successive queries on the same capability are fast.

tty _goto(+X, +Y)
Goto position K, Y) on the screen. Note that the predicatéze _count/2 and
line _position/2 will not have a well defined behaviour while using this predicate.

tty _put(+Atom, +Line9
Put an atom via the termcap library function tputs(). This function decodes padding informa-
tion in the strings returned byy _get _capability/3 and should be used to output these
strings. Linesis the number of lines affected by the operation, or 1 if not applicable (as in
almost all cases).

settty(-OldStream, +NewStream
Set the output stream, usedtty _put/2 andtty _goto/2 to a specific stream. Default is
useroutput.

tty _size¢Rows, -Columns
Determine the size of the terminal. If the system provides calls for this these are used and
tty _size/2 properly reflects the actual size after a user resize of the window. As a fallback,

the system uselly _get _capability/2 usingli andco capabilities. In this case the
reported size reflects the size at the first call and is not updated after a user-initiated resize of
the terminal.

3.37 Operating System Interaction

shell+Command, -Statys
ExecuteCommandon the operating systenCommands given to the Bourne shell (/bin/sh).
Statuss unified with the exit status of the command.

OnWin32systemsshell/[1,2] executes the command using the CreateProcess() APl and
waits for the command to terminate. If the command ends w&kign, the command is handed
to the WinExec() API, which does not wait for the new task to terminate. Seavals@xec/2

SWI-Prolog 4.0 Reference Manual

3.37. OPERATING SYSTEM INTERACTION 105

andwin _shell/l2 . Please note that the CreateProcess() APl daésmply the Windows
command interpretecOmmand.exe on Windows 95/98 andmd.exe on Windows-NT) and
therefore commands built-in to the command-interpreter can only be activated using the com-
mand interpreter. For exampleommand.exe /C copy filel.txt file2.txt’

shell#Commandg
Equivalent to shell(Command, 0)

shell
Start an interactive Unix shell. Default/isin/sh , the environment variab®HELLoverrides
this default. Not available for Win32 platforms.

win_execfrCommand, +Shoyv
Win32 systems only. Spawns a Windows task without waiting for its complet@&imowis
eithericonic ornormal and dictates the initial status of the window. Tibenic option
is notably handy to start (DDE) servers.

win_shell(+Operation, +File)
Win32 systems only. Opens the documEih¢ using the windows shell-rules for doing L0p-
erationis one ofopen, print orexplore or another operation registered with the shell for
the given document-type. On modern systems it is also possible to pass a B#t, apening
the URL in Windows default browser. This call interfaces to the Win32 API ShellExecute().

win_registry_getvalue(+Key, +Name, -Valug
Win32 systems only. Fetches the value of a Win32 registry kayis an atom formed as a
path-name describing the desired registry kdameis the desired attribute name of the key.
Valueis unified with the value. If the value is of tyd@@WORDhe value is returned as an
integer. If the value is a string it is returned as a Prolog atom. Other types are currently not sup-
ported. The default ‘root’ iSIKEYCURRENTUSER Other roots can be specified explicitely as
HKEYCLASSESROOTHKEYCURRENTUSERHKEYLOCALMACHINEOr HKEYUSERS
The example below fetches the extension to use for Prolog file REA®ME.TXTon the Win-
dows version):

?- win_registry_get_value("HKEY_LOCAL_MACHINE/Software/SWI/Prolog’,
fileExtension,
Ext).

Ext = pl

getenvtName, -Valug
Get environment variable. Fails silently if the variable does not exist. Please note that environ-
ment variable names are case-sensitive on Unix systems and case-insensitive on Windows.

setenv(-Name, +Valu¢
Set environment variableNameand Value should be instantiated to atoms or integers. The
environment variable will be passeddioell/[0-2] and can be requested usiggtenv/2
They also influencexpand _file _name/2.

SWI-Prolog 4.0 Reference Manual

106 CHAPTER 3. BUILT-IN PREDICATES

unsetenvFName
Remove environment variable from the environment.

unix(+Command
This predicate comes from the Quintus compatibility library and provides a partial implementa-
tion thereof. It provides access to some operating system features and unlike the name suggests,
is not operating system specific. Currently it is the only way to fetch the Prolog command-line
arguments. DefineBommant are below.

system-Command
Equivalent to callingshell/1 . Use for compatibility only.

shell+Command
Equivalent to callingshell/1 . Use for compatibility only.

shell
Equivalent to callingshell/0 . Use for compatibility only.

cd
Equivalent to callingchdir/l aschdir(") . Use for compatibility only.

cd(+Directory)
Equivalent to callingchdir/l . Use for compatibility only.

argv(-Argv)
Unify Argv with the list of commandline arguments provides to this Prolog run. Please
note that Prolog system-arguments and application arguments are separatedittgger
arguments are passed as Prolog integers, float arguments and Prolog floating point num-
bers and all other arguments as Prolog atoms. New applications should use the prolog-flag
argv .

A stand-alone program could use the following skeleton to handle command-line argu-
ments. See also sectién

main :-
unix(argv(Argv)),
append(_PrologArgs, [--|AppArgs], Argv), !,
main(AppArgs).

gettime(-Time
Return the number of seconds that elapsed since the epoch of the POSIX, tim representation:
January 1970, 0 hour3imeis a floating point number. The granularity is system dependent.

convert_time(+Time, -Year, -Month, -Day, -Hour, -Minute, -Second, -MilliSecgnds
Convert a time stamp, provided lget _time/l |, time _file/2 , etc. Yearis unified with
the yearMonthwith the month number (January is Day with the day of the month (starting
with 1), Hour with the hour of the day (0—23Minutewith the minute (0-59)Secondwith the
second (0-59) anMilliSecondwith the milliseconds (0—999). Note that the latter might not
be accurate or might always be 0, depending on the timing capabilities of the system. See also
convert _time/2

SWI-Prolog 4.0 Reference Manual

3.38. FILE SYSTEM INTERACTION 107

convert_time(+Time, -String
Convert a time-stamp as obtained thoupggt _time/1 into a textual representation using the
C-library functionctime() . The value is returned as a SWI-Prolog string object (see sec-
tion 3.23. See als@onvert _time/8

3.38 File System Interaction

accesdile(+File, +Mode)
Succeeds ifile exists and can be accessed by this prolog process under Madie Mode
is one of the atomsead , write , append, exist , none or execute . File may also
be the name of a directory. Fails silently otherwisecess _file(File, none) simply
succeeds without testing anything.

If ‘Mode’ is write or append , this predicate also succeeds if the file does not exist and the
user has write-access to the directory of the specified location.

existsfile(+File)
Succeeds whehile exists. This does not imply the user has read and/or write permission for
the file.

file_directory _.name(+File, -Directory)
Extracts the directory-part dfile. The returnedirectory name does not end in. There are
two special cases. The directory-naméd da&/ itself and the directory-name File does not
contain any charactersiis.

file_basename(@File, -BaseNamg
Extracts the filename part from a path specification Filé does not contain any directory
separatordrile is returned.

samefile(+Filel, +File2)
Succeeds if both filenames refer to the same physical file. Thatkdelf andFile2 are the
same string or both names exist and point to the same file (due to hard or symbolic links and/or
relative vs. absolute paths).

exists directory(+Directory)
Succeeds iDirectory exists. This does not imply the user has read, search and or write permis-
sion for the directory.

deletefile(+File)
RemoveFile from the file system.

rename file(+Filel, +File2)
Renamd-ilel into File2. Currently files cannot be moved across devices.

sizefile(+File, -Siz
Unify Sizewith the size ofFile in characters.

time_file(+File, -Time)
Unify the last modification time ofile with Time Timeis a floating point number expressing
the seconds elapsed since Jan 1, 1970. Secats@rt _time/[2,8] andget _time/l

SWI-Prolog 4.0 Reference Manual

108 CHAPTER 3. BUILT-IN PREDICATES

absolutefile_name@File, -Absolutg
Expand a local file-name into an absolute path. The absolute path is canonised: ref-
erences to. and .. are deleted. This predicate ensures that expanding a file-name
it returns the same absolute path regardless of how the file is addressed. SWI-Prolog
uses absolute file names to register source files independent of the current working di-
rectory. See alsabsolute _file _name/3. See alscabsolute _file _name/3 and
expand _file _name/2.

absolutefile_name@#Spec, +Options, -Absolu}e
Converts the given file specification into an absolute p&ftionis a list of options to guide
the conversion:

extensionsistOfExtensions
List of file-extensions to try. Default is” . For each extension,
absolute _file _name/3 will first add the extension and then verify the condi-
tions imposed by the other options. If the condition fails, the next extension of the list is
tried. Extensions may be specified both.agt or plainext .

accesdylodg
Imposes the condition acceBke(File, Mode. Modeis on ofread , write , append,
exist ornone. See als@access _file/2

file_type(Typg
Defines extensions. Current mappirtgt implies[’] , prolog implies[.pl’,
"] , executable implies[.so’, "] , gif implies[.qlf, "] anddi-
rectory implies[”]

file_errors(fail/error)
If error (default), throw anekxistence _error exception if the file cannot be found.
If fail , stay silent.’

solutionsf(irst/all)
If first (default), the predicates leaves no choice-point. Otherwise a choice-point will
be left and backtracking may yield more solutions.

The prolog-flagverbose _file _search can be set tdrue to help debugging Prolog’s
search for files.

is_absolutefile_name(File)
True if File specifies and absolute path-name. On Unix systems, this implies the path starts
with a /. For Microsoft based systems this implies the path starts Wikter): . This
predicate is intended to provide platform-independent checking for absolute paths. See also
absolute _file _name/2 andprolog _to _os _filename/2

file_name extension@Base, ?Extension, ?Najne
This predicate is used to add, remove or test filename extensions. The main reason for its
introduction is to deal with different filename properties in a portable manner. If the file system
is case-insensitive, testing for an extension will be done case-insensitiv&xbensionmay
be specified with or without a leading dot)(If an Extensiornis generated, it will not have a
leading dot.

7Silent operation was the default up to version 3.2.6.

SWI-Prolog 4.0 Reference Manual

3.38. FILE SYSTEM INTERACTION 109

expand_file_name@WildCard, -Lis)
Unify List with a sorted list of files or directories matchilgldCard The normal Unix wild-
card constructs?’, ‘*’, ‘[...] "and‘{... } arerecognised. The interpretation ¢f.. }’
is interpreted slightly different from the C shell (csh(1)). The comma separated argument can be
arbitrary patterns, includind:.. }’ patterns. The empty pattern is legal as wel:pl, \} '
matches either.pl ' or the empty string.

If the pattern does contains wildcard characters, only existing files and directories are returned.
Expanding a ‘pattern’ without wildcard characters returns the argument, regardless on whether
or not it exists.

Before expanding wildchards, the constrigtar is expanded to the value of the environment
variablevar and a possible leadirigcharacter is expanded to the user’s home directory.

prolog_to_os filename(?PrologPath, ?OsPath
Converts between the internal Prolog pathname conventions and the operating-system pathname
conventions. The internal conventions are Unix and this predicates is equivalent to =/2 (unify)
on Unix systems. On DOS systems it will change the directory-separator, limit the filename
length map dots, except for the last one, onto underscores.

read_link(+File, -Link, -Targe)
If File points to a symbolic link, unifycink with the value of the link and@argetto the file the
link is pointing to. Targetpoints to a file, directory or non-existing entry in the file system, but
never to a link. Fails ifile is not a link. Fails always on systems that do not support symbolic
links.

tmp _file(+Base, -TmpName
Create a name for a temporary figaseis an identifier for the category of file. THenpNamés
guaranteed to be unique. If the system halts, it will automatically remove all created temporary
files.

make_directory(+Directory)
Create a new directory (folder) on the filesystem. Raises an exception on failure. On Unix
systems, the directory is created with default permissions (defined by the puotasisetting).

delete directory(+Directory)
Delete directory (folder) from the filesystem. Raises an exception on failure. Please note that
in general it will not be possible to delete a non-empty directory.

chdir(+Path)
Change working directory tBath*°

180n Windows, the home directory is determined as follows: if the environment vaitifbMEexists, this is used. If
the variableHOMEDRIVEBndHOMEPATldxist (Windows-NT), these are used. At initialisation, the system will set the
environment variablélOMEo point to the SWI-Prolog home directory if neithd©OMEor HOMEPATIENdHOMEDRIVE
are defined

19BUG: Some of the file-1/O predicates use local filenames. Ushtir/1 while file-bound streams are open causes
wrong results onelling/1 ,seeing/l andcurrent _stream/3

SWI-Prolog 4.0 Reference Manual

110 CHAPTER 3. BUILT-IN PREDICATES

3.39 Multi-threading (alpha code)

The features described in this section are only enabled on Unix systems providing POSIX
threads and if the system is configured using the-enable-mt option. SWI-Prolog multi-
theading support is experimental and in some areas not safe.

SWI-Prolog multithreading is based on standard C-language multithreading support. It is not like
ParLogor other paralel implementations of the Prolog language. Prolog threads have their own stacks
and only share the Proldgeap predicates, records, flags and other global non-backtrackable data.
SWiI-Prolog thread support is designed with the following goals in mind.

e Multi-threaded server applications
Todays computing services often focus on (internet) server applications. Such applications of-
ten have need for communication between services and/or fast non-blocking service to multiple
concurrent clients. The shared heap provides fast communication and thread creation is rela-
tively cheap (A Pentium-11/450 can create and join approx. 10,000 threads per second on Linux
2.2).

e Interactive applications
Interactive applications often need to perform extensive computation. If such computations are
executed in a new thread, the main thread can process events and allow the user to cancel the
ongoing computation. User interfaces can also use multiple threads, each thread dealing with
input from a distinct group of windows.

e Natural integration with foreign code
Each Prolog thread runs in a C-thread, automatically making them cooperatélviiafe
foreign-code. In addition, any foreign thread can create its own Prolog engine for dealing with
calling Prolog from C-code.

thread_create(Goal, -Id, +Optiong
Create a new Prolog thread (and underlying C-thread) and start it by exeGuig If the
thread is created succesfully, the thread-identifier of the created thread is unifle®igtions
is a list of options. Currently defined options are:

local(K-Byteg
Set the limit to which the local stack of this thread may grow. If omited, the limit of the
calling thread is used. See also the commandline option.

global(K-Byte3
Set the limit to which the global stack of this thread may grow. If omited, the limit of the
calling thread is used. See also & commandline option.

trail(K-Bytes
Set the limit to which the trail stack of this thread may grow. If omited, the limit of the
calling thread is used. See also tfile commandline option.

argument(K-Byte3
Set the limit to which the argument stack of this thread may grow. If omited, the limit of
the calling thread is used. See also tAecommandline option.

alias(AliasNameg
Associate an ‘alias-name’ with the thread. This named may be used to refer to the thread
and remains valid until the thread is joined (¢skeiead _join/2).

SWI-Prolog 4.0 Reference Manual

3.39. MULTI-THREADING (ALPHA CODE) 111

detachedBool)
If false (default), the thread can be waited for usirthread _join/2
thread _join/2 must be called on this thread to reclaim the all resources associated
to the thread. Ifrue , the system will reclaim all associated resources automatically af-
ter the thread finishes. Please not that thread identifiers are freed for reuse after a detached
thread finishes or a normal thread has been joined.

The Goal argument iscopiedto the new Prolog engine. This implies further instantiation of
this term in either thread does not have consequences for the other thread: Prolog threads do
not share data from their stacks.

thread_self(-1d)
Get the Prolog thread identifier of the running thread. If the thread has an alias, the alias-name
is returned.

current_thread(?1d, ?Statu¥
Enumerates identifiers and status of all currently known threads. Calling
current _thread/2 does not influence any thread. See alspead _join/2 . For
threads that have an alias-name, this name is returnédl iimstead of the numerical thread
identifier. Statusis one of:

running
The thread is running. This is the initial status of a thread. Please note that threats waiting
for something are considered running too.

false
The Goal of the thread has been completed and failed.

true
The Goal of the thread has been completed and succeeded.

exited(Term)
The Goal of the thread has been terminated udimgead _exit/l with Termas argu-
ment.

exception{Term
The Goal of the thread has been terminated due to an uncaught exceptiahi@eél
andcatch/3).

thread_join(+Id, -Statug
Wait for the termination of thread with givetd. Then unify the result-status (see
thread _exit/1) of the thread withStatus After this call, Id becomes invalid and all re-
sources associated with the thread are reclaimed. Seewatemt _thread/2

A thread that has been completed withtlutead _join/2 being called on it is partly re-
claimed: the Prolog stacks are released and the C-thread is destroyed. A small data-structure
represening the exit-status of the thread is retained thrlad _join/2 is called on the
thread.

thread_exit(+Term)
Terminates the thread immediately, leaviexgted (Tern) as result-state. The Prolog stacks
and C-thread are reclaimed.

SWI-Prolog 4.0 Reference Manual

112 CHAPTER 3. BUILT-IN PREDICATES

thread_at_exit(:Goal)
Run Goal after the execution of this thread has terminated. This is to be compared to
at _halt/1 , but only for the current thread. These hooks are ran regardless of why the ex-
ecution of the thread has been completed. As these hooks are run, the return-code is already
available througlturrent _thread/2

3.39.1 Thread communication

Prolog threads can exchange data using dynamic predicates, database records, and other globally
shared data. In addition, they can send messages to each other. If a threads needs to wait for another
thread until that thread has produced some data, using only the database forces the waiting thread to
poll the database continuously. Waiting for a message suspends the thread execution until the message
has arrived in its message queue.

thread_send messagefThreadld, +Term)
PlaceTermin the message queue of the indicated thread (which can even be the message queue
of itself (seethread _self/l). Any term can be placed in a message queue, but note that
the term is copied to to receiving thread and variable-bindings are thus lost. This call returns
immediately.

thread_get messagefTern)
Examines the thread message-queue and if necessary blocks execution until a term that unifies
to Termarrives in the queue. After a term from the queue has been unified unifiedrtpthis
term is deleted from the queue and this predicate returns.

Please note that not-unifying messages remain in the queue. After the following has been
executed, thread 1 has the telnifgnu) in its queue and continues execution uskig gnat .

<thread 1>
thread _get_message(a(A)),

<thread 2>
thread_send_message(b(gnu)),
thread_send_message(a(gnat)),

See alsdhread _peek _message/l .

thread_peek messagefTerm)
Examines the thread message-queue and compares the queued terfesmuitiitil one unifies
or the end of the queue has been reached. In the first case the call succeeds (possibly instantiat-
ing Term If no term from the queue unifies this call fails.

thread_signal(+Threadld, :Goa)
Make threadrhreadldexecuteGoal at the first opportunity. In the current implementation, this
implies at the first pass through tlall-port. The predicat¢hread _signal/2 itself places
Goalinto the signalled-thread’s signal queue and returns immediately.

Signals (interrupts) do not cooperate well with the world of multi-threading, mainly because
the status of mutexes cannot be guaranteed easily. At the call-port, the Prolog virtual machine
holds no locks and therefore the asynchronous execution is safe.

SWI-Prolog 4.0 Reference Manual

3.39. MULTI-THREADING (ALPHA CODE) 113

Goal can be any valid Prolog goal, includitigrow/1 to make the receiving thread generate
an exception anttace/0 to start tracing the receiving thread.

3.39.2 Thread synchronisation

All internal Prolog operations are thread-safe. This implies two Prolog threads can operate on the
same dynamic predicate without corrupting the consistency of the predicate. This section deals with
user-leveimutexegcalledmonitorsin ADA or critical-sectionsby Microsoft). A mutex is aMUT ual
EXclusive device, which implies at most one thread bald a mutex.

Mutexes are used to realise related updates to the Prolog database. With ‘related’, we refer to
the situation where a ‘transaction’ implies two or more changes to the Prolog database. For example,
we have a predicataddress/2 , representing the address of a person and we want to change the
address by retracting the old and asserting the new address. Between these two operations the database
is invalid: this person has either no address or two addresses (depending on the assert/retract order).

Here is how to realise a correct update:

- initialization
mutex_create(addressbook).

change_address(ld, Address) :-
mutex_lock(addressbook),
retractall(address(ld, _)),
asserta(address(ld, Address)),
mutex_unlock(addressbook).

mutex_create(?MutexId
Create a mutex. iMutexldis an atom, aamedmutex is created. If it is a variable, an anony-
mous mutex reference is returned. There is no limit to the number of mutexes that can be
created.

mutex_destroy(+MutexId)
Destroy a mutex. After this callviutexld becomes invalid and further references yield an
existence _error exception.

mutex_lock(+MutexId)
Lock the mutex. Prolog mutexes aexursivemutexes: they can be locked multiple times by
the same thread. Only after unlocking it as many times as it is locked, the mutex becomes
available for locking by other threads. If another thread has locked the mutex the calling thread
is suspended until to mutex is unlocked.

If Mutexldis an atom, and there is no current mutex with that name, the mutex is created
automatically usingnutex _create/l . This implies named mutexes need not be declared
explicitly.

Please note that locking and unlocking mutexes should be paired carefully. Especially make
sure to unlock mutexes even if the protected code fails or raises an exception. For most common
cases uswith _mutex/2 , wich provides a safer way for handling prolog-level mutexes.

SWI-Prolog 4.0 Reference Manual

114 CHAPTER 3. BUILT-IN PREDICATES

mutex_trylock(+MutexId)
As mutex _lock/1 , but if the mutex is held by another thread, this predicates fails immedi-

ately.

mutex_unlock(+MutexId)
Unlock the mutex. This can only be called if the mutex is held by the calling thread. If this is
not the case, permission _error exception is raised.

mutex_unlock_all
Unlock all mutexes held by the current thread. This call is especially useful to handle thread-
termination usin@bort/0 or exceptions. See alsbread _signal/2

current_mutex(?MutexId, ?Threadld, ?Count
Enumerates all existing mutexes. If the mutex is held by some thidmeadIdis unified with
the identifier of te holding thread ar@buntwith the recursive count of the mutex. Otherwise,
Threadldis[] andCountis 0.

with _mutex(+Mutexld, :Goa)
ExecuteGoal while holdingMutexld If Goal leaves choicepointes, these are destroyed (as
in once/l). The mutex is unlocked regardless of whetkaral succeeds, fails or raises an
exception. An exception thrown b@oal is re-thrown after the mutex has been successfully
unlocked. See alsmutex _create/2

Although described in the thread-section, this predicate is also available in the single-threaded
version, where it behaves simply asce/1 .

3.39.3 Thread-support library(threadutil)

This library defines a couple of useful predicates for demonstrating and debugging multi-threaded
applications. This library is certainly not complete.

threads
Lists all current threads and their status. In addition, all ‘zombie’ threads (finished threads that
are not detached, nor waited for) are joined to reclaim their resources.

interactor
Create a new console and run the Prolog toplevel in this new console. See also

attach _console/0

attach_console
If the current thread has no console attached yet, attach one and redirect the user streams (input,
output, and error) to the new console window. The console ig@m application. For this
to work, you should be running X-windows and your xterm should knowduen .

This predicate has a couple of useful applications. One is to separate (debugging) I/O of differ-
ent threads. Another is to start debugging a thread that is running in the background. If thread
10 is running, the following sequence starts the tracer on this thread:

?- thread_signal(10, (attach_console, trace)).

SWI-Prolog 4.0 Reference Manual

3.40. USER TOPLEVEL MANIPULATION 115

3.39.4 Status of the thread implementation

It is assumed that the basic Prolog execution is thread-safe. Various problems are to be expected
though, both dead-locks as well as not-thread-safe code in builtin-predicates.

3.40 User Toplevel Manipulation

break
Recursively start a new Prolog top level. This Prolog top level has its own stacks, but shares
the heap with all break environments and the top level. Debugging is switched off on entering a
break and restored on leaving one. The break environment is terminated by typing the system’s
end-of-file character (control-D). If thé¢ toplevel = command line option is given this goal
is started instead of entering the default interactive top lgweldg/0).

abort
Abort the Prolog execution and restart the top level. If the toplevel = command line
options is given this goal is started instead of entering the default interactive top level.

There are two implementations abort/0 . The default one uses the exception mechanism
(seethrow/1), throwing the exceptiorfaborted . The other one uses the C-construct
longjmp() to discard the entire environment and rebuild a new one. Using exceptions allows
for proper recovery of predicates exploiting exceptions. Rebuilding the environment is safer if
the Prolog stacks are corrupt. Therefore the system will use the rebuild-strategy if the abort was
generated by an internal consistency check and the exception mechanism otherwise. Prolog
can be forced to use the rebuild-strategy setting the prologabag _with _exception to

false

halt
Terminate Prolog execution. Open files are closed and if the command line epgionis not
active the terminal status (see Unix stty(1)) is restored. Hooks may be registered both in Prolog
and in foreign code. Prolog hooks are registered uatndpalt/1l . halt/O is equivalent to
halt(0)

halt(+Statug
Terminate Prolog execution with given status. Status is an integer. Seeadti€o

prolog

This goal starts the default interactive top level. Queries are read from the stseaminput
See also thaistory prologflag (current _prolog _flag/2). Theprolog/0O predicate
is terminated (succeeds) by typing the end-of-file character (On most systems control-D).

The following two hooks allow for expanding queries and handling the result of a query. These
hooks are used by the toplevel variable expansion mechanism described in 86ttion

expand.query(+Query, -Expanded, +Bindings, -ExpandedBindings
Hook in moduleuser , normally not defined QueryandBindingsrepresents the query read
from the user and the names of the free variables as obtained nesidg term/3 . If this
predicate succeeds, it should biE@pandedandExpandedBinding® the query and bindings
to be executed by the toplevel. This predicate is used by the topjew@b@/0). See also
expand _answer/2 andterm _expansion/2

SWI-Prolog 4.0 Reference Manual

116 CHAPTER 3. BUILT-IN PREDICATES

expand.answer@®*Bindings, -ExpandedBindinys
Hook in moduleuser , normally not defined. Expand the result of a successfully executed
toplevel query.Bindingsis the query(Name = (Value binding list from the queryExpand-
edBindingamust be unified with the bindings the toplevel should print.

3.41 Creating a Protocol of the User Interaction

SWI-Prolog offers the possibility to log the interaction with the user on &{ikll Prolog interaction,
including warnings and tracer output, are written on the protocol file.

protocol(+File)
Start protocolling on filé=ile. If there is already a protocol file open then close it firstFilé
exists it is truncated.

protocola(+File)
Equivalent tgprotocol/l , but does not truncate théle if it exists.

noprotocol
Stop making a protocol of the user interaction. Pending output is flushed on the file.

protocolling(-File)
Succeeds if a protocol was started wittotocol/1 or protocola/l and unifiedrile with
the current protocol output file.

3.42 Debugging and Tracing Programs

This section is a reference to the debugger interaction predicates. A more use-oriented overview of
the debugger is in sectidh.

If you have installed XPCE, you can use the graphical frontend of the tracer. This frontend is
installed using the predicatpiitracer/O

trace
Start the tracettrace/0 itself cannot be seen in the tracer. Note that the Prolog toplevel treats
trace/0 special; it means ‘trace the next goal'.

tracing
Succeeds when the tracer is currently switchedtoacing/0 itself can not be seen in the
tracer.

notrace
Stop the tracemotrace/0 itself cannot be seen in the tracer.

guitracer
Installs hooks (seprolog _trace _interception/4) into the system that redirects trac-
ing information to a GUI frontend providing structured access to variable-bindings, graphical
overview of the stack and highlighting of relevant source-code.

20 similar facility was added to Edinburgh C-Prolog by Wouter Jansweijer.

SWI-Prolog 4.0 Reference Manual

3.42. DEBUGGING AND TRACING PROGRAMS 117

noguitracer
Reverts back to the textual tracer.

trace(+Pred)
Equivalent tarace(Pred, +all)

trace(+Pred, +Portg
Put a trace-point on all predicates satisfying the predicate specifidatenh Portsis a list
of porthamesdall , redo , exit , fail). The atomall refers to all ports. If the port is
preceded by a sign the trace-point is cleared for the port. If it is preceded bythe trace-
point is set.

The predicatdrace/2 activates debug mode (sdebug/0). Each time a port (of the 4-
port model) is passed that has a trace-point set the goal is printed asae¢fl0 . Unlike
trace/0 however, the execution is continued without asking for further information. Exam-

ples:
?- trace(hello). Trace all ports of hello with any arity in any mod-
ule.
?- trace(foo/2, +fail). Trace failures of foo/2 in any module.
?- trace(bar/l, -all). Stop tracing bar/1.

The predicatelebugging/0 shows all currently defined trace-points.

notrace(+Goal)
Call Goal, but suspend the debugger whik®al is executing. The current implementation cuts
the choicepoints oGoal after successful completion. Seace/l . Later implementations
may have the same semanticscali/1

debug
Start debugger. In debug mode, Prolog stops at spy- and trace-points, disables tail-recursion
optimisation and aggressive destruction of choice-points to make debugging information acces-
sible. Implemented by the Prolog flagbug .

nodebug
Stop debugger. Implementated by the prolog tlaQug . See alsalebug/0 .

debugging
Print debug status and spy points on current output stream. See also the protiabfiag

spy(+Pred)
Put a spy point on all predicates meeting the predicate specifidatazh See sectiol.4.

nospyPred)
Remove spy point from all predicates meeting the predicate specifidauaoh

nospyall
Remove all spy points from the entire program.

SWI-Prolog 4.0 Reference Manual

118 CHAPTER 3. BUILT-IN PREDICATES

leash(?Portg
Set/query leashing (ports which allow for user interactioRdrts is one of+Name -Name
?Nameor a list of these+Nameenables leashing on that pofiyamedisables it andPName
succeeds or fails according to the current setting. Recognised portsadire; redo , exit
fail andunify . The special shortharall refersto all portsfull refers to all ports except
for the unify port (default)half refers to thecall ,redo andfail port.

visible(+Ports)
Set the ports shown by the debugger. ®eesh/1 for a description of the port specification.
Default isfull

unknown(-Old, +New)
Edinburgh-prolog compatibility predicate, interfacing to the ISO prolog flaknown . Val-
ues aretrace (meaningerror) andfail . If the unknown flag is set towarning ,
unknown/2 reports the value dsace

style_check*Spegd
Set style checking optionsSpecis either+(option), - (option), ?(option) or a list of such
options. +(option) sets a style checking option{option) clears it and? (option) succeeds or
fails according to the current settingonsult/l and derivatives resets the style checking

options to their value before loading the file. If—for example—a file containing long atoms

should be loaded the user can start the file with:
:- style_check(-atom).

Currently available options are:

Name Default | Description
singleton on

read _clause/l (used byconsult/l) warns on vari-
ables only appearing once in a term (clause) which have a
name not starting with an underscore.

atom on o _
read/1 and derivatives will produce an error message on

guoted atoms or strings longer than 5 lines.
dollar off Accept dollar as a lower case character, thus avoiding the
need for quoting atoms with dollar signs. System mainte-
nance use only.

discontiguous on Warn if the clauses for a predicate are not together in|the
same source file.
string off Backward compatibility. See the prolog-flagou-

ble _quotes (current _prolog _flag/2).

3.43 Obtaining Runtime Statistics

statistics(+Key, -Valug
Unify system statistics determined By with Value The possible keys are given in the ta-
ble3.2

SWI-Prolog 4.0 Reference Manual

3.43. OBTAINING RUNTIME STATISTICS 119

agc Number of atom garbage-collections performed

agcgained Number of atoms removed

agctime Time spent in atom garbage-collections

cputime (User)cputime since Prolog was started in seconds

inferences Total number of passes via the call and redo ports since Prolog was
started.

heap Estimated total size of the heap (see secHdr®.])

heapused Bytes heap in use by Prolog.

heaplimit Maximum size of the heap (see sectidi6.])

local Allocated size of the local stack in bytes.

localused Number of bytes in use on the local stack.

locallimit Size to which the local stack is allowed to grow

global Allocated size of the global stack in bytes.

globalused Number of bytes in use on the global stack.

globallimit Size to which the global stack is allowed to grow

trail Allocated size of the trail stack in bytes.

trailused Number of bytes in use on the trail stack.

traillimit Size to which the trail stack is allowed to grow

atoms Total number of defined atoms.

functors Total number of defined name/arity pairs.

predicates Total number of predicate definitions.

modules Total number of module definitions.

codes Total amount of byte codes in all clauses.

threads MT-version: number of active threads

threadscreated | MT-version: number of created threads

threadscputime | MT-version: seconds CPU time used by finished threads

Table 3.2: Keys fostatistics/2

SWI-Prolog 4.0 Reference Manual

120 CHAPTER 3. BUILT-IN PREDICATES

statistics
Display a table of system statistics on the current output stream.

time(+Goal)
ExecuteGoal just like once/1 (i.e., leaving no choice points), but print used time, number
of logical inferences and the average numbéelips (logical inferences per second). Note that
SWI-Prolog counts the actual executed number of inferences rather than the number of passes
through the call- and redo ports of the theoretical 4-port model.

3.44 Finding Performance Bottlenecks

SWI-Prolog offers a statistical program profiler similar to Unix prof(1) for C and some other lan-
guages. A profiler is used as an aid to find performance pigs in programs. It provides information on
the time spent in the various Prolog predicates.

The profiler is based on the assumption that if we monitor the functions on the execution stack on
time intervals not correlated to the program’s execution the number of times we find a procedure on
the environment stack is a measure of the time spent in this procedure. It is implemented by calling a
procedure each time slice Prolog is active. This procedure scans the local stack and either just counts
the procedure on top of this stagiddin profiling) or all procedures on the stackufmulative
profiling). To get accurate results each procedure one is interested in should have a reasonable number
of counts. Typically a minute runtime will suffice to get a rough overview of the most expensive
procedures.

profile(+Goal, +Style, +Number
Execute Goal just like time/l . Collect profiling statistics according to style (see
profiler/2) and show the tofNumber procedures on the current output stream (see
show _profile/1). The results are kept in the database urdgdet _profiler/O or
profile/3 is called and can be displayed again watmow _profile/1 . profile/3
is the normal way to invoke the profiler. The predicates below are low-level predicates that can
be used for special cases.

show_profile(+Numbe))
Show the collected results of the profiler. Stops the profiler first to avoid interference from
show _profile/1 . It shows the topNumberpredicates according the percentaryas-time
used?!

profiler(-Old, +New)
Query or change the status of the profiler. The status is oo of plain or cumulative
plain implies the time used by children of a predicate is not added to the time of the predicate.
For statusumulative the time of children is added (except for recursive calls). Cumulative
profiling implies the stack is scanned up to the top on each time slice to find all active predicates.
This implies the overhead grows with the number of active frames on the stack. Cumulative
profiling starts debugging mode to disable tail recursion optimisation, which would otherwise
remove the necessary parent environments. Switching statuspleom to cumulative
resets the profiler. Switching to and from statfis does not reset the collected statistics, thus
allowing to suspend profiling for certain parts of the program.

Zshow_profile/1 is defined in Prolog and takes a considerable amount of memory.

SWI-Prolog 4.0 Reference Manual

3.45. MEMORY MANAGEMENT 121

reset profiler
Switches the profiler toff and clears all collected statistics.

profile_count(+Head, -Calls, -Promilagg
Obtain profile statistics of the predicate specified gad Headis an atom for predi-
cates with arity 0 or a term with the same name and arity as the predicate required (see
current _predicate/2). Callsis unified with the number of ‘calls’ and ‘redos’ while the
profiler was active Promilageis unified with the relative number of counts the predicate was
active cumulative) or on top of the stackplain). Promilageis an integer between 0 and
1000.

3.45 Memory Management

Note:limit _stack/2 andtrim _stacks/0 have no effect on machines that do not offer dynamic
stack expansion. On these machines these predicates simply succeed to improve portability.

garbagecollect
Invoke the global- and trail stack garbage collector. Normally the garbage collector is in-
voked automatically if necessary. Explicit invocation might be useful to reduce the need
for garbage collections in time critical segments of the code. After the garbage collection
trim _stacks/O is invoked to release the collected memory resources.

garbagecollectatoms
Reclaim unused atoms. Normally invoked afigc _margin (a prolog flag) atoms have been
created.

limit _stack(+Key, +Kbyte3
Limit one of the stack areas to the specified valeyis one oflocal , global or trail
The limit is an integer, expressing the desired stack limit in K bytes. If the desired limit is
smaller than the currently used value, the limit is set to the nearest legal value above the cur-
rently used value. If the desired value is larger than the maximum, the maximum is taken.
Finally, if the desired value is either O or the atomimited the limit is set to its maximum.
The maximum and initial limit is determined by the command line optitns-G and-T .

trim _stacks
Release stack memory resources that are not in use at this moment, returning them to the oper-
ating system. Trim stack is a relatively cheap call. It can be used to release memory resources in
a backtracking loop, where the iterations require typically seconds of execution time and very
different, potentially large, amounts of stack space. Such a loop should be written as follows:

loop :-
generator,
trim_stacks,
potentially _expensive_operation,
stop_condition, !.

The prolog top level loop is written this way, reclaiming memory resources after every user
query.

SWI-Prolog 4.0 Reference Manual

122 CHAPTER 3. BUILT-IN PREDICATES

stack parameter(+Stack, +Key, -Old, +New

Query/set a parameter for the runtime stacksackis one oflocal , global , trail or
argument . The table below describes tHeyValuepairs. Old is first unified with the current
value.

limit Maximum size of the stack in bytes

min _free Minimum free space at entry of foreign predicate

This predicate is currently only available on versions that use the stack-shifter to enlarge the
runtime stacks when necessary. It's definition is subject to change.

3.46 Windows DDE interface

The predicates in this section deal with MS-Windows ‘Dynamic Data Exchange’ or DDE prdtocol.
A Windows DDE conversation is a form of interprocess communication based on sending reserved
window-events between the communicating processes.

See also sectiob.4 for loading Windows DLL's into SWI-Prolog.

3.46.1 DDE client interface

The DDE client interface allows Prolog to talk to DDE server programs. We will demonstrate the use
of the DDE interface using the Windows PROGMAN (Program Manager) application:

1 ?- open_dde_conversation(progman, progman, C).

cC=0
2 ?- dde_request(0, groups, X)

--> Unifies X with description of groups

3 ?- dde_execute(0, '[CreateGroup("DDE Demo")]).
Yes

4 ?- close_dde_conversation(0).

Yes

For details on interacting witlprogman , use the SDK online manual section on the Shell DDE
interface. See also the Prolébrary(progman) , which may be used to write simple Windows
setup scripts in Prolog.

opendde_conversation¢Service, +Topic, -Handle
Open a conversation with a server supporting the given service name and topic (atoms). If
successfulHandlemay be used to send transactions to the server. If no willing server is found
this predicate fails silently.

22This interface is contributed by Don Dwiggins.

SWI-Prolog 4.0 Reference Manual

3.46. WINDOWS DDE INTERFACE 123

closedde_conversation(-Handle)
Close the conversation associated witandle All opened conversations should be closed
when they're no longer needed, although the system will close any that remain open on process
termination.

dde_request*Handle, +item, -Valug
Request a value from the serviiemis an atom that identifies the requested data \éabdewill
be a string CF. TEXT data in DDE parlance) representing that data, if the request is successful.
If unsuccessfulValuewill be unified with a term of fornerror((Reasoh) , identifying the
problem. This call uses SWI-Prolog string objects to return the value rather then atoms to
reduce the load on the atom-space. See se8tiBfor a discussion on this data type.

dde_executefHandle, +Commanyi
Request the DDE server to execute the given command-string. Succeeds if the command could
be executed and fails with error message otherwise.

dde_poke(+Handle, +Item, +Commanyd
Issue @ OKEcommand to the server on the specifitslm Command is passed as data of type
CFTEXT.

3.46.2 DDE server mode

The (autoloadlibrary(dde) defines primitives to realise simple DDE server applications in SWI-
Prolog. These features are provided as of version 2.0.6 and should be regarded prototypes. The C-part
of the DDE server can handle some more primitives, so if you need features not provided by this
interface, please studiprary(dde)

dde_register_service@-Template, +Goa)
Register a server to handle DDE request or DDE execute requests from other applications. To
register a service for a DDE requeSgmplates of the form:

+Service(+Topic, +ltem, +Value)

Serviceis the name of the DDE service provided (ligepopgman in the client example above).
Topicis either an atom, indicatinGoal only handles requests on this topic or a variable that
also appears iboal ltemandValueare variables that also appeaiGoal. Itemrepresents the
request data as a Prolog atém.

The example below registers the Prolmgrent _prolog _flag/2 predicate to be accessi-
ble from other applications. The request may be given from the same Prolog as well as from
another application.

?- dde_register_service(prolog(current_prolog_flag, F, V),
current_prolog_flag(F, V)).

?- open_dde_conversation(prolog, current_prolog_flag, Handle),
dde_request(Handle, home, Home),

ZUpto version 3.4.5 this was a list of character codes. As recent versions have atom garbage collection there is no need
for this anymore.

SWI-Prolog 4.0 Reference Manual

124 CHAPTER 3. BUILT-IN PREDICATES

close_dde_conversation(Handle).
Home = ’lusr/localllib/pl-2.0.6/

Handling DDEexecute requests is very similar. In this case the template is of the form:
+Service(+Topic, +ltem)

Passing &/alueargument is not needed as execute requests either succeed orGaidl fails,
a ‘not processed’ is passed back to the caller of the DDE request.

dde_unregister_servicefServiceg
Stop responding t&ervice If Prolog is halted, it will automatically call this on all open ser-
vices.

dde_current _service¢Service, -Topig
Find currently registered services and the topics served on them.

dde_current_connection¢Service, -Topig
Find currently open conversations.

3.47 Miscellaneous

dwim_match(+Atom1, +Atom2
Succeeds iAtom1lmatchesAtom2in ‘Do What | Mean’ sense. Bottomland Atom2may
also be integers or floats. The two atoms match if:

They are identical

They differ by one character (spy spu)

One character is inserted/deleted (deludeug)

Two characters are transposed (tractarce)

‘Sub-words’ are glued differently (existsfite existsFile= existsfile)
Two adjacent sub words are transposed (existsEilibe Exists)

dwim_match(+Atom1, +Atom2, -Differenge
Equivalent todwim_match/2 , but unifiesDifferencewith an atom identifying the the differ-
ence betweeAtomlandAtom2 The return values are (in the same order as abae)al |,
mismatched _char , inserted _char ,transposed _char , separated andtrans-
posed _word .

wildcard _match(+Pattern, +String
Succeeds iString matches the wildcard patteRattern Patternis very similar the the Unix
csh pattern matcher. The patterns are given below:

? Matches one arbitrary character.
* Matches any number of arbitrary characters.
[...] Matches one of the characters specified between the brackets.

(charl)- (char2) indicates a range.
{... } Matches any of the patterns of the comma separated list between the braces.

SWI-Prolog 4.0 Reference Manual

3.47. MISCELLANEOUS 125

Example:

?- wildcard_match(’[a-z]*.{pro,pl}[%"], 'a_hello.pl%").

Yes

gensym(Base, -Uniqug
Generate a unique atom from bd&aseand unify it withUnique Baseshould be an atom. The

first call will return (base 1, the next(base2, etc. Note that this is no warrant that the atom is
unique in the systertf:

sleep@Time)
Suspend executiofime seconds.Timeis either a floating point number or an integer. Gran-
ularity is dependent on the system’s timer granularity. A negative time causes the timer to

return immediately. On most non-realtime operating systems we can only ensure execution is
suspended foat least Timeseconds.

2BUG: | plan to supply a reajensym/2 which does give this warrant for future versions.

SWI-Prolog 4.0 Reference Manual

Using Modules

4.1 Why Using Modules?

In traditional Prolog systems the predicate space was flat. This approach is not very suitable for
the development of large applications, certainly not if these applications are developed by more than
one programmer. In many cases, the definition of a Prolog predicate requires sub-predicates that are
intended only to complete the definition of the main predicate. With a flat and global predicate space
these support predicates will be visible from the entire program.

For this reason, it is desirable that each source module has it's own predicate space. A module
consists of a declaration for it's name, ipaiblic predicatesand the predicates themselves. This
approach allow the programmer to use short (local) names for support predicates without worrying
about name conflicts with the support predicates of other modules. The module declaration also makes
explicit which predicates are meant for public usage and which for private purposes. Finally, using
the module information, cross reference programs can indicate possible problems much better.

4.2 Name-based versus Predicate-based Modules

Two approaches to realize a module system are commonly used in Prolog and other languages. The
first one is thename basednodule system. In these systems, each atom read is tagged (normally
prefixed) with the module name, with the exception of those atoms that are dpfibéd In the
second approach, each module actually implements its own predicate space.

A critical problem with using modules in Prolog is introduced by the meta-predicates that trans-
form between Prolog data and Prolog predicates. Consider the case where we write:

.- module(extend, [add_extension/3]).

add_extension(Extension, Plain, Extended) :-
maplist(extend_atom(Extension), Plain, Extended).

extend_atom(Extension, Plain, Extended) :-
concat(Plain, Extension, Extended).

In this case we would like maplist to call exteatbm/3 in the modulextend . A name based
module system will do this correctly. It will tag the atartend _atom with the module and maplist

will use this to construct the tagged term exteatdm/3. A name based module however, will not only

tag the atoms that will eventually be used to refer to a predicatealbatoms that are not declared
public. So, with a name based module system also data is local to the module. This introduces another
serious problem:

SWI-Prolog 4.0 Reference Manual

4.3. DEFINING A MODULE 127

.- module(action, [action/3]).

action(Object, sleep, Arg) :-
action(Object, awake, Arg) :-

.- module(process, [awake_process/2)).

awake_process(Process, Arg) :-
action(Process, awake, Arg).

This code uses a simple object-oriented implementation technique were atoms are used as method
selectors. Using a name based module system, this code will not work, unless we declare the selectors
public atoms in all modules that use them. Predicate based module systems do not require particular
precautions for handling this case.

It appears we have to choose either to have local data, or to have trouble with meta-predicates.
Probably it is best to choose for the predicate based approach as novice users will not often write
generic meta-predicates that have to be used across multiple modules, but are likely to write programs
that pass data around across modules. Experienced Prolog programmers should be able to deal with
the complexities of meta-predicates in a predicate based module system.

4.3 Defining a Module

Modules normally are created by loadingnadule file A module file is a file holding anodule/2

directive as its first term. Theodule/2 directive declares the name and the public (i.e., externally
visible) predicates of the module. The rest of the file is loaded into the module. Below is an example
of a module file, definingeverse/2

.- module(reverse, [reverse/2]).

reverse(Listl, List2) :-
rev(Listl, [], List2).

rev([], List, List).
rev([Head|List1], List2, List3) :-
rev(Listl, [Head|List2], List3).

4.4 Importing Predicates into a Module

As explained before, in the predicate based approach adapted by SWI-Prolog, each module has it's
own predicate space. In SWI-Prolog, a module initially is completely empty. Predicates can be added
to a module by loading a module file as demonstrated in the previous section, using assert or by
importingthem from another module.

Two mechanisms for importing predicates explicitly from another module exist. The
use _module/[1,2] predicates load a module file and import (part of the) public predicates of
the file. Theimport/1 predicate imports any predicate from any module.

SWI-Prolog 4.0 Reference Manual

128 CHAPTER 4. USING MODULES

usemodule(+File)
Load the file(s) specified witRile just like ensure _loaded/1 . The files should all be mod-
ule files. All exported predicates from the loaded files are imported into the context module. The
difference between this predicate agnksure _loaded/1 becomes apparent if the file is al-
ready loaded into another module. In this cessure _loaded/1 does nothing; usenodule
will import all public predicates of the module into the current context module.

usemodule(+File, +ImportList)
Load the file specified witlFile (only one file is accepted)File should be a module file.
ImportListis a list of name/arity pairs specifying the predicates that should be imported from
the loaded module. If a predicate is specified that is not exported from the loaded module a
warning will be printed. The predicate will nevertheless be imported to simplify debugging.

import(+Head)
Import predicatéHeadinto the current context moduléleadshould specify the source module
using the(module:(term) construct. Note that predicates are normally imported using one of
the directivesise _module/[1,2] . import/1 is meant for handling imports into dynami-
cally created modules.

It would be rather inconvenient to have to import each predicate referred to by the module, includ-
ing the system predicates. For this reason each module is assigie¢aut module All predicates
in the default module are available without extra declarations. Their definition however can be over-
ruled in the local module. This schedule is implemented by the exception handling mechanism of
SWI-Prolog: if an undefined predicate exception is raised for a predicate in some module, the excep-
tion handler first tries to import the predicate from the module’s default module. On success, normal
execution is resumed.

441 Reserved Modules

SWI-Prolog contains two special modules. The first one is the maystem . This module contains
all built-in predicates described in this manual. Modsystem has no default module assigned to
it. The second special module is the moduger . This module forms the initial working space of
the user. Initially it is empty. The default module of modulger is system , making all built-in
predicate definitions available as defaults. Built-in predicates thus can be overruled by defining them
in moduleuser before they are used.

All other modules default to modulgser . This implies they can use all predicates imported into
user without explicitly importing them.

4.5 Using the Module System

The current structure of the module system has been designed with some specific organisations for
large programs in mind. Many large programs define a basic library layer on top of which the actual
program itself is defined. The modulser , acting as the default module for all other modules of

the program can be used to distribute these definitions over all program module without introducing
the need to import this common layer each time explicitly. It can also be used to redefine built-in
predicates if this is required to maintain compatibility to some other Prolog implementation. Typically,
the loadfile of a large application looks like this:

SWI-Prolog 4.0 Reference Manual

4.5. USING THE MODULE SYSTEM 129

.- use_module(compatibility). % load XYZ prolog compatibility

;- use_module(% load generic parts
[error % errors and warnings
, goodies % general goodies (li-
brary extensions)
, debug % application specific debugging
, Vvirtual_machine % virtual machine of application

- % more generic stuff

D

.- ensure_loaded(
[... % the application itself

D

The ‘usemodule’ declarations will import the public predicates from the generic modules into the
user module. The ‘ensuréaded’ directive loads the modules that constitute the actual application.
It is assumed these modules import predicates from each otherusgngiodule/[1,2] as far as
necessary.

In combination with the object-oriented schema described below it is possible to define a neat
modular architecture. The generic code defines general utilities and the message passing predicates
(invoke/3 in the example below). The application modules define classes that communicate using the
message passing predicates.

4.5.1 Object Oriented Programming

Another typical way to use the module system is for defining classes within an object oriented
paradigm. The class structure and the methods of a class can be defined in a module and the explicit
module-boundary overruling describes in sectiof.2can by used by the message passing code to
invoke the behaviour. An outline of this mechanism is given below.

% Define class point

.- module(point, []). % class point, no exports

% name type, default access
% value
variable(x, integer, 0, both).
variable(y, integer, 0, both).

% method name predicate name arguments
behaviour(mirror, mirror, .

mirror(P) :-

fetch(P, x, X),

SWI-Prolog 4.0 Reference Manual

130 CHAPTER 4. USING MODULES

fetch(P, vy, Y),
store(P, vy, X),
store(P, x, Y).

The predicates fetch/3 and store/3 are predicates that change instance variables of instances. The
figure below indicates how message passing can easily be implemented:

% invoke(+Instance, +Selector, ?ArgumentList)
% send a message to an instance

invoke(l, S, Args) :-
class_of instance(l, Class),
Class:behaviour(S, P, ArgCheck), !,
convert_arguments(ArgCheck, Args, ConvArgs),
Goal =.. [P|ConvArgs],
Class:Goal.

The constructModulé:(Goal) explicitly callsGoalin moduleModule It is discussed in more detail
in section3.8.

4.6 Meta-Predicates in Modules

As indicated in the introduction, the problem with a predicate based module system lies in the dif-
ficulty to find the correct predicate from a Prolog term. The predicate ‘solution(Solution)’ can exist
in more than one module, but ‘assert(solution(4))’ in some module is supposed to refer to the correct
version of solution/1.

Various approaches are possible to solve this problem. One is to add an extra argument to all
predicates (e.g. ‘assert(Module, Term)’). Another is to tag the term somehow to indicate which mod-
ule is desired (e.g. ‘assert(Module:Term)"). Both approaches are not very attractive as they make the
user responsible for choosing the correct module, inviting unclear programming by asserting in other
modules. The predicatssert/1 s supposed to assert in the module it is called from and should
do so without being told explicitly. For this reason, the notimmtext moduléas been introduced.

4.6.1 Definition and Context Module

Each predicate of the program is assigned a module, calleddfigition module The definition
module of a predicate is always the module in which the predicate was originally defined. Each active
goal in the Prolog system hagantext modul@assigned to it.

The context module is used to find predicates from a Prolog term. By default, this module is the
definition module of the predicate running the goal. For meta-predicates however, this is the context
module of the goal that invoked them. We call thisduletransparentin SWI-Prolog. In the ‘using
maplist’ example above, the predicabaplist/3 is declared moduléransparent. This implies the
context module remainsxtend , the context module of adextension/3. This waynaplist/3
can decide to call extenatom in moduleextend rather than in it's own definition module.

All built-in predicates that refer to predicates via a Prolog term are declared mwedokparent.
Below is the code defining maplist.

SWI-Prolog 4.0 Reference Manual

4.7. DYNAMIC MODULES 131

.- module(maplist, maplist/3).

.- module_transparent maplist/3.

% maplist(+Goal, +Listl, 7?List2)

% True if Goal can successfully be applied to all succes-
sive pairs

% of elements of Listl and List2.

maplist(_, [], [I)-

maplist(Goal, [Elem1|Taill], [Elem2|Tail2]) :-
apply(Goal, [Eleml, Elem2]),
maplist(Goal, Taill, Tail2).

4.6.2 Overruling Module Boundaries

The mechanism above is sufficient to create an acceptable module system. There are however cases
in which we would like to be able to overrule this schema and explicitly call a predicate in some
module or assert explicitly in some module. The first is useful to invoke goals in some module from
the user’s toplevel or to implement a object-oriented system (see above). The latter is useful to create
and modifydynamic moduleésee sectiod.7).

For this purpose, the reserved tevgh has been introduced. All built-in predicates that transform
a term into a predicate reference will check whether this term is of the faviodule:(Term)’. If so,
the predicate is searched forfModuleinstead of the goal’s context module. Theperator may be
nested, in which case the inner-most module is used.

The special calling constru¢vodule: (Goal) pretendssoalis called fromModuleinstead of the
context module. Examples:

?- assert(world:done). % asserts done/0 into module world
?- world:assert(done). % the same
?- world:done. % calls done/0 in module world

4.7 Dynamic Modules

So far, we discussed modules that were created by loading a module-file. These modules have been
introduced on facilitate the development of large applications. The modules are fully defined at load-
time of the application and normally will not change during execution. Having the notion of a set of
predicates as a self-contained world can be attractive for other purposes as well. For example, assume
an application that can reason about multiple worlds. It is attractive to store the data of a particular
world in a module, so we extract information from a world simply by invoking goals in this world.

Dynamic modules can easily be created. Any built-in predicate that tries to locate a predicate in a
specific module will create this module as a side-effect if it did not yet exist. Example:

?- assert(world_a:consistent),
world_a:unknown(_, fail).

SWI-Prolog 4.0 Reference Manual

132 CHAPTER 4. USING MODULES

These calls create a module called ‘waddand make the call ‘worlé:consistent’ succeed. Unde-
fined predicates will not start the tracer or autoloader for this moduleufde®own/2).

Import and export from dynamically created world is arranged via the predicapest/1 and
export/1

?- world_b:export(solve(_,)). % exports solve/2 from world_b
?- world_c:import(world_b:solve(_,_)). % and import it to world_c

4.8 Module Handling Predicates

This section gives the predicate definitions for the remaining built-in predicates that handle modules.

:- module(+Module, +PublicLis)
This directive can only be used as the first term of a source file. It declares the file to be a
module file definingModuleand exporting the predicates BfiblicList PublicListis a list of
name/arity pairs.

module_transparent +Preds
Predsis a comma separated list of name/arity pairs (limamic/1). Each goal associated
with a transparent declared predicate will inherit toatext modulérom its parent goal.

meta predicate +Heads
This predicate is defined in libramgintus) and provides a partial emulation of the Quintus
predicate. See sectign9.1for details.

current_module(-Module
Generates all currently known modules.

current_module(?Module, ?Filg
Is true if File is the file from whichModulewas loadedFile is the internal canonical filename.
See als®ource _file/[1,2]

context module(-Modulg
Unify Module with the context module of the current goatontext _module/l itself is

transparent.

export(+Head)
Add a predicate to the public list of the context module. This implies the predicate will be
imported into another module if this module is imported witte _-module/[1,2] . Note

that predicates are normally exported using the directieeule/2 . export/1 is meant to
handle export from dynamically created modules.

export_list(+Module, ?Export¥
Unifies Exports with a list of terms. Each term has the name and arity of a pub-
lic predicate ofModule The order of the terms irExportsis not defined. See also
predicate _property/2

SWI-Prolog 4.0 Reference Manual

4.9. COMPATIBILITY OF THE MODULE SYSTEM 133

default_module(+Module, -Defaul}
Succesively unifiePefault with the module names from which a call Module attempts to
use the definition. For the moduleser , this will generatauser andsystem . For any other
module, this will generate the module itself, followedumser andsystem .

module(+Module)
The callmodule(Module) may be used to switch the default working module for the inter-
active toplevel (seprolog/0). This may be used to when debugging a module. The example
below lists the clauses of filef_label/2 in the moduléex .

1 ?- module(tex).

Yes
tex: 2 ?- listing(file_of label/2).

4.9 Compatibility of the Module System

The principles behind the module system of SWI-Prolog differ in a number of aspects from the Quin-
tus Prolog module system.

e The SWI-Prolog module system allows the user to redefine system predicates.

e All predicates that are available in tlsystem anduser modules are visible in all other
modules as well.

e Quintus has the meta predicate/l
module _transparent/1 declaration.

declaration were SWI-Prolog has the

The meta _predicate/1 declaration causes the compiler to tag arguments that pass module
sensitive information with the module using th2 operator. This approach has some disadvantages:

e Changing a metpredicate declaration implies all predicatssling the predicate need to be
reloaded. This can cause serious consistency problems.

¢ It does not help for dynamically defined predicates calling module sensitive predicates.
o It slows down the compiler (at least in the SWI-Prolog architecture).

e At least within the SWI-Prolog architecture the run-time overhead is larger than the overhead
introduced by the transparent mechanism.

Unfortunately the transparent predicate approach also has some disadvantages. If a predicate
A passes module sensitive information to a predidatpassing the same information to a module
sensitive system predicate bothand B should be declared transparent. Using the Quintus approach
only A needs to be treated special (i.e., declared witiia _predicate/1)'. A second problem
arises if the body of a transparent predicate uses module sensitive predicates for which it wants to refer
to its own module. Suppose we want to deffimalall/3 usingassert/l andretract/1 2.
The example in figurd.1 gives the solution.

! Although this would make it impossible to call directly.
>The system version usescordz/2 andrecorded/3

SWI-Prolog 4.0 Reference Manual

134 CHAPTER 4. USING MODULES

.- module(findall, [findall/3]).

:- dynamic
solution/1.

.- module_transparent
findall/3,
store/2.

findall(Var, Goal, Bag) :-
assert(findall:solution('$mark’)),
store(Var, Goal),
collect(Bag).

store(Var, Goal) :-
Goal, % refers to context module of
% caller of findall/3
assert(findall:solution(Var)),
fail.

store(_,).

collect(Bag) :-

Figure 4.1:findall/3 using modules

SWI-Prolog 4.0 Reference Manual

4.9. COMPATIBILITY OF THE MODULE SYSTEM 135

4.9.1 Emulatingmeta _predicate/1

The Quintugneta _predicate/1 directive can in many cases be replaced by the transparent dec-
laration. Below is the definition aheta _predicate/1 as available from libraryfuintus).

- op(1150, fx, (meta_predicate)).

meta_predicate((Head, More)) :- !,
meta_predicatel(Head),
meta_predicate(More).

meta_predicate(Head) :-
meta_predicatel(Head).

meta_predicatel(Head) :-
Head =.. [Name|Arguments],
member(Arg, Arguments),
module_expansion_argument(Arg), !,
functor(Head, Name, Arity),
module_transparent(Name/Arity).

meta_predicatel(). % just a mode declaration

module_expansion_argument(;).
module_expansion_argument(N) :- integer(N).

The discussion above about the problems with the transparent mechanism show the two cases in which
this simple transformation does not work.

SWI-Prolog 4.0 Reference Manual

Foreign Language Interface

SWI-Prolog offers a powerful interface to €¢ 1 The main design objectives
of the foreign language interface are flexibility and performance. A foreign predicate is a C-function
that has the same number of arguments as the predicate represented. C-functions are provided to
analyse the passed terms, convert them to basic C-types as well as to instantiate arguments using
unification. Non-deterministic foreign predicates are supported, providing the foreign function with a
handle to control backtracking.

C can call Prolog predicates, providing both an query interface and an interface to extract multiple
solutions from an non-deterministic Prolog predicate. There is no limit to the nesting of Prolog calling
C, calling Prolog, etc. Itis also possible to write the ‘main’ in C and use Prolog as an embedded logical
engine.

5.1 Overview of the Interface

A special include file calle@WI-Prolog.h should be included with each C-source file that is to be
loaded via the foreign interface. The installation process installs this file in the diréottuge in

the SWI-Prolog home directorw{ current _prolog _flag(home, Home).). This C-header

file defines various data types, macros and functions that can be used to communicate with SWI-
Prolog. Functions and macros can be divided into the following categories:

e Analysing Prolog terms

e Constructing new terms

e Unifying terms

e Returning control information to Prolog

e Reqgistering foreign predicates with Prolog
e Calling Prolog from C

e Recorded database interactions

e Global actions on Prolog (halt, break, abort, etc.)

5.2 Linking Foreign Modules
Foreign modules may be linked to Prolog in three ways. Ustagjc linking the extensions, a small

description file and the basic SWI-Prolog object file are linked together to form a new executable.
Usingdynamic linking the extensions are linked to a shared librasp (file on most Unix systems)

SWI-Prolog 4.0 Reference Manual

5.3. DYNAMIC LINKING OF SHARED LIBRARIES 137

or dynamic-link library (DLL file on Microsoft platforms) and loaded into the the running Prolog
process..

5.2.1 What linking is provided?

The static linking schema can be used on all versions of SWI-Prolog. Whether or not dy-
namic linking is supported can be deduced from the prolog-fipgn _shared _object (see
current _prolog _flag/2). If this prolog-flag yields trueppen _shared _object/2 and re-
lated predicates are defined. See seciidrior a suitable high-level interface to these predicates.

5.2.2 What kind of loading should I be using?

All described approaches have their advantages and disadvantages. Static linking is portable and
allows for debugging on all platforms. It is relatively cumbersome and the libraries you need to
pass to the linker may vary from system to system, though the utility progtim described in
section5.7 often hides these problems from the user.

Loading shared objects (DLL files on Windows) provides sharing and protection and is
generally the best choice. If a saved-state is created ugsaye _program/[1,2] , an
initialization/1 directive may be used to load the appropriate library at startup.

Note that the definition of the foreign predicates is the same, regardless of the linking type used.

5.3 Dynamic Linking of shared libraries

The interface defined in this section allows the user to load shared libres@esfijes on most Unix
systems,dll files on Windows). This interface is portable to Windows as well as to Unix machines
providingdlopen(2) (Solaris, Linux, FreeBSD, Irix and many more)sil _open(2) (HP/UX).

It is advised to use the predicates from sectiohin your application.

openshared.object(+File, -Handlg)
File is the name of aso file (see your C programmers documentation on how to create a
.so file). This file is attached to the current process &tahdleis unified with a handle to
the shared object. Equivalentopen _shared _object(File, [global], Handle)
See alsdoad _foreign _library/[1,2]

On errors, an exceptioghared _object (Action, Messageis raised. Messagds the return
value fromdlerror()

openshared.object(+File, +Options, -Handl@
Asopen _shared _object/2 , but allows for additional flags to be pass€ptionsis a list of
atoms.now implies the symbols are resolved immediately rather than lazy (defgldt)al
implies symbols of the loaded object are visible while loading other shared objects (by default
they are local). Note that these flags may not be supported by your operating system. Check
the documentation of dlopen() or equivalent on your operating system. Unsupported flags are
silently ignored.

1The system also contains code to laadfiles directly for some operating systems, notably Unix systems using the
BSDa.out executable format. As the number of Unix platforms supporting this gets quickly smaller and this interface is
difficult to port and slow, it is no longer described in this manual. The best alternatively would be to use the dld package on
machines do not have shared libraries

SWI-Prolog 4.0 Reference Manual

138 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

closeshared object(+Handle)
Detach the shared object identified lHgndle

call_shared object function(+Handle, +Function
Call the named function in the loaded shared library. The function is called without arguments
and the return-value is ignored. Normally this function installs foreign language predicates
using calls taPL _register _foreign()

5.4 Using the library shlib for .DLL and.so files

This section discusses the functionality of the (autoload) libshhp.pl , providing an interface to
shared libraries. This library can only be used if the prolog-fipgn _shared _object is enabled.

load_foreign_library(+Lib, +Entry)
Search for the given foreign library and link it to the current SWI-Prolog instance. The library
may be specified with or without the extension. Fiaktsolute _file _name/3 is used to lo-
cate the file. If this succeeds, the full path is passed to the low-level function to open the library.
Otherwise, the plain library name is passed, exploiting the operating-system defined search
mechanism for the shared library. Tfie _search _path/2 alias mechanism defines the
aliasforeign , which refers to the directorigplhome/lib/ (arch) and(plhome/lib , in
this order.

If the library can be loaded, the function calledtry will be called without arguments. The
return value of the function is ignored.

TheEntry function will normally callPL_register _foreign() to declare functions in the
library as foreign predicates.

load_foreign_library(+Lib)

Equivalent tdoad _foreign _library/2 . For the entry-point, this function first identifies
the ‘base-name’ of the library, which is defined to be the file-name with path nor extension.
It will then try the entry-pointinstall- (base. On failure it will try to function install().

Otherwise no install function will be called.

unload_foreign_library(+Lib)
If the foreign library defines the function uninstdbbase() or uninstall(), this function will be
called without arguments and its return value is ignored. Nabalish/2 is used to remove
all known foreign predicates defined in the library. Finally the library itself is detached from
the process.

current _foreign_library(-Lib, -Predicate¥
Query the currently loaded foreign libraries and their predicate$redicatesis a
list with elements of the formModule:Head indicating the predicates installed with
PL_register _foreign() when the entry-point of the library was called.

Figure5.1 connects a Windows message-box using a foreign function. This example was tested
using Windows NT and Microsoft Visual C++ 2.0.

SWI-Prolog 4.0 Reference Manual

5.4. USING THE LIBRARY SHLIB FOR .DLL AND .SO FILES 139

#include <windows.h>
#include <SWI-Prolog.h>

static foreign_t
pl_say hello(term_t to)
{ char *a;

if (PL_get _atom_chars(to, &a))
{ MessageBox(NULL, a, "DLL test", MB_OK|MB_TASKMODAL);

PL_succeed;

}

PL_fail;
}

install_t

install()

{ PL_register_foreign("say_hello", 1, pl_say_hello, 0);
}

Figure 5.1: MessageBox() example in Windows NT

5.4.1 Static Linking

Below is an outline of the files structure required for statically linking SWI-Prolog with foreign ex-
tensions\dots/pl refers to the SWI-Prolog home directory (segrent _prolog _flag/2).
(arch) refers to the architecture identifier that may be obtained usingent _prolog _flag/2

.../pl/runtime/ (arch)/libpl.a SWI-Library
\Idots/pl/include/SWI-Prolog.h Include file
\Idots/pl/include/SWI-Stream.h Stream 1/O include file
\Idots/pl/include/SWI-Exports Export declarations (AIX only)
\Idots/pl/include/stub.c Extension stub

The definition of the foreign predicates is the same as for dynamic linking. Unlike with dynamic
linking however, there is no initialisation function. Instead, the\fdets/pl/include/stub.
¢ may be copied to your project and modified to define the foreign extensions. Below is stub.c,
modified to link the lowercase example described later in this chapter:

/* Copyright (c) 1991 Jan Wielemaker. All rights reserved.
jan@swi.psy.uva.nl

Purpose: Skeleton for extensions
*/

#include <stdio.h>

SWI-Prolog 4.0 Reference Manual

140 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

#include <SWiI-Prolog.h>
extern foreign_t pl_lowercase(term, term);

PL_extension predicates[] =

{
{ "name", arity, function, PL_FA_<flags> },/
{ "lowercase", 2 pl_lowercase, 0 },
{ NULL, 0, NULL, 0} [* terminat-
ing line */
h
int

main(int argc, char **argv)
{ PL_reqister_extensions(predicates);

if ('PL_initialise(argc, argv))
PL_halt(1);

PL_install_readline(); [* delete if not re-
quired */

PL_halt(PL_toplevel() ? 0 : 1);
}

Now, a new executable may be created by compiling this file and linking it to libpl.a from the runtime
directory and the libraries required by both the extensions and the SWI-Prolog kernel. This may be
done by hand, or using th@ld utility described in secrefplid.

5.5 Interface Data types

5.5.1 Typeterm _t : areference to a Prolog term

The principal data-type iterm _t . Typeterm _t is what Quintus callQPterm _ref . This name
indicates better what the type represents: it adlefor a term rather than the term itself. Terms

can only be represented and manipulated using this type, as this is the only safe way to ensure the
Prolog kernel is aware of all terms referenced by foreign code and thus allows the kernel to perform
garbage-collection and/or stack-shifts while foreign code is active, for example during a callback from
C.

A term reference is a C unsigned long, representing the offset of a variable on the
Prolog environment-stack. A foreign function is passed term references for the predicate-
arguments, one for each argument. If references for intermediate results are needed,
such references may be created usiR§_new_term _ref() or PL_new_term _refs()

These references normally live till the foreign function returns control back to Pro-
log. Their scope can be explicitly limited usindg’L_open foreign _frame() and

SWI-Prolog 4.0 Reference Manual

5.5. INTERFACE DATA TYPES 141

PL_close _foreign _frame() /PL_discard _foreign _frame()

A term_t always refers to a valid Prolog term (variable, atom, integer, float or compound term). A
term lives either until backtracking takes us back to a point before the term was created, the garbage
collector has collected the term or the term was created after @apen _foreign _frame() and
PL_discard _foreign _frame() has been called.

The foreign-interface functions can eitherad, unify or write to term-references. In the this
document we use the following notation for arguments of type term

term t +t Accessed in read-mode. The '+’ indicates the argument is
‘input’.

term _t -t Accessed in write-mode.

term t ?t Accessed in unify-mode.

Term references are obtained in any of the following ways.

e Passed as argument
The C-functions implementing foreign predicates are passed their arguments as term-references.
These references may be read or unified. Writing to these variables causes undefined behaviour.

e Created byPL_new_term _ref()
A term created byPL_new_term _ref() is normally used to build temporary terms or be
written by one of the interface functions. For exam@e, get _arg() writes a reference to
the term-argument in its last argument.

e Created byPL_new_term _refs(intn)
This function returns a set of term refs with the same characteristies_agw_term _ref()
SeePL _open _query()

e Created byPL _copy _term _ref(termtt)
Creates a new term-reference to the same term as the argument. The term may be written to.
See figures.3.

Term-references can safely be copied to other C-variables of type téuhall copies will always
refer to the same term.

term _t PL_new._term_ref()
Return a fresh reference to a term. The reference is allocated doctidestack. Allocating a
term-reference may trigger a stack-shift on machines that cannot use sparse-memory manage-
ment for allocation the Prolog stacks. The returned reference describes a variable.

term _t PL_new._term_refs(int n)
Returnn new term references. The first term-reference is returned. The others dre + 2,
etc. There are two reasons for using this functidh.open _query() expects the arguments
as a set of consecutive term references\arg time-critical code requiring a number of term-
references can be written as:

pl_mypredicate(term_t a0, term_t al)
{ term_t t0O = PL_new_term_refs(2);
term_t t1 = tO+1;

SWI-Prolog 4.0 Reference Manual

142 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

term _t PL_copy.term_ref(term.t from)
Create a new term reference and make it point initially to the same tefirmnasThis function
is commonly used to copy a predicate argument to a term reference that may be written.

void PL _resetterm _refs(term.t after)
Destroy all term references that have been created atr includingafter itself. Any refer-
ence to the invalidated term references after this call results in undefined behaviour.

Note that returning from the foreign context to Prolog will reclaim all references used in the
foreign context. This call is only necessary if references are created inside a loop that never exits
back to Prolog. See aldeL_open _foreign _frame() , PL_close _foreign _frame()
andPL_discard _foreign _frame()

Interaction with the garbage collector and stack-shifter

Prolog implements two mechanisms for avoiding stack overflow: garbage collection and stack ex-
pansion. On machines that allow for it, Prolog will use virtual memory management to detect stack
overflow and expand the runtime stacks. On other machines Prolog will reallocate the stacks and up-
date all pointers to them. To do so, Prolog needs to know which data is referenced by C-code. As all
Prolog data known by C is referenced through term refereriee® (_t), Prolog has all information
necessary to perform its memory management without special precautions from the C-programmer.

5.5.2 Other foreign interface types

atom_t An atom in Prologs internal representation. Atoms are pointers to an opaque structure. They
are a unique representation for represented text, which implies thatAatepresents the same
text as atomB if-and-only-if A and B are the same pointer.

Atoms are the central representation for textual constants in Prolog The transformation of C a
character string to an atom implies a hash-table lookup. If the same atom is needed often, it is
advised to store its reference in a global variable to avoid repeated lookup.

functor _t A functor is the internal representation of a name/arity pair. They are used to find the name
and arity of a compound term as well as to construct new compound terms. Like atoms they
live for the whole Prolog session and are unique.

predicate.t Handle to a Prolog predicate. Predicate handles live forever (although they can loose
their definition).

gid_t Query Identifier. Used blL_open _query() /PL_next _solution() /PL_close _query()
to handle backtracking from C.

fid_t Frame Identifier. Used blyL_open _foreign _frame() /PL_close _foreign _frame()

module_.t A module is a unique handle to a Prolog module. Modules are used only to call predicates
in a specific module.

SWI-Prolog 4.0 Reference Manual

5.6. THE FOREIGN INCLUDE FILE 143

foreign_t Return type for a C-function implementing a Prolog predicate.

control_t Passed as additional argument to non-deterministic foreign functions. Sesrf?l() and
PL _foreign.context*().

install_t Type for the install() and uninstall() functions of shared or dynamic link libraries. See se-
crefshlib.

5.6 The Foreign Include File

5.6.1 Argument Passing and Control

If Prolog encounters a foreign predicate at run time it will call a function specified in the predicate
definition of the foreign predicate. The argumehts. ., (arity) pass the Prolog arguments to the goal
as Prolog terms. Foreign functions should be declared of figyegn _t . Deterministic foreign
functions have two alternatives to return control back to Prolog:

void PL _succeed()
Succeed deterministically. Péucceed is defined asturn TRUE .

void PL _fail()
Fail and start Prolog backtracking. Rail is defined ageturn FALSE

Non-deterministic Foreign Predicates

By default foreign predicates are deterministic. Using fiteFA NONDETERMINISTICattribute
(seePL_register _foreign()) itis possible to register a predicate as a non-deterministic predi-
cate. Writing non-deterministic foreign predicates is slightly more complicated as the foreign function
needs context information for generating the next solution. Note that the same foreign function should
be prepared to be simultaneously active in more than one goal. Suppose the matoibakbelow. n/2

is a non-deterministic foreign predicate, backtracking over all natural numbers lower than the first ar-
gument. Now consider the following predicate:

quotient_below_n(Q, N) :-
natural_number_below_n(N, N1),
natural_number_below_n(N, N2),
Q == N1/ N2, .

In this predicate the function naturaimberbelow.n/2 simultaneously generates solutions for both
its invocations.
Non-deterministic foreign functions should be prepared to handle three different calls from Prolog:

e Initial call (PL_FIRST _CALL)
Prolog has just created a frame for the foreign function and asks it to produce the first answer.

e Redo call PL_.REDQ
The previous invocation of the foreign function associated with the current goal indicated it was
possible to backtrack. The foreign function should produce the next solution.

SWI-Prolog 4.0 Reference Manual

144 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

e Terminate call PL.CUTTED
The choice point left by the foreign function has been destroyed by a cut. The foreign function
is given the opportunity to clean the environment.

Both the context information and the type of call is provided by an argument of type
control _t appended to the argument list for deterministic foreign functions. The macro
PL_foreign _control() extracts the type of call from the control argument. The foreign func-
tion can pass a context handle using Bieretry*() macros and extract the handle from the extra
argument using theL _foreign _context*() macro.

void PL _retry(long)
The foreign function succeeds while leaving a choice point. On backtracking over this goal the
foreign function will be called again, but the control argument now indicates it is a ‘Redo’ call
and the macrd’L_foreign _context() will return the handle passed VRL _retry()
This handle is a 30 bits signed value (two bits are used for status indication).

void PL _retry _address{oid *)
As PL_retry() , but ensures an address as returned by malloc() is correctly recovered by
PL_foreign _context _address()

int PL _foreign_control(controlt)
Extracts the type of call from the control argument. The return values are described above. Note
that the function should be prepared to handleRheCUTTEDcase and should be aware that
the other arguments are not valid in this case.

long PL _foreign_context(controlt)
Extracts the context from the context argument. In the call type i IRST _CALL the context
value is OL. Otherwise it is the value returned by the Ristretry() ~ associated with this goal
(both if the call type iPL_REDCasPL_CUTTED.

void * PL _foreign_context addressgontroLt)
Extracts an address as passed irPhyretry _address()

Note: If a non-deterministic foreign function returns using 8icceed or Plfail, Prolog assumes
the foreign function has cleaned its environmeND call with control argumenPL_CUTTEDwill
follow.

The code of figur&.2 shows a skeleton for a non-deterministic foreign predicate definition.

5.6.2 Atoms and functors

The following functions provide for communication using atoms and functors.

atom _t PL_new_atom(const char %
Return an atom handle for the given C-string. This function always succeeds. The returned
handle is valid as long as the atom is referenced (see sé&ctoi).

const char* PL_atom_chars(atomt atom)
Return a C-string for the text represented by the given atom. The returned text will not be
changed by Prolog. It is not allowed to modify the contents, not even ‘temporary’ as the string
may reside in read-only memory.

SWI-Prolog 4.0 Reference Manual

5.6. THE FOREIGN INCLUDE FILE 145

typedef struct /* define a context structure */

{..

} context;

foreign_t
my_function(term_t a0, term_t al, foreign_t handle)
{ struct context * ctxt;

switch(PL_foreign_control(handle))
{ case PL_FIRST_CALL:
ctxt = malloc(sizeof(struct context));

PL_retry_address(ctxt);
case PL_REDO:
ctxt = PL_foreign_context_address(handle);

PL_retry address(ctxt);
case PL_CUTTED:

free(ctxt);

PL succeed;

Figure 5.2: Skeleton for non-deterministic foreign functions

SWI-Prolog 4.0 Reference Manual

146 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

functor _t PL_new_functor(atomt name, int arity
Returns dunctor identifier a handle for the namef/arity pair. The returned handle is valid for
the entire Prolog session.

atom _t PL_functor _name(functort f)
Return an atom representing the name of the given functor.

int PL _functor _arity (functor. f)
Return the arity of the given functor.

Atoms and atom-garbage collection

With the introduction of atom-garbage collection in version 3.3.0, atoms no longer have live as long
as the process. Instead, their lifetime is guaranteed only as long as they are referenced. In the single-
threaded version, atom garbage collections are only invoked ataiheort. In the multi-threaded
version (see sectioB 39 they appear asynchronously, except for the invoking thread.

For dealing with atom garbage collection, two additional functions are provided:

void PL _register_atom(atomt aton)
Increment the reference count of the atom by oRe.new_atom() performs this automati-
cally, returning an atom with a reference count of at least’one.

void PL _unregister_atom(atomt atom)
Decrement the reference count of the atom. If the reference-count drops below zero, an assertion
error is raised.

Please note that the following two calls are different with respect to atom garbage collection:

PL_unify_atom_chars(t, "text™;
PL_unify_atom(t, PL_new_atom("text"));

The latter increments the reference count of the aixh , which effectively ensures the atom will
never be collected. It is advised to use thettars() or *nchars() functions whenever applicable.

5.6.3 Analysing Terms via the Foreign Interface

Each argument of a foreign function (except for the control argument) is oftéype _t , an opaque

handle to a Prolog term. Three groups of functions are available for the analysis of terms. The first
just validates the type, like the Prolog predicatag/l , atom/1 , etc and are calleBL_is _*() .

The second group attempts to translate the argument into a C primitive type. These predicates take a
term _t and a pointer to the appropriate C-type and reftRUEor FALSE depending on successful

or unsuccessful translation. If the translation fails, the pointed-to data is never modified.

2Otherwise asynchronous atom garbage collection might detroy the atom before it is used.

SWI-Prolog 4.0 Reference Manual

5.6. THE FOREIGN INCLUDE FILE 147

Testing the type of a term

int PL_term_type(termpt)
Obtain the type of a term, which should be a term returned by one of the other interface pred-
icates or passed as an argument. The function returns the type of the Prolog term. The type
identifiers are listed below. Note that the extraction functiBhsge t*() also validate the
type and thus the two sections below are equivalent.

if (PL_is_atom(t))
{ char *s;

PL_get_atom_chars(t, &s);

}
or
char *s;
if (PL_get atom_chars(t, &s))
{ ..
}
PL_VARIABLE An unbound variable. The value of term as such is a
unique identifier for the variable.
PL_.ATOM A Prolog atom.
PL_.STRING A Prolog string.
PL_INTEGER A Prolog integer.
PL_FLOAT A Prolog floating point number.
PL_.TERM A compound term. Note that a list is a compound term
12 .
The functions Pls._(type are an alternative toPL _term _type() . The test

PL.is _variable(term) is equivalent to PL_term _type(term) == PL VARIABLE, but

the first is considerably faster. On the other hand, using a switchRivéerm _type() is faster

and more readable then using an if-then-else using the functions below. All these functions return
eitherTRUEor FALSE

int PL_is_variable(term.t)
Returns non-zero ifermis a variable.

int PL_is.atom(term.t)
Returns non-zero iermis an atom.

int PL_is_string(termpt)
Returns non-zero ifermis a string.

int PL_is_integer(term.t)
Returns non-zero tiermis an integer.

SWI-Prolog 4.0 Reference Manual

148 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

int PL_is_float(term.t)
Returns non-zero ifermis a float.

int PL_is.compoundterm-t)
Returns non-zero ifermis a compound term.

int PL_is_functor (term.t, functort)
Returns non-zero ifermis compound and its functor inctor. This test is equivalent to
PL_get _functor() , followed by testing the functor, but easier to write and faster.

int PL_is_list(term.t)
Returns non-zero ifermis a compound term with functor ./2 or the atgm.

int PL_is_atomic(term.t)
Returns non-zero ifermis atomic (not variable or compound).

int PL_is_.number(term.t)
Returns non-zero tiermis an integer or float.

Reading data from a term

The functionsPL_get *() read information from a Prolog term. Most of them take two arguments.
The first is the input term and the second is a pointer to the output value or a term-reference.

int PL_getatom(termt +t, atom.t *a)
If tis an atom, store the unique atom identifier oger See alsdPL_atom _chars() and
PL_new_atom() . If there is no need to access the data (characters) of an atom, it is ad-
vised to manipulate atoms using their handle. As the atom is referenceditowill live
at least as long asdoes. If longer live-time is required, the atom should be locked using
PL_register _atom() .

int PL_getatom_chars(term.t +t, char **s)
If tis an atom, store a pointer to a O-terminated C-string ifit is explicitly not allowed to
modify the contents of this string. Some built-in atoms may have the string allocated in read-
only memory, so ‘temporary manipulation’ can cause an error.

int PL_getstring_chars(term.t +t, char **s, int *len)
If tis a string object, store a pointer to a O-terminated C-strirggand the length of the string
in len. Note that this pointer is invalidated by backtracking, garbage-collection and stack-shifts,
so generally the only save operations are to pass it immediately to a C-function that doesn’t
involve Prolog.

int PL_get chars(term.t +t, char **s, unsigned flags
Convert the argument tertrto a O-terminated C-strindlagsis a bitwise disjunction from two
groups of constants. The first specifies which term-types should converted and the second how
the argument is stored. Below is a specification of these constBliS RING implies, if the
data is not static (as from an atom), the data is copied to the next buffer from a ring of 16 buffers.
This is a convenient way of converting multiple arguments passed to a foreign predicate to C-
strings. If BUEMALLOC is used, the data must be freed using free() when not needed any
longer.

SWI-Prolog 4.0 Reference Manual

5.6. THE FOREIGN INCLUDE FILE

149

int

int

int

int

int

int

int

int

CVTATOM Convert if term is an atom

CVT.STRING Convert if term is a string

CVTLIST Convert if term is a list of integers between 1 and 255

CVTINTEGER Convert if term is an integer (usirt$d

CVT.FLOAT Convert if term is a float (usingpf)

CVT.NUMBER Convert if term is a integer or float

CVTATOMIC Convert if term is atomic

CVT.VARIABLE Convert variable to print-name

CVT.WRITE Convert any term that is not converted by any of the
other flags usingwrite/1 If no BUF* is provided,
BUFRING is implied.

CVTALL Convert if term is any of the above, except for
CVT.VARIABLE andCVTWRITE

BUFDISCARDABLE Data must copied immediately

BUFRING Data is stored in a ring of buffers

BUFMALLOC Data is copied to a new buffer returnedtmalloc(3)

PL_getlist_chars(+term_t |, char **s, unsigned flags
Same afPL_get chars(|, s, CVT.LIST—lagy , providedflags contains no of theCVT*
flags.

PL_getinteger(+term_tt, int *i)
If tis a Prolog integer, assign its value over On 32-bit machines, this is the same as
PL_get _long() , butavoids a warning from the compiler. See @4oget _long()

PL _getlong(termct +t, long *i)
If tis a Prolog integer, assign its value overNote that Prolog integers have limited value-
range. Iftis a floating point number that can be represented as a long, this function succeeds as
well.

PL_get pointer(term.t +t, void **ptr)
In the current system, pointers are represented by Prolog integers, but need some manip-
ulation to make sure they do not get truncated due to the limited Prolog integer range.
PL_put _pointer() /PL_get _pointer() guarantees pointers in the range of malloc() are
handled without truncating.

PL _get float(termt +t, double *1)
If tis a float or integer, its value is assigned ofer

PL_get functor (term.t +t, functor.t *f)
If tis compound or an atom, the Prolog representation of the name-arity pair will be assigned
overf. See alsd’L_get _name_arity() andPL_is _functor()

PL_get name arity (term.t +t, atom.t *name, int *arity)
If tis compound or an atom, the functor-name will be assigned m&ereand the arity over
arity. See alsd’L_get _functor() andPL_is _functor()

PL_get module(term.t +t, modulet *module
If tis an atom, the system will lookup or create the corresponding module and assign an opaque
pointer to it overmodule.

SWI-Prolog 4.0 Reference Manual

150 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

int PL_getarg(int index, termt +t, term_t -a)
If tis compound and index is between 1 and arity (including), assigith a term-reference to
the argument.

int _PL_getarg(int index, termt +t, term_t -a)
Same a$L_get _arg() , but no checking is performed, nor whethiés actually a term, nor
whetherindexis a valid argument-index.

Exchanging text using length and string

All internal text-representation of SWI-Prolog is represented ushay * plus length and allow

for O-bytesin them. The foreign library supports this by implementing achars() function for each
applicable *chars() function. Below we briefly present the signatures of these functions. For full
documentation consult thec¢hars() function.

int PL_getatom_nchars(term.tt, unsigned int len, char **g

int PL_getlist_nchars(term.tt, unsigned int len, char **s

int PL_getnchars(term.tt, unsigned int len, char **s, unsigned int flggs

int PL_put_atom_nchars(termtt, unsigned int len, const char)'s

int PL_put_string_nchars(term.t t, unsigned int len, const char ¥s

int PL_put_list_ncodegtermct t, unsigned int len, const char ¥s

int PL_put_list_nchars(term.t t, unsigned int len, const char)s

int PL_unify _atom_nchars(term.t t, unsigned int len, const char }s

int PL_unify _string_nchars(term.t t, unsigned int len, const char)'s

int PL_unify _list_ncodegterm.t t, unsigned int len, const char }s

int PL_unify _list_nchars(termt t, unsigned int len, const char Js

In addition, the following functions are available for creating and inspecting atoms:

atom _t PL_new_atom_nchars(unsigned int len, const char }s
Create a new atom d&__new_atom() , but from length and characters.

SWI-Prolog 4.0 Reference Manual

5.6. THE FOREIGN INCLUDE FILE 151

const char * PL_atom_nchars(atomt a, unsigned int *lej
Extract text and length of an atom.

Reading a list

The functions from this section are intended to read a Prolog list from C. Suppose we expect a list of
atoms, the following code will print the atoms, each on a line:

foreign_t
pl_write_atoms(term_t 1)
{ term_t head = PL_new_term_ref(); [* variable for the ele-
ments */
term_t list = PL_copy_term_ref(l); /* copy as we need to write */

while(PL_get_list(list, head, list))
{ char *s;

if (PL_get_atom_chars(head, &s))
Sprintf("%s\n", s);
else
PL_fail;
}

return PL_get nil(list); /* test end for [] */
}

int PL_getlist(termt +l, term_t -h, termt -t)
If lis alistand nof] assign a term-reference to the headh tind to the tail td.

int PL_getheadterm.t +l, term_t -h)
If lis alistand nof] assign a term-reference to the heati.to

int PL_gettail (term.t +l, term_t -t)
If lis alistand nof] assign a term-reference to the taikto

int PL_getnil(term.t +l)
Succeeds if represents the atfm
An example: definingwrite/1 inC

Figure5.3shows a simplified definition ofrite/1 to illustrate the described functions. This sim-
plified version does not deal with operators. It is caliisblay/l , because it mimics closely the
behaviour of this Edinburgh predicate.

5.6.4 Constructing Terms

Terms can be constructed using functions fromRteput *() andPL_cons *() families. This
approach builds the term ‘inside-out’, starting at the leaves and subsequently creating compound

SWI-Prolog 4.0 Reference Manual

152 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

foreign_t

pl_display(term_t t)

{ functor_t functor;
int arity, len, n;
char *s;

switch(PL_term_type(t))
{ case PL_VARIABLE:
case PL_ATOM:
case PL_INTEGER:
case PL_FLOAT:
PL_get chars(t, &s, CVT_ALL);
Sprintf("%s", s);
break;
case PL_STRING:
PL_get_string_chars(t, &s, &len);
Sprintf("\"%s\"", s);
break;
case PL_TERM:
{ term_t a = PL_new_term_ref();

PL_get name_arity(t, &name, &arity);
Sprintf("%s(", PL_atom_chars(name));
for(n=1; n<=arity; n++)
{ PL_get_arg(n, t, a);

if (n>1)

Sprintf(", ");

pl_display(a);
}
Sprintf(*)");
break;

default:
PL_falil, /* should not happen */

}

PL_succeed;

}

Figure 5.3: A Foreign definition adisplay/1

SWI-Prolog 4.0 Reference Manual

5.6. THE FOREIGN INCLUDE FILE 153

terms. Alternatively, terms may be created ‘top-down’, first creating a compound holding only vari-
ables and subsequently unifying the arguments. This section discusses functions for the first approach.
This approach is generally used for creating argumentBlfocall() and PLopenquery.

void

void

void

void

void

void

void

void

void

void

void

void

PL _put_variable(term.t -t)

Put a fresh variable in the term. The new variable lives on the global stack. Note that the initial
variable lives on the local stack and is lost after a write to the term-references. After using this
function, the variable will continue to live.

PL_put_atom(term.t -t, atomt a)
Put an atom in the term reference from a handle. See BRlsmew_atom() and
PL_atom _chars()

PL _put_atom_chars(term -t, const char *char¥
Put an atom in the term-reference constructed from the O-terminated string. The string itself
will never be references by Prolog after this function.

PL _put_string_chars(termt -t, const char *chark
Put a zero-terminated string in the term-reference. The data will be copied. See also
PL_put _string _nchars()

PL _put_string_nchars(term.t -t, unsigned int len, const char *chgrs

Put a string, represented by a length/start pointer pair in the term-reference. The data will be
copied. This interface can deal with 0-bytes in the string. See also séctidr

PL _put_list_chars(termct -t, const char *chary
Put a list of ASCII values in the term-reference.

PL_put_integer(term.t -t, long i)
Put a Prolog integer in the term reference.

PL _put_pointer(term.t -t, void *ptr)
Put a Prolog integer in the term-reference. Provided ptr is in the ‘malloc()-area’,
PL_get _pointer() will get the pointer back.

PL _put_float(term.t -t, double j
Put a floating-point value in the term-reference.

PL _put_functor (term.t -t, functor.t functor)

Create a new compound term frdomctorand bindt to this term. All arguments of the term

will be variables. To create a term with instantiated arguments, either instantiate the arguments
using thePL_unify _*() functions or usé’L_cons _functor()

PL _put_list(term.t -1)
Same a®L_put _functor(|, PL_newfunctor(PLnewatom(”.), 2))

PL _put_nil (term.t -I)
Same a®L_put _atom _chars("]").

SWI-Prolog 4.0 Reference Manual

154 CHAPTER 5. FOREIGN LANGUAGE INTERFACE
void PL_put_term(term.t -t1, termt +t2)
Maketl point to the same term &2.
void PL_consfunctor(termt -h, functortf, ...)
Create a term, whose arguments are filled from variable argument list holding the same number
of term.t objects as the arity of the functor. To create the tammal(gnu, 50) , use:
{ term_t al = PL_new_term_ref();
term_t a2 = PL_new_term_ref();
term_t t = PL_new_term_ref();
functor_t animal2;
[* animal2 is a constant that may be bound to a global
variable and re-used
*/
animal2 = PL_new_functor(PL_new_atom("animal"), 2);
PL_put_atom_chars(al, "gnu®);
PL_put_integer(a2, 50);
PL_cons_functor(t, animal2, al, a2);
}
After this sequence, the term-referenedsanda2 may be used for other purposes.
void PL_consfunctor v(termt -h, functort f, termt a0)
Creates a compound term lil_cons _functor() , butaOis an array of term references
as returned byL_new_term _refs() . The length of this array should match the number of
arguments required by the functor.
void PL_conslist(termt -l, term.t +h, term.t +t)

Create a list (cons-) cell infrom the head and tail. The code below creates a list of atoms from
achar ** . The list is built tail-to-head. ThBL_unify _*() functions can be used to build
a list head-to-tail.

void
put_list(term_t 1, int n, char **words)
{ term_t a = PL_new_term_ref();

PL_put_nil(]);
while(--n >= 0)
{ PL_put_atom_chars(a, words[n]);
PL_cons_list(l, a, I);
}
}

Note thatl can be redefined withinL_cons _list call as shown here because operationally
its old value is consumed before its new value is set.

SWI-Prolog 4.0 Reference Manual

5.6. THE FOREIGN INCLUDE FILE 155

5.6.5 Unifying data

The functions of this sectionmify terms with other terms or translated C-data structures. Except for
PL_unify() , the functions of this section are specific to SWI-Prolog. They have been introduced

to make translation of old code easier, but also because they provide for a faster mechanism for
returning data to Prolog that requires less term-references. Consider the case where we want a foreign
function to return the host name of the machine Prolog is running on. Usingltlget *() and

PL_put *() functions, the code becomes:

foreign_t
pl_hostname(term_t name)
{ char buf[100];

if (gethostname(buf, sizeof(buf)))
{ term_t tmp = PL_new_term_ref();

PL_put_atom_chars(tmp, buf);
return PL_unify(name, buf);

}

PL_fail;
}

UsingPL_unify _atom _chars() , this becomes:

foreign_t
pl_hostname(term_t name)
{ char buf[100];

if (gethostname(buf, sizeof(buf)))
return PL_unify_atom_chars(name, buf);

PL_fail;
}

int PL_unify (term.t ?t1, termt ?t2)
Unify two Prolog terms and return non-zero on success.

int PL_unify _atom(term.t ?t, atomt a)
Unify t with the atoma and return non-zero on success.

int PL_unify _atom_chars(term.t ?t, const char *charg
Unify t with an atom created frowharsand return non-zero on success.

int PL_unify _list_chars(term.t ?t, const char *charg
Unify t with a list of ASCII characters constructed frarhars

void PL _unify _string_chars(term.t ?t, const char *charg
Unify t with a Prolog string object created from the zero-terminated sttiregs The data will
be copied. See ald8lL_unify _string _nchars()

SWI-Prolog 4.0 Reference Manual

156 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

void PL _unify _string_nchars(term.t ?t, unsigned int len, const char *chars
Unify t with a Prolog string object created from the string created fromethlfeharspair. The
data will be copied. This interface can deal with 0-bytes in the string. See also seétiba

int PL_unify _integer(term.t ?t, long n
Unify t with a Prolog integer fronm.

int PL_unify float(term.t ?t, double ¥
Unify t with a Prolog float fronf.

int PL_unify _pointer(term.t ?t, void *ptr)
Unify t with a Prolog integer describing the pointer. See d@doput _pointer() and
PL_get _pointer()

int PL_unify _functor (term.t ?t, functort f)
If tis a compound term with the given functor, just succeed. If it is unbound, create a term
and bind the variable, else fails. Not that this function does not create a term if the argument is
already instantiated.

int PL_unify _list(term.t ?I, term.t -h, termt -t)
Unify | with a list-cell (/2). If successful, write a reference to the head of the ligt samd
a reference to the tail of the list in This reference may be used for subsequent calls to this
function. Suppose we want to return a list of atoms fromhar ** . We could use the
example described byL_put _list() , followed by a call toPL_unify() , or we can use
the code below. If the predicate argument is unbound, the difference is minimal (the code based
on PL_put _list() is probably slightly faster). If the argument is bound, the code below
may fail before reaching the end of the word-list, but even if the unification succeeds, this code
avoids a duplicate (garbage) list and a deep unification.

foreign_t
pl_get_environ(term_t env)
{ term_t | = PL_copy_term_ref(env);

term_t a = PL_new_term_ref();
extern char **environ;
char **e;

for(e = environ; *e; e++)
{ if ('PL_unify_list(l, a, 1) ||
IPL_unify_atom_chars(a, *e))
PL falil;
}

return PL_unify_nil(l);

int PL_unify _nil (term.t ?I)
Unify | with the atom] .

SWI-Prolog 4.0 Reference Manual

5.6. THE FOREIGN INCLUDE FILE 157

int PL_unify _arg(int index, termt ?t, termt ?a)
Unifies theindex-thargument (1-based) ofvith a.

int PL_unify _term(termt ?t,...)

Unify t with a (normally) compound term. The remaining arguments is a sequence of a type
identifier, followed by the required arguments. This predicate is an extension to the Quintus
and SICStus foreign interface from which the SWI-Prolog foreign interface has been derived,
but has proved to be a powerful and comfortable way to create compound terms from C. Due to
the vararg packing/unpacking and the required type-switching this interface is slightly slower
than using the primitives. Please note that some bad C-compilers have fairly low limits on the
number of arguments that may be passed to a function.

Special attention is required when passing numbers. C ‘promotes’ any integral smaller than
int toint . l.e.thetypeshar ,short andint are all passed ast . In addition, on most
32-bit platformsgnt andlong are the same. Upto version 4.0.5, oRly_INTEGERcould be
specified which was taken from the stack@sg . Such code fails when passing small integral
types on machines whengt is smaller tharlong . It is advised to us®L_SHORTPL_INT

or PL_LONGas appropriate. Similar, C compilers proméitsat to double and therefore
PL_FLOATandPL_DOUBLEare synonyms.

The type identifiers are:

PL_VARIABLE none
No op. Used in arguments ®L_FUNCTOR

PL_ATOMatom.t
Unify the argument with an atom, asRL_unify _atom() .

PL_SHORTshort

Unify the argument with an integer, as RiL_unify _integer() . Asshort is pro-
moted toint , PL_.SHORTis a synonym folPL_INT .

PL_INT int
Unify the argument with an integer, asib_unify _integer()

PL_LONGong

Unify the argument with an integer, asi._unify _integer()
PL_INTEGERIong
Unify the argument with an integer, asib_unify _integer()

PL_.DOUBLEKouble
Unify the argument with a float, as IAL_unify _float() . Note that, as the argument
is passed using the C vararg conventions, a float must be casted to a double explicitly.
PL_FLOATdouble
Unify the argument with a float, as PL_unify _float()
PL_POINTERvoid *
Unify the argument with a pointer, as RL_unify _pointer()
PL_STRINGconst char *
Unify the argument with a string object, askh_unify _string _chars()

PL_.TERMerm.t
Unify a subterm. Note this may the return value d?la.new_term _ref() call to get
access to a variable.

SWI-Prolog 4.0 Reference Manual

158 CHAPTER 5. FOREIGN LANGUAGE INTERFACE
PL_CHARSonst char *
Unify the argument with an atom, constructed from the dBar * , as in
PL_unify _atom _chars()
PL_FUNCTORunctor.t, ...
Unify the argument with a compound term. This specification should be followed by
exactly as many specifications as the number of arguments of the compound term.
PL_FUNCTORCHARS:onst char *name, int arity, . ..
Create a functor from the given name and arity and then behaRe &#JNCTOR
PL_LIST intlength, ...
Create a list of the indicated length. The following arguments contain the elements of the
list.
For example, to unify an argument with the telanguage(dutch) , the following skeleton
may be used:
static functor_t FUNCTOR _languagel;
static void
init_constants()
{ FUNCTOR_languagel = PL_new_functor(PL_new_atom("language"), 1);
}
foreign_t
pl_get_lang(term_t r)
{ return PL_unify term(r,
PL_FUNCTOR, FUNCTOR_languagel,
PL_CHARS, "dutch");
}
install_t
install()
{ PL_reqgister_foreign("get_lang", 1, pl_get lang, 0);
init_constants();
}
int PL_chars_to_term(const char *chars, ternt -t)

Parse the stringharsand put the resulting Prolog term intocharsmay or may not be closed
using a Prolog full-stop (i.e., a dot followed by a blank). Returdd SE if a syntax error
was encountered antRUEafter successful completion. In addition to returniFg§LSE, the
exception-term is returned tron a syntax error. See alsgerm _to _atom/2 .

The following example build a goal-term from a string and calls it.
int

call_chars(const char *goal)

{ fid_t fid = PL_open_foreign_frame();

SWI-Prolog 4.0 Reference Manual

5.6. THE FOREIGN INCLUDE FILE 159

term_t g = PL_new_term_ref();
BOOL rval;

if (PL_string _to term(goal, g))
rval = PL_call(goal, NULL);
else
rval = FALSE;

PL_discard_foreign_frame(fid);
return rval;

call_chars("consult(load)");

char * PL_quote(int chr, const char *striny
Return a quoted version afring. If chris’\” |, the result is a quoted atom. dhris ™ ,
the result is a string. The result string is stored in the same ring of buffers as described with the
BUFRING argument oPL _get _chars() ;

In the current implementation, the string is surroundedcby and any occurence afhr is
doubled. In the future the behaviour will depend on tharacter _escape prolog-flag.
Seecurrent _prolog _flag/2

5.6.6 Calling Prolog from C

The Prolog engine can be called from C. There are two interfaces for this. For the first, a term is
created that could be used as an argumerttidl and nextPL_call() is used to call Prolog.

This system is simple, but does not allow to inspect the different answers to a hon-deterministic goal
and is relatively slow as the runtime system needs to find the predicate. The other interface is based on
PL_open _query() , PL_next _solution() andPL_cut _query() or PL_close _query()

This mechanism is more powerful, but also more complicated to use.

Predicate references

This section discusses the functions used to communicate about predicates. Though a Prolog predicate
may defined or not, redefined, etc., a Prolog predicate has a handle that is not destroyed, nor moved.
This handle is known by the typwedicate _t.

predicate _t PL_pred(functor.t f, modulet m)
Return a handle to a predicate for the specified name/arity in the given module. This function
always succeeds, creating a handle for an undefined predicate if no handle was available.

predicate _t PL_predicate(const char *name, int arity, const char* modjle
Same &L _pred() , but provides a more convenient interface to the C-programmer.

SWI-Prolog 4.0 Reference Manual

160 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

void PL _predicate.info(predicatet p, atomt *n, int *a, modulet *m)
Return information on the predicae The name is stored over, the arity overa, while
m receives the definition module. Note that the latter need not be the same as speci-
fied with PL_predicate() . If the predicate was imported into the module given to
PL_predicate() , this function will return the module where the predicate was defined.

Initiating a query from C

This section discusses the functions for creating and manipulating queries from C. Note that a foreign
context can have at most one active query. This implies it is allowed to make strictly nested calls
between C and Prolog (Prolog calls C, calls Prolog, calls C, etc., buidtigllowed to open multiple
gueries and start generating solutions for each of them by cd&lingext _solution() . Be sure

to call PL_cut _query() orPL_close _query() on any query you opened before opening the
next or returning control back to Prolog.

gid _t PL_openquery(modulet ctx, int flags, predicate p, termt +t0)

Opens a query and returns an identifier for it. This function always succeeds, regardless whether
the predicate is defined or nattx is thecontext modul®f the goal. WhemNULL, the context
module of the calling context will be used, aser if there is no calling context (as may happen

in embedded systems). Note that the context module only mattersoiduletransparenpred-

icates. Seeontext _module/l andmodule _transparent/1 . Thep argument specifies

the predicate, and should be the result of a caPltopred() or PL_predicate() . Note

that it is allowed to store this handle as global data and reuse it for future queries. The term-
reference0 is the first of a vector of term-references as returne®bynew_term _refs(n) .

The flags arguments provides some additional options concerning debugging and exception
handling. It is a bitwise or of the following values:

PL_.QNORMAL
Normal operation. The debugger inherits its settings from the environment. If an excep-
tion occurs that is not handled in Prolog, a message is printed and the tracer is started to
debug the errof.

PL_.QNODEBUG
Switch off the debugger while executing the goal. This option is used by many
calls to hook-predicates to avoid tracing the hooks. An exampfeiig/1 calling
portray/l from foreign code.

PL_.Q.CATCHEXCEPTION
If an exception is raised while executing the goal, do not report it, but make it available
for PL_exception()

PL.QPASSEXCEPTION
As PL_.Q CATCHEXCEPTION but do not invalidate the exception-term while calling
PL_close _query() . This option is experimental.

The example below opens a query to the predicatéddo find the ancestor of for some name.

3Do not pass the integer 0 for normal operation, as this is interpret®tl & NODEBUGr backward compatibility
reasons.

SWI-Prolog 4.0 Reference Manual

5.6. THE FOREIGN INCLUDE FILE 161

char *

ancestor(const char *me)

{ term_t a0 = PL_new_term_refs(2);
static predicate t p;

if (p)
p = PL_predicate("is_a", 2, "database");

PL_put_atom_chars(a0, me);
PL_open_query(NULL, PL_Q_ NORMAL, p, a0);

int PL_next_solution(qid_t gid)
Generate the first (next) solution for the given query. The return vali®IdEif a solution
was found, ofFALSEto indicate the query could not be proven. This function may be called
repeatedly until it fails to generate all solutions to the query.

void PL_cut_query(qid)
Discards the query, but does not delete any of the data created by the query. It just invalidate
gid, allowing for a new call td°L_open _query() in this context.

void PL _closequery(qid)
As PL_cut _query() , butall data and bindings created by the query are destroyed.

int PL _call_predicate(modulet m, int flags, predicaté pred, termt +t0)
Shorthand foiPL_open _query() , PL_next _solution() , PL_cut _query() , generat-
ing a single solution. The arguments are the same aBlfapen _query() , the return value
is the same aBL_next _solution()

int PL _call(term.t, modulet)
Call term just like the Prolog predicatece/1l . Termis called in the specified module, or in
the context module if module= NULL. ReturnsTRUEIf the call succeed$;ALSE otherwise.
Figure5.4 shows an example to obtain the number of defined atoms. All checks are omitted to
improve readability.

5.6.7 Discarding Data

The Prolog data created and term-references needed to setup the call and/or analyse the result can in
most cases be discarded right after the cBIL_close _query() allows for destructing the data,

while leaving the term-references. The calls below may be used to destroy term-references and data.
See figures.4 for an example.

fid _t PL_openforeign_frame()
Created a foreign frame, holding a mark that allows the system to undo bindings and destroy
data created after it as well as providing the environment for creating term-references. This
function is called by the kernel before calling a foreign predicate.

SWI-Prolog 4.0 Reference Manual

162 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

int
count_atoms()
{ fid_t fid = PL_open_foreign_frame();

term_t goal = PL_new_term_ref();

term_t al = PL_new_term_ref();

term_t a2 = PL_new_term_ref();

functor_t s2 = PL_new_functor(PL_new_atom("statistics"), 2);
int atoms;

PL_put_atom_chars(al, "atoms");
PL_cons_functor(goal, s2, al, a2);
PL_call(goal, NULL); [* call it in current module */

PL_get integer(a2, &atoms);
PL_discard_foreign_frame(fid);

return atoms;

Figure 5.4: Calling Prolog

void PL _closeforeign_frame(fid_t id)
Discard all term-references created after the frame was opened. All other Prolog data is retained.
This function is called by the kernel whenever a foreign function returns control back to Prolog.

void PL _discard_foreign_frame(fid_t id)
Same a$L_close _foreign _frame() , butalso undo all bindings made since the open and
destroy all Prolog data.

void PL _rewind_foreign_frame(fid_t id)
Undo all bindings and discard all term-references created since the frame was created, but does
not pop the frame. Il.e. the same frame can be rewinded multiple times, and must eventually be
closed or discarded.

It is obligatory to call either of the two closing functions to discard a foreign frame. Foreign
frames may be nested.

5.6.8 Foreign Code and Modules

Modules are identified via a unique handle. The following functions are available to query and ma-
nipulate modules.

module _t PL_context()
Return the module identifier of the context module of the currently active foreign predicate.

int PL_strip_module(term.t +raw, modulet *m, term.t -plain)
Utility function. If raw is a term, possibly holding the module constriciodule: (rest this
function will makeplain a reference tdrest and fill module *with (module. For further

SWI-Prolog 4.0 Reference Manual

5.6. THE FOREIGN INCLUDE FILE 163

nested module constructs the inner most module is returnechedule * If raw is not a
module construcarg will simply be put inplain. If module *is NULL it will be set to the
context module. Otherwise it will be left untouched. The following example shows how to
obtain the plain term and module if the default module is the user module:

{ module m = PL_new_module(PL_new_atom("user"));
term_t plain = PL_new_term_ref();

PL_strip_module(term, &m, plain);

atom _t PL_module_.name(modulet)
Return the name ahoduleas an atom.

module _t PL_new_module(atomt namg
Find an existing or create a new module with name specified by the rzdome

5.6.9 Prolog exceptions in foreign code

This section discusseBL _exception() , PL_throw() and PL_raise _exception() , the
interface functions to detect and generate Prolog exceptions from C-coBé._throw()

and PL_raise _exception() from the C-interface to raise an exception from foreign
code. PL_throw() exploits the C-function longjmp() to return immediately to the innermost
PL_next _solution() . PL_raise _exception() registers the exception term and returns
FALSE If a foreign predicate returns FALSE, while and exception-term is registered a Prolog ex-
ception will be raised by the virtual machine.

Calling these functions outside the context of a function implementing a foreign predicate results
in undefined behaviour.

PL_exception() may be used after a call L_next _solution() fails, and returns a term
reference to an exception term if an exception was raised, and 0 otherwise.

If a C-function, implementing a predicate calls Prolog and detects an exception us-
ing PL_exception() , it can handle this exception, or return with the exception.
Some caution is required though. It isot allowed to call PL_close _query() or
PL_discard _foreign _frame() afterwards, as this will invalidate the exception term. Below
is the code that calls a Prolog defined arithmetic function éiemethic ~ _function/1).

If PL_next _solution() succeeds, the result is analysed and translated to a number, after
which the query is closed and all Prolog data created &fteppen _foreign _frame() is de-
stroyed. On the other hand, HL_next _solution() fails and if an exception was raised, just
pass it. Otherwise generate an exceptiBb_érror() is an internal call for building the standard
error terms and callin@L_raise _exception()). After this, the Prolog environment should be
discarded using’L_cut _query() andPL_close _foreign _frame() to avoid invalidating the
exception term.

static int
prologFunction(ArithFunction f, term_t av, Number r)
{ int arity = f->proc->definition->functor->arity;

fid_t fid = PL_open_foreign_frame();

SWI-Prolog 4.0 Reference Manual

164 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

gid_t qid;
int rval;

gid = PL_open_query(NULL, PL_Q NORMAL, f->proc, av);

if (PL_next_solution(qgid))

{ rval = valueExpression(av+arity-1, r);
PL_close_query(qid);
PL_discard_foreign_frame(fid);

} else

{ term_t except;

if ((except = PL_exception(qid)))

{ rval = PL_throw(except); [* pass exception */

} else

{ char *name = stringAtom(f->proc->definition->functor->name);

[* generate exception */
rval = PL_error(name, arity-1, NULL, ERR_FAILED, f->proc);

}
PL_cut_query(qid); [* donot destroy data */
PL_close_foreign_frame(fid); /* same */

}

return rval;

}

int PL _raise_exceptiontermt exceptiof
Generate an exception (#sow/1) and returnFALSE Below is an example returning an
exception from foreign predicate:

foreign_t
pl_hello(term_t to)
{ char *s;

if (PL_get atom_chars(to, &s))
{ Sprintf("Hello \"%s\"\n", s);

PL_succeed;
} else
{ term_t except = PL_new_term_ref();

PL_unify_term(except,
PL_FUNCTOR_CHARS, "type_error", 2,
PL_CHARS, "atom",

SWI-Prolog 4.0 Reference Manual

5.6. THE FOREIGN INCLUDE FILE 165

PL_TERM, to);

return PL_raise_exception(except);

}
}

int PL_throw (term.t exceptiof
Similar toPL_raise _exception() , but returns using the C longjmp() function to the in-
nermostPL_next _solution()

term _t PL_exception(qid_t gid)
If PL_next _solution() fails, this can be due to normal failure of the Prolog call, or because
an exception was raised usittgow/1 . This function returns a handle to the exception term
if an exception was raised, or 0 if the Prolog goal simply fafled.

5.6.10 Foreign code and Prolog threads

If SWI-Prolog has been build to support multi-threading (see seétig9, all foreign-code linked to
Prolog should be thread-safeé¢ntran) or guarded in Prolog usingith _mutex/2 from simulta-
neous access from multiple Prolog threads. On Unix systems, this generally implies the code should
be compiled with theD _REENTRANTlag passed to the compiler. Please note that on many Unix
systems not all systemcalls and library-functions are thread-safe. Consult your manual for details.

If you are using SWI-Prolog as an embedded engine in a multi-threaded application you can
access the Prolog engine from multiple threads by creatirengimein each thread from which you
call Prolog. Without creating an engine, a thread can only use functions that do not tserthe
type (for exampld®L_new_atom()).

Please note that the interface below will only work if threading in your application is based
on the same thread-library as used to compile SWI-Prolog.

int PL_thread_self()
Returns the integer Prolog identifier of the engine or -1 if the calling thread has no Prolog
engine. This function is also provided in the single-threaded version of SWI-Prolog, where it
returns -2.

int PL_thread_attach_engingPL_thread attr_t *attr)
Creates a new Prolog engine in the calling thread. If the calling thread already has an engine
the reference count of the engine is incremented. attreargument can b&lULL to create a
thread with default attributes. Otherwise it is a pointer to a structure with the definition below.
For any field with value ‘0’, the default is used.

typedef struct

{ unsigned long local_size; [* Stack sizes (K-bytes) */
unsigned long global_size;
unsigned long trail_size;

“This interface differs in two ways from Quintus. The calling predicates simp,y signal failure if an exception was raised,
and a term referenced is returned, rather passed and filled with the error term. Exceptions can only be handled using the
PL_next _solution() interface, as a handle to the query is required

SWI-Prolog 4.0 Reference Manual

166 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

unsigned long argument_size;
char * alias; /* alias name */
} PL_thread_attr_t;

The structure may be destroyed afidr_ thread _attach _engine() has returned. If an
error occurs, -1 is returned. If this Prolog is not compiled for multi-threading, -2 is returned.

int PL_thread_destroy_enging)
Destroy the Prolog engine in the calling thread. Only takes ef-
fect if PL_thread _destroy _engine() is called as many times as
PL_thread _attach _engine() in this thread. Return§RUEon success an&ALSE
if the calling thread has no engine or this Prolog does not support threads.

Please note that construction and destruction of engines are relatively expensive operations.
Only destroy an engine if performance is not critical and memory is a critical resource.
The engine is automatically destroyed if the thread finishes, regardless how many times
PL_thread _attach _engine() has been called.

5.6.11 Miscellaneous
Term Comparison

int PL_comparegtermct tl, termt t2)
Compares two terms using the standard order of terms and returns -1, 0 or 1. See also
compare/3 .

int PL_samecompoundtermttl, termtt2)
Yields TRUEIf t1 andt2 refer to physically the same compound term &Ad_SE otherwise.

Recorded database

In some applications it is useful to store and retreive Prolog terms from C-code. For example, the
XPCE graphical environment does this for storing arbitrary Prolog data as slot-data of XPCE objects.
Please note that the returned handles have no meaning at the Prolog level and the recorded terms
are not visible from Prolog. The functiofd._recorded() @ andPL_erase() are the only func-
tions that can operate on the stored term.
Two groups of functions are provided.The first grolh(record() and friends) store Prolog
terms on the Prolog heap for retrieval during the same session. These functions are also used by
recorda/3 and friends. The recorded database may be used to communicate Prolog terms between
threads.

record _t PL_record(term.t +t)
Record the termiinto the Prolog database eecorda/3 and return an opaque handle to the
term. The returned handle remains valid uRtil_erase() is called on it.PL_recorded()
is used to copy recorded terms back to the Prolog stack.

void PL _recorded(recordt record, termt -t)
Copy a recorded term back to the Prolog stack. The same record may be used to copy multiple
instances at any time to the Prolog stack. SeeRlsoecord() andPL_erase()

SWI-Prolog 4.0 Reference Manual

5.6.

THE FOREIGN INCLUDE FILE 167

void

PL _erasdrecord.t record
Remove the recorded term from the Prolog database, reclaiming all associated memory re-
sources.

The second group (headed By _record _external()) provides the same functionality, but
the returned data has properties that enable storing the data on an external device. It has been designed
to make it possible to store Prolog terms fast an compact in an external database. Here are the main
features:

char

int

int

Independent of session
Records can be communicated to another Prolog session and made visible using
PL_recorded _external()

Binary
The representation is binary for maximum performance. The returned data may contain O-bytes.

Byte-order independent
The representation can be transferred between machines with different byte-order.

No alignment restrictions

There are no memory alignment restrictions and copies of the record can thus be moved freely.
For example, it is possible to use this representation to exchange terms using shared memory
between different Prolog processes.

Compact
It is assumed that a smaller memory footprint will eventually outperform slightly faster repre-
sentations.

Stable
The format is designed for future enhancements without breaking compatibility with older
records.

* PL_record_external(term.t +t, unsigned int *len
Record the termiinto the Prolog database eecorda/3 and return an opaque handle to the
term. The returned handle remains valid uRtil_erase() is called on it.

It is allowed to copy the data and uB& _recorded _external() on the copy. The user
is responsible for the memory management of the copy. After copying, the original may be
discarded usin@L_erase _external()

PL_recorded _external() is used to copy such recorded terms back to the Prolog stack.

PL _recorded external(const char *record, termt -t)

Copy a recorded term back to the Prolog stack. The same record may be used to copy mul-
tiple instances at any time to the Prolog stack. See Blsagecord _external() and
PL_erase _external()

PL _eraseexternal(char *record)
Remove the recorded term from the Prolog database, reclaiming all associated memory re-
sources.

SWI-Prolog 4.0 Reference Manual

168 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

5.6.12 Catching Signals (Software Interrupts)

SWiI-Prolog offers both a C and Prolog interface to deal with software interrupts (signals). The Prolog
mapping is defined in sectidh1Q This subsection deals with handling signals from C.

If a signal is not used by Prolog and the handler does not call Prolog in any way, the native signal
interface routines may be used.

Some versions of SWI-Prolog, notably running on popular Unix platforms, h&8i@eSEGV
for guarding the Prolog stacks. If the application whishes to handle this signal too, it should use
PL_signal() to install its handler after initialisating Prolog. SWI-Prolog will p&i& _SEGVto
the user code if it detected the signal is not related to a Prolog stack overflow.

Any handler that wishes to call one of the Prolog interface functions shoul®taignal()
for its installation.

void (*)() PL _signal(sig, fung
This function is equivalent to the BSD-Unix signal() function, regardless of the platform used.
The signal handler is blocked while the signal routine is active, and automatically reactivated
after the handler returns.

After a signal handler is registered using this function, the native signal interface redirects the
signal to a generic signal handler inside SWI-Prolog. This generic handler validates the en-
vironment, creates a suitable environment for calling the interface functions described in this
chapter and finally calls the registered user-handler.

5.6.13 Errors and warnings

PL.warning() prints a standard Prolog warning message to the standard eser (error)
stream. Please note that new code should consider Btimgise _exception() to raise a Prolog
exception. See also sectiBrp.

int PL_warning(format, al, ..)
Print an error message starting wifWw/ARNING: °’, followed by the output fromformat
followed by a]’ and a newline. Then start the traceformat and the arguments are the
same as foprintf(2) . Always returnd=ALSE

5.6.14 Environment Control from Foreign Code

int PL_action(int, ...
Perform some action on the Prolog systemt describes the action, Remaining arguments
depend on the requested action. The actions are listed inFdble

5.6.15 Querying Prolog

C.type PL_query(int)
Obtain status information on the Prolog system. The actual argument type depends on the infor-
mation requiredint describes what information is wanted. The options are given in faBle

SWI-Prolog 4.0 Reference Manual

5.6. THE FOREIGN INCLUDE FILE

169

PL_.ACTION.TRACE
PL_ACTION.DEBUG

PL_.ACTION.BACKTRACE

PL_.ACTION-HALT

PL_.ACTIONABORT

PL_ACTION.BREAK

PL_ACTION.GUIAPP

PL_.ACTIONWRITE

PL_.ACTION.FLUSH

Start Prolog tracertiface/0). Requires no arguments.
Switch on Prolog debug modddbug/O). Requires ng
arguments.

Print backtrace on current output stream. The argument

(an int) is the number of frames printed.
Halt Prolog execution. This action should be called rat
than Unix exit() to give Prolog the opportunity to clean y

her
p.

This call does not return. The argument (an int) is the exit

code. Sedalt/1

Generate a Prolog aboratfort/0). This call does not
return. Requires no arguments.

Create a standard Prolog break environmbrédk/0).
Returns after the user types the end-of-file character.
quires no arguments.

Re-

Win32: Used to indicate the kernel that the application is

a GUI application if the argument is not 0 and a cons

ole

application if the argument is 0. If a fatal error occurs,

the system uses a windows messagebox to report th
a GUI application and simply prints the error and ex
otherwise.

Write the argument, ahar *
stream.

to the current output

s on
its

Flush the current output stream. Requires no arguments.

Table 5.1:PL_action()

options

PL_.QUERYARGC
PL_.QUERYARGYV
PL_.QUERYSYMBOLFILE
PL_.MAXINTEGER

PL_MIN_LINTEGER
PL_.QUERYWERSION

Return an integer holding the number of arguments given

to Prolog from Unix.

Return a char ** holding the argument vector given to P
log from Unix.

Return a char * holding the current symbol file of the ru
ning process.

Return a long, representing the maximal integer value
resented by a Prolog integer.

Return a long, representing the minimal integer value.
Return a long, representing the version@sio0 x M +
100 x m + p, whereM is the majoryn the minor version
number ang the patch-level. For exampl20717 means
2.7.17

ro-

n-

rep-

Table 5.2:PL_query()

options

SWI-Prolog 4.0 Reference Manual

170

CHAPTER 5. FOREIGN LANGUAGE INTERFACE

5.6.16 Registering Foreign Predicates

int

void

void

PL _register_foreign(const char *name, int arity, foreigh (*function)(), int flag3
Register a C-function to implement a Prolog predicate. After this call returns successfully a
predicate with nam@&ame(a char *) and arityarity (a C int) is created. As a special case,
namemay consist of a sequence of alpha-numerical characters followed by the cdlokm (
this case the name uptil the colon is taken to be the destination module and the rest of the name
the predicate hame.

When called in Prolog, Prolog will cafunction flagsforms bitwise or’ed list of options for
the installation. These are:

PL_FAINOTRACE Predicate cannot be seen in the tracer
PL_.FATRANSPARENT Predicate is module transparent
PL_FANONDETERMINISTIC| Predicate is non-deterministic. See aMoretry()
PL_FAVARARGS Use alternative calling convention.

PL _load_extensiongPL_extension *&

Register foreign predicates from a table of structures. This is an alternative to
multiple calls to PL_register _foreign() and simplifies code that wishes to use
PL_register _extensions() as an alternative. The tyf&l_extension is defined as:

typedef struct _PL_extension

{ char *predicate_name; /* Name of the predicate */
short arity; /* Arity of the predicate */
pl_function_t function; /* Implementing functions */
short flags; /* Or of PL_FA ... */

} PL_extension;

PL _register_extensiongPL_extension *§

The functionPL_register _extensions() behaves aPL _load _extensions() , but

is the only PL* function that may be calleefore PL _initialise() . The predicates are
registerednto the moduleuser after registration of the SWI-Prolog builtin foreign predicates
and before loading the initial saved state. This implies ihi&ialization/1 directives
can refer to them.

Here is an example of its usage:

static PL_extension predicates]] = {

{ "foo", 1, pl_foo, 0 },

{ "bar", 2, pl_bar, PL_FA _NONDETERMINISTIC },
{ NULL, 0, NULL, 0}

2

main(int argc, char **argv)
{ PL_register_extensions(predicates);

if (!PL_initialise(argc, argv))
PL_halt(2);

SWI-Prolog 4.0 Reference Manual

5.6. THE FOREIGN INCLUDE FILE 171

5.6.17 Foreign Code Hooks

For various specific applications some hooks re provided.

PL_dispatch _hook _t PL _dispatch.hook(PL_dispatchhookt)
If this hook is not NULL, this function is called when reading from the terminal. It is sup-
posed to dispatch events when SWI-Prolog is connected to a window environment. It can re-
turn two values:PL_DISPATCHINPUT indicates Prolog input is available on file descriptor
0 or PL.LDISPATCHTIMEOUTto indicate a timeout. The old hook is returned. The type
PL_dispatch _hook _t is defined as:

typedef int (*PL_dispatch_hook_t)(void);

void PL _abort_hook(PL_abort hookt)
Install a hook wherabort/0 is executed. SWI-Prologbort/0 is implemented using C
setimp()/longjmp() construct. The hooks are executed in the reverse order of their registra-
tion after the longjmp() took place and before the Prolog toplevel is reinvoked. The type
PL_abort _hook _t is defined as:

typedef void (*PL_abort_hook t)(void);

int PL_abort_unhook(PL_abort.hookt)
Remove a hook installed witAL _abort _hook() . Returns=FALSEIif no such hook is found,

TRUEotherwise.

void PL_on_halt(void (*f)(int, void *), void *closurg
Register the functiof to be called if SWI-Prolog is halted. The function is called with two
arguments: the exit code of the process (0 if this cannot be determined on your operating system)
and theclosureargument passed to tiR_on _halt() call. See alsat _halt/1

PL_agc _hook _t PL_agchook(PL_agchookt new
Register a hook with the atom-garbage collector @dage _collect _atoms/O thatis
called on any atom that is reclaimed. The old hook is returned. If no hook is currently defined,
NULL s returned. The argument of the called hook is the atom that is to be garbage collected.
The return value is amt . If the return value is zero, the atomnst reclaimed. The hook
may invoke any Prolog predicate.

The example below defines a foreign library for printing the garbage collected atoms for debug-
ging purposes.

#include <SWI-Stream.h>
#include <SWI-Prolog.h>

SWI-Prolog 4.0 Reference Manual

172 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

static int
atom_hook(atom_t a)
{ Sdprintf("AGC: deleting %s\n", PL_atom_chars(a));

return TRUE;
}

static PL_agc_hook_t old;

install_t

install()

{ old = PL_agc_hook(atom_hook);
}

install_t

uninstall()

{ PL_agc_hook(old);
}

5.6.18 Storing foreign data

This section provides some hints for handling foreign data in Prolog. With foreign data, we refer to
data that is used by foreign language predicates and needs to be passed around in Prolog. Excluding
combinations, there are three principal options for storing such data

e Natural Prolog data
E.i. using the representation one would choose if there was no foreign interface required.

e Opaque packed Prolog data
Data can also be represetented in a foreign structure and stored on the Prolog stacks using
PL_put _string _nchars() and retrieved usingL_get _string _chars() . Itis gener-
ally good practice to wrap the string in a compound term with arity 1, so Prolog can identify the
type.portray/l rules may be used to streamline printing such terms during development.

o Natural foreign data, passing a pointer
An alternative is to pass a pointer to the foreign data. Again, this functor may be wrapped in a
compound term.

The choice may be guided using the following distinctions

e Is the data opaque to Prolog
With ‘opaque’ data, we refer to data handled in foreign functions, passed around in Prolog, but
of which Prolog never examines the contents of the data itself. If the data is opaque to Prolog,
the choosen representation does not depend on simple analysis by Prolog, and the selection will
be driven solely by simplicity of the interface and performance (both in time and space).

e How big is the data
Is effient encoding required? For examine, a boolean aray may be expressed as a compound
term, holding integers each of which contains a number of bits, or as atisteof andfalse

SWI-Prolog 4.0 Reference Manual

5.6. THE FOREIGN INCLUDE FILE 173

e What is the nature of the data
For examples in C, constants are often expressed using ‘enum’ or #define’'d integer values. If
prolog needs to handle this data, atoms are a more logical choice. Whether or not this mapping
is used depends on whether Prolog needs to interpret the data, how important debugging is and
how important performance is.

e What is the lifetime of the data
We can distinguish three cases.

1. The lifetime is dictated by the accesibility of the data on the Prolog stacks. Their is no
way by which the foreign code when the data becomes ‘garbage’, and the data thus needs
to be represented on the Prolog stacks using Prolog data-types. (2),

2. The data lives on the ‘heap’ and is explicitly allocated and deallocated. In this case,
representing the data using native foreign representation and passing a pointer to it is a
sensible choice.

3. The data lives as during the lifetime of a foreign predicate. If the predicate is deterministic,
foreign automatic variables are suitable. if the predicate is non-deterministic, the data may
be allocated using malloc() and a pointer may be passed. See seétibn

Examples for storing foreign data

In this section, we wull outline some examples, covering typical cases. In the first example, we will
deal with extending Prolog’s data representation with integer-sets, represented as bit-vectors. In the
second example, we look at handling a ‘netmask’. Finally, we discuss the outline of the DDE interface.

Integer sets with not-to-far-apart upper- and lower-bounds can be represented using bit-vectors.
Common set operations, such as union, intersection, etc. are reduced to simple and’ing and or’ing the
bitvectors. This can be done in Prolog, using a compound term holding integer arguments. Especially
if the integers are kept below the maximum tagged integer valuec(seent _prolog _flag/2),

this representation is fairly space-efficient (wasting 1 word for the functor and and 7 bits per integer
for the tags). Arithmetic can all be performed in Prolog too.

For really demanding applications, foreign representation will perform better, especially time-
wise. Bit-vectors are natrually expressed using string objects. If the string is wrapped in
bitvector/1 , lower-bound of the vector is 0, and the upperbound is not defined, an implemen-
tation for getting and putting the setes as well as the union predicate for it is below.

#include <SWI-Prolog.h>

#define max(a, b) (@ > (b) ? (@) : (b))
#define min(a, b) ((@) < (b) ? (a) : (b))

static functor_t FUNCTOR_bitvectorl;

static int
get_bitvector(term_t in, int *len, unsigned char **data)
{ if (PL_is_functor(in, FUNCTOR_bitvectorl))

{ term_t a = PL_new_term_ref();

SWI-Prolog 4.0 Reference Manual

174 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

PL _get _arg(l, in, a);
return PL_get_string(a, (char **)data, len);

}

PL_fail;
}

static int
unify_bitvector(term_t out, int len, const unsigned char *data)

{ if (PL_unify_functor(out, FUNCTOR_bitvectorl))
{ term_t a = PL_new_term_ref();

PL_get_arg(1, out, a);

return PL_unify_string_nchars(a, len, (const char *)data);

}

PL_fail;
}

static foreign_t
pl_bitvector_union(term_t t1, term_t t2, term_t u)
{ unsigned char *sl1, *s2;

int 11, 12;

if (get bitvector(tl, &I1, &sl) &&
get_bitvector(t2, &2, &s2))
{ int I = max(I1, 12);
unsigned char *s3 = alloca(l);

if (s3)
{ int n;
int ml = min(11, 12);

for(n=0; n<ml; n++)
s3[n] = s1[n] | s2[n];

for(; n < I1; n++)
s3[n] = sl1[n];

for(; n < 12; n++)
s3[n] = s2[n];

return unify_bitvector(u, |, s3);

}

return PL_warning("Not enough memory");

}

SWI-Prolog 4.0 Reference Manual

5.6. THE FOREIGN INCLUDE FILE 175

PL_fail;

install_t
install()
{ PL_reqister_foreign("bitvector_union”, 3, pl_bitvector_union, 0);

FUNCTOR_bitvectorl = PL_new_functor(PL_new_atom("bitvector"), 1);
}

Netmask’s are used with TCP/IP configuration. Suppose we have an application dealing with rea-
soning about a network configuration. Such an application requires communicating netmask struc-
tures from the operating system, reasoning about them and possibly communicate them to the user.
A netmask consists of 4 bitmasks between 0 and 255. C-application normally see them as an 4-byte
wide unsigned integer. SWI-Prolog cannot do that, as integers are always signed.

We could use the string approach outlined above, but this makes it hard to handle these terms
in Prolog. A better choice is a compound tematmask/4 , holding the 4 submasks as integer
arguments.

As the implementation is trivial, we will omit this here.

The DDE interface (see sectior3.46) represents another common usage of the foreign interface:
providing communication to new operating system features. The DDE interface requires knowledge
about active DDE server and client channels. These channels contains various foreign data-types.
Such an interface is normally achieved using an open/close protocol that creates and désinoyes a
The handle is a reference to a foreign data-structure containing the relevant information.

There are a couple of possibilities for representing the handle. The choice depends on respon-
sibilities and debugging facilities. The simplest aproach is to uBihginify _pointer() and
PL_get _pointer() . This approach is fast and easy, but has the drawbacks of (untyped) point-
ers: there is no reliable way to detect the validity of the pointer, not to verify it is pointing to a
structure of the desired type. The pointer may be wrapped into a compound term with arity 1 (i.e.,
dde channel((Pointen)), making the type-problem less serious.

Alternatively (used in the DDE interface), the interface code can maintain a (preferably variable
length) array of pointers and return the index in this array. This provides better protection. Especially
for debugging purposes, wrapping the handle in a compound is a good suggestion.

5.6.19 Embedding SWI-Prolog in a C-program

As of version 2.1.0, SWI-Prolog may be embedded in a C-program. To reach at a compiled C-program
with SWI-Prolog as an embedded application is very similar to creating a statically linked SWI-Prolog
executable as described in sectiod. 1

The file\ldots/pl/include/stub.c defines SWI-Prologs default main program:

int
main(int argc, char **argv)

SWI-Prolog 4.0 Reference Manual

176 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

{ if ('PL_initialise(argc, argv))
PL_halt(1);

PL_install_readline(); /* delete if you don't want read-
line */

PL_halt(PL_toplevel() ? 0 : 1);
}

This may be replaced with your own main C-program. The interface fun&iomitialise()

must be called before any of the other SWI-Prolog foreign language functions described in this chap-
ter. PL_initialise() interprets all the command-line arguments, except forthetoplevel

flag that is interpreted biL _toplevel()

int PL_initialise(int argc, char **argv)
Initialises the SWI-Prolog heap and stacks, restores the boot QLF file, loads the system and
personal initialisation files, runs theg _initialization/1 hooks and finally runs the
-g goal hook.

Special consideration is required fargv[0] . OnUnix, this argument passes the part of the
commandline that is used to locate the executable. Prolog uses this to find the file holding the
running executable. Th&/indows version uses this to findrmaoduleof the running executable.

If the specified module cannot be found, it tries the modibfa.dll , containing the Prolog
runtime kernel. In all these cases, the resulting file is used for two purposes

e See whether a Prolog saved-state is appended to the file. If this is the case, this state will
be loaded instead of the defahtiot.prc file from the SWI-Prolog home directory. See
alsogsave _program/[1,2] and sectiorp.7.

e Find the Prolog home directory. This process is described in detail in séction

PL_initialise() returns 1 if all initialisation succeeded and 0 otherwise.

In most casesargc and argv will be passed from the main program. It is allowed to create
your own argument vector, providedgv[0] is constructed according to the rules above. For
example:

int

main(int argc, char **argv)
{ char *av[10];

int ac = 0O;

av[ac++] = argv[0];
av[ac++] = "-x"
avjac++] = "mystate";
aviac] = NULL;

if (!'PL_initialise(ac, av))

SBUG: Various fatal errors may cause Riitialise to callPL_halt(1), preventing it from returning at all.

SWI-Prolog 4.0 Reference Manual

5.7. LINKING EMBEDDED APPLICATIONS USING PLLD 177

PL_halt(1);

Please note that the passed argument vector may be referred from Prolog at any time and should
therefore be valid as long as the Prolog engine is used.

A good setup in Windows is to add SWI-Prologpg directory to yourPATHand either pass
a module holding a saved-state,"bbpl.dlIl" asargv[0]

int PL_is_initialised(int *argc, char ***argv)
Test whether the Prolog engine is already initialised. RetBAISSEif Prolog is not initialised
andTRUEotherwise. If the engine is initialised aatdycis notNULL, the argument count used
with PL_initialise() is stored inargc. Same for the argument vectargyv.

void PL_install_readline()
Installs the GNU-readline line-editor. Embedded applications that do not use the Prolog toplevel
should normally delete this line, shrinking the Prolog kernel significantly.

int PL_toplevek)
Runs the goal of thet toplevel switch (defaultprolog/0) and returns 1 if successful,
0 otherwise.

void PL_cleanup(int statug
This function performs the reverse BL _initialise() . It runs thePL_on_halt() and
at _halt/1 handlers, closes all streams (except for the ‘standard I/O’ streams which are
flushed only), deallocates all memory and restores all signal handlers statusargument
is passed to the various termination hooks and indicatesxifistatus

This function allows deleting and restarting the Prolog system in the same process. Use it with
care, asPL_initialise() is a costly function. Unix users should consider using exec()
(available as part of the clib package,).

void PL_halt(int statu3
Cleanup the Prolog environment usiR@i_cleanup() and calls exit() with the status argu-
ment.

5.7 Linking embedded applications using plid

The utility progranmplld (Win32: plid.exe) may be used to link a combination of C-files and Prolog

files into a stand-alone executabpdld automates most of what is described in the previous sections.
In the normal usage, a copy is made of the default embedding terigiats/pl/include/

stub.c . The main() routine is modified to suit your applicatiofRL_initialise() must

be passed the program-namergv[0]) (Win32: the executing program can be obtained using

GetModuleFileName()). The other elements of the command-line may be modified. [g8dt,

is typically invoked as:

plid -0 output stubfile.c [other-c-or-o-files] [plfiles]

SWI-Prolog 4.0 Reference Manual

178 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

plld will first split the options into various groups for both the C-compiler and the Prolog compiler.
Next, it will add various default options to the C-compiler and call it to create an executable holding
the user’'s C-code and the Prolog kernel. Then, it will call the SWI-Prolog compiler to create a saved
state from the provided Prolog files and finally, it will attach this saved state to the created emulator
to create the requested executable.

Below, it is described how the options are split and which additional options are passed.

-help
Print brief synopsis.

-pl prolog
Select the prolog to use. This prolog is used for two purposes: get the home-directory as well
as the compiler/linker options and create a saved state of the Prolog code.

-Id linker
Linker used to link the raw executable. Default is to use the C-compiler (Win32: link.exe).

-cc C-compiler
Compiler for.c files found on the commandline. Default is the compiler used to build SWI-
Prolog (seeurrent _prolog _flag/2) (Win32: cl.exe).

-C++ C++-compiler
Compiler for C++ sources (extensiorpp , .cxx ,.cc or.C) files found on the command-
line. Default isc++ or g++ if the C-compiler isgcc) (Win32: cl.exe).

-nostate
Just relink the kernel, do not add any Prolog code to the new kernel. This is used to create a
new kernel holding additional foreign predicates on machines that do not support the shared-
library (DLL) interface, or if building the state cannot be handled by the default procedure used
by plld . In the latter case the state is created seperately and appended to the kernel using
cat (kerne) (state > (out) (Win32:copy /b (kerne)+(state (out))

-pl-options,. ..
Additional options passed to Prolog when creating the saved state. The first character immedi-
ately followingpl-options is used as separator and translated to spaces when the argument
is built. Example:-pl-options,-F,xpce passedF xpce as additional flags to Prolog.

-ld-options,...
Passes options to the linker, similar-fd-options

-cc-options,...
Passes options to the C/C++ compiler, similasgboptions

Select verbose operation, showing the various programs and their options.

-0 outfile
Reserved to specify the final output file.

-llibrary
Specifies a library for the C-compiler. By defaulipl (Win32: libpl.lib) and the libraries
needed by the Prolog kernel are given.

SWI-Prolog 4.0 Reference Manual

5.7. LINKING EMBEDDED APPLICATIONS USING PLLD 179

-L library-directory
Specifies a library directory for the C-compiler. By default the directory containing the Prolog
C-library for the current architecture is passed.

-g | -1 include-directory | -D definition
These options are passed to the C-compiler. By default, the include directory containing
SWI-Prolog.h is passedplld adds two additionai -D def flags:

-D__SWI_PROLOG
Indicates the code is to be connected to SWI-Prolog.

-D__SWI_LEMBEDDED
Indicates the creation of an embedded program.

0|.c|*.C|*.cxx|*.cpp
Passed as input files to the C-compiler

* *
pl [*.qglf
Passed as input files to the Prolog compiler to create the saved-state.

I.e. all other options. These are passed as linker options to the C-compiler.

5.7.1 A simple example

The following is a very simple example going through all the steps outlined above. It provides an
arithmetic expression evaluator. We will call the applicatailc and define it in the filesalc.c
andcalc.pl . The Prolog file is simple:

calc(Atom) :-
term_to_atom(Expr, Atom),
A is Expr,
write(A),
nl.

The C-part of the application parses the command-line options, initialises the Prolog engine, locates
the calc/1 predicate and calls it. The coder is in figufe
The application is now created using the following command-line:

% plld -0 calc calc.c calc.pl
The following indicates the usage of the application:

% calc pi/2
1.5708

SWI-Prolog 4.0 Reference Manual

180 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

#include <stdio.h>
#include <SWI-Prolog.h>

#define MAXLINE 1024

int

main(int argc, char **argv)

{ char expression[MAXLINE];
char *e = expression;
char *program = argv[0];
char *plav[2];
int n;

/* combine all the arguments in a single string */

for(n=1; n<argc; n++)
{if(n!l=1)

*o++ = %
strcpy(e, argv[n));
e += strlen(e);

}

/* make the argument vector for Prolog */

plav[0]
plav[1]

program;
NULL;

/* initialise Prolog */

if (!'PL_initialise(1, plav))
PL_halt(1);

/* Lookup calc/l and make the arguments and call */
{ predicate_t pred = PL_predicate("calc”, 1, "user");
term_t hO = PL_new_term_refs(1);

int rval;

PL_put_atom_chars(hO, expression);
rval = PL_call_predicate(NULL, PL_Q_NORMAL, pred, h0);

PL_halt(rval ? 0 : 1);
}

return O;

SWI-Prolog 4.0 Reference Manual

5.8. THE PROLOG ‘HOME’ DIRECTORY 181

5.8 The Prolog ‘home’ directory

Executables embedding SWI-Prolog should be able to find the ‘home’ directory of the devel-
opment environment unless a self-contained saved-state has been added to the executable (see
gsave _program/[1,2] and sectiorb.7).

If Prolog starts up, it will try to locate the development environment. To do so, it will try the
following steps until one succeeds.

1. If the environment variabl8 WI_HOMEDIR is defined and points to an existing directory, use
this.

2. If the environment variabl8 WIPL is defined and points to an existing directory, use this.

3. Locate the primary executable or (Windows only) a componeradyul§ thereof and check
whether the parent directory of the directory holding this file contains thewilpl . If so,
this file contains the (relative) path to the home directory. If this directory exists, use this. This
is the normal mechanism used by the binary distribution.

4. If the precompiled path exists, use it. This is only useful for a source installation.

If all fails and there is no state attached to the executable or provided Windows module (see
PL_initialise()), SWI-Prolog gives up. If a state is attached, the current working directory is
used.

Thefile _search _path/2 aliasswi is set to point to the home directory located.

5.9 Example of Using the Foreign Interface

Below is an example showing all stages of the declaration of a foreign predicate that transforms atoms
possibly holding uppercase letters into an atom only holding lower case letters. Bigsteows the
C-source file, figur®.7 illustrates compiling and loading of foreign code.

SWI-Prolog 4.0 Reference Manual

182 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

/* Include file depends on local installation */
#include <SWiI-Prolog.h>

#include <stdlib.h>

#include <ctype.h>

foreign_t
pl_lowercase(term_t u, term_t I)
{ char *copy;

char *s, *q;

int rval;

if (!PL_get _atom_chars(u, &s))
return PL_warning("lowercase/2: instantiation fault");
copy = malloc(strlen(s)+1);

for(g=copy; *s; gq++, s++)
*q = (isupper(*s) ? tolower(*s) : *s);

*q = \0’;

rval = PL_unify_atom_chars(l, copy);

free(copy);

return rval;

}

install_t
install()
{ PL_register_foreign("lowercase", 2, pl_lowercase, 0);

}

Figure 5.6: Lowercase source file

SWI-Prolog 4.0 Reference Manual

5.9. EXAMPLE OF USING THE FOREIGN INTERFACE 183

% gcc -l/usr/local/lib/pl-\plversion/include -fpic -c lowercase.c

% gcc -shared -o lowercase.so lowercase.o

% pl

Welcome to SWI-Prolog (Version \plversion)

Copyright (c) 1993-1996 University of Amsterdam. All rights reserved.
For help, use ?- help(Topic). or ?- apropos(Word).

1 ?- load_foreign_library(lowercase).

Yes
2 ?- lowercase('Hello World!", L).

L = 'hello world!

Yes

Figure 5.7: Compiling the C-source and loading the object file

SWI-Prolog 4.0 Reference Manual

184 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

5.10 Notes on Using Foreign Code

5.10.1 Memory Allocation

SWiI-Prolog’s memory allocation is based on thalloc(3) library routines. Foreign applications
can safely usenalloc(3), realloc(3) andfree(3). Memory allocation usingprk(2) or
sbrk(2) is not allowed as these calls conflict witalloc(3) .

5.10.2 Debugging Foreign Code

Statically linked foreign code or embedded systems can be debugged normally. Most modern envi-
ronments provide debugging tools for dynamically loaded shared objects or dynamic load libraries.
The following example traces the code of lowercase ugiftg{ 1) in a Unix environment.

% gcc -l/usr/local/lib/pl-2.2.0/include -fpic -c -g lowercase.c

% gcc -shared -o lowercase.so lowercase.o

% gdb pl

(gdb) r

Welcome to SWI-Prolog (Version \plversion)

Copyright (c) 1993-1996 University of Amsterdam. All rights reserved.

For help, use ?- help(Topic). or ?- apropos(Word).

?- load_foreign_library(lowercase).

<type Control-C>

(gdb) shared % loads symbols for shared objects
(gdb) break pl_lowercase

(gdb) continue

?- lowercase("HELLO’, X).

5.10.3 Name Conflicts in C modules

In the current version of the system all public C functions of SWI-Prolog are in the symbol table.
This can lead to name clashes with foreign code. Someday | should write a program to strip all these
symbols from the symbol table (why does Unix not have that?). For now | can only suggest to give
your function another name. You can do this using the C preprocessor. If—for example—your foreign
package uses a function warning(), which happens to exist in SWI-Prolog as well, the following macro
should fix the problem.

#define warning warning_

Note that shared libraries do not have this problem as the shared library loader will only look for
symbols in the main executable for symbols that are not defined in the library itself.
5.10.4 Compatibility of the Foreign Interface

The term-reference mechanism was first used by Quintus Prolog version 3. SICStus Prolog version 3
is strongly based on the Quintus interface. The described SWI-Prolog interface is similar to using the

SWI-Prolog 4.0 Reference Manual

5.10. NOTES ON USING FOREIGN CODE 185

Quintus or SICStus interfaces, defining all foreign-predicate arguments oftgpa . SWI-Prolog
explicitly uses typdunctor _t , while Quintus and SICStus usgsame and (arity). As the names

of the functions differ from Prolog to Prolog, a simple macro layer dealing with the names can also
deal with this detail. For example:

#define QP_put_functor(t, n, a) PL_put_functor(t, PL_new_functor(n, a))

ThePL_unify _*() functions are lacking from the Quintus and SICStus interface. They can easily
be emulated or the put/unify approach should be used to write compatible code.

The PL_open foreign _frame() /PL_close _foreign _frame() combination is
lacking from both other Prologs. SICStus hdd_new_term _refs(0), followed by
PLreset _term _refs() thatallows for discarding term references.

The Prolog interface for the graphical user interface package XPCE shares about 90% of the code
using a simple macro layer to deal with different naming and calling conventions of the interfaces.

SWI-Prolog 4.0 Reference Manual

Generating Runtime
Applications

This chapter describes the features of SWI-Prolog for delivering applications that can run without the
development version of the system installed.

A SWI-Prolog runtime executable is a file consisting of two parts. The first part isrthéator
which is machine dependent. The second part ig¢Beurce archivewhich contains the compiled
program in a machine-independent format, startup options and possibly user-adefioettes see
resource/3 andopen _resource/3

These two parts can be connected in various different ways. The most common way for distributed
runtime applications is tooncatenatéhe two parts. This can be achieved using external commands
(Unix: cat , Windows: copy), or using thestand _alone option togsave _program/2 . The
second option is to attach a startup script in front of the resource that starts the emulator with the
proper options. This is the default under Unix. Finally, an emulator can be told to use a specified
resource file using thex commandline switch.

gsaveprogram(+File, +ListOfOptiong
Saves the current state of the program to theHille. The result is a resource archive contain-
ing a saved-state that expresses all Prolog data from the running program and all user-defined
resources. Depending on teand _alone option, the resource is headed by the emulator, a
Unix shell-script or nothing.

ListOfOptionsis a list of (Key) = (Value or (Key)((Value)) pairs. The available keys are
described in tablé.1.

Before writing the data to filegsave _program/2 will run autoload/0 to all required
autoloading the system can discover. Satwload/0

Provided the application does not require any of the Prolog libraries to be loaded at runtime, the
only file from the SWI-Prolog development environment required is the emulator itself. The
emulator may be built in two flavours. The default is ttevelopment emulatoiThe runtime
emulatoris similar, but lacks the tracer.

If the optionstand _alone(on) is present, the emulator is the first part of the state. If the
emulator is started it will test whether a boot-file (state) is attached to the emulator itself and
load this state. Provided the application has all libraries loaded, the resulting executable is
completely independent of the runtime environment or location where it was build.

See also section.

gsaveprogram(+File)
Equivalent togsave _program(File, [])

autoload
Check the current Prolog program for predicates that are referred to, are undefined and have a
definition in the Prolog library. Load the appropriate libraries.

SWI-Prolog 4.0 Reference Manual

187

Key Option Type Description

local -L K-bytes Size (Limit) of local stack

global -G K-bytes Size (Limit) of global stack

trail -T K-bytes Size (Limit) of trail stack

argument -A K-bytes Size (Limit) of argument stack

goal -g atom Initialisation goal

toplevel -t atom Prolog toplevel goal

init_file -f atom Personal initialisation file

class atom If runtime , only read resources from the state
(default). Ifkernel , lock all predicates as sys-
tem predicates Iflevelopment , save the pred;
icates in their current state and keep reading|re-
sources from their source (if present). See also
resource/3

autoload bool If true, runautoload/0 first

map file File to write info on dump

op save/standard Save operator declarations?

standalone bool Include the emulator in the state

emulator file Emulator attached to the (stand-alone) executable.
Default is the running emulator.

This predicate is used lysave _program/[1,2]

Table 6.1:(Key) = (Value pairs forgsave _program/2

to ensure the saved state will not depend

on one of the libraries. The predicatetoload/0 will find all direct references to predicates.

It does not find predicates referenced via meta-predicates. The predicate log/2 is defined in the
library(quintus) to provide a quintus compatible means to compute the natural logarithm of a
number. The following program will behave correctly if its state is executed in an environment
where the library(quintus) is not available:

logtable(From, To) :-
From > To, .

logtable(From, To) :-
log(From, Value),
format("d"t"8|"2f'n’, [From, Value]),
F is From + 1,
logtable(F, To).

However, the following implementation refers to log/2 through the meta-predicate
maplist/3 . Autoload will not be able to find the reference. This problem may be fixed
either by loading the module libtary(quintus) explicitly or usguire/1 to tell the system
that the predicate log/2 is required by this module.

logtable(From, To) :-
findall(X, between(From, To, X), Xlist),

SWI-Prolog 4.0 Reference Manual

188 CHAPTER 6. GENERATING RUNTIME APPLICATIONS

maplist(log, Xlist, SineList),
write_table(Xlist, SineList).

write_table([], []).

write_table([I|IT], [VIVT]) :-
format("dt"8|72fn’, [I, V]),
write_table(IT, VT).

volatile +Name/Arity, ...
Declare that the clauses of specified predicates shmilde saved to the program. The volatile
declaration is normally used to avoid that the clauses of dynamic predicates that represent data
for the current session is saved in the state file.

6.1 Limitations of gsaveprogram

There are three areas that require special attention whengsiivg _program/[1,2]

o If the program is an embedded Prolog application or uses the foreign language interface, care
has to be taken to restore the appropriate foreign context. See seé¢tfon details.

o If the program uses directives (goal. lines) that perform other actions then setting predi-
cate attributes (dynamic, volatile, etc.) or loading files (consult, etc.), the directive may need to
be prefixed withinitialization/1

e Database references as returnedlayse/3 ,recorded/3 |, etc. are not preserved and may
thus not be part of the database when saved.

6.2 Runtimes and Foreign Code

Some applications may need to use the foreign language interface. Object code is by definition
machine-dependent and thus cannot be part of the saved program file.
To complicate the matter even further there are various ways of loading foreign code:

e Using the library(shlib) predicates
This is the preferred way of dealing with foreign code. It loads quickly and ensures an accept-
able level of independence between the versions of the emulator and the foreign code loaded. It
works on Unix machines supporting shared libraries and library functions to load them. Most
modern Unixes, as well as Win32 (Windows 95/NT) satisfy this constraint.

e Static linking
This mechanism works on all machines, but generally requires the same C-compiler and linker
to be used for the external code as is used to build SWI-Prolog itself.

To make a runtime executable that can run on multiple platforms one must make runtime checks
to find the correct way of linking. Suppose we have a source¥fjlextension defining the instal-
lation functioninstall()

If this file is compiled into a shared librarlpad _foreign _library/1 will load this library
and call the installation function to initialise the foreign code. If it is loaded as a static extension,
defineinstall() as the predicatimstall/O

SWI-Prolog 4.0 Reference Manual

6.3. USING PROGRAM RESOURCES 189

static foreign_t

pl_install()
{ install();
PL_succeed;
}
PL_extension PL_extensions [] =
{
[*{ "name", arity, function, PL_FA <flags> },*/
{ "install", O, pl_install, 01}
{ NULL, 0, NULL, 0} [* terminat-
ing line */
3

Now, use the following Prolog code to load the foreign library:

load_foreign_extensions :-
current_predicate(install, install), !, % static loaded
install.

load_foreign_extensions :- % shared library
load_foreign_library(foreign(myextension)).

;- initialization load_foreign_extensions.

The path aliaforeign is defined byfile _search _path/2 . By default it searches the di-
rectories(home/lib/ (arch) and (home/lib . The application can specify additional rules for
file _search _path/2

6.3 Using program resources

A resourceis very similar to a file. Resources however can be represented in two different formats:
on files, as well as part of the resouehiveof a saved-state (sepsave _program/2).

A resource has mameand aclass The sourcedata of the resource is a file. Resources
are declared by declaring the predicagsource/3 . They are accessed using the predicate
open _resource/3

Before going into details, let us start with an example. Short texts can easily be expressed in
Prolog sourcecode, but long texts are cumbersome. Assume our application defines a command ‘help’
that prints a helptext to the screen. We put the content of the helptext into a file balfetkt
The following code implements our help command such that help.txt is incorperated into the runtime
executable.

resource(help, text, ’'help.txt’).

help :-
open_resource(help, text, In),

SWI-Prolog 4.0 Reference Manual

190 CHAPTER 6. GENERATING RUNTIME APPLICATIONS

copy_stream(ln, user_output),
close(In).

copy_stream(ln, Out) :-
getO(In, C),
copy_stream(C, In, Out).

copy_stream(-1, ,) :- L
copy_stream(C, In, Out) :-
put(Out, C),
getO(In, C2),
copy_stream(C2, In, Out).

The predicatenelp/0 opens the resource as a Prolog stream. If we are executing this from the
development environment, this will actually return a stream tatip.txt itself. When executed

from the saved-state, the stream will actually be a stream opened on the program resource file, taking
care of the offset and length of the resource.

6.3.1 Predicates Definitions

resource(-Name, +Class, +FileSpéc
This predicate is defined as a dynamic predicate in the madkde . Clauses for it may be
defined in any module, including the user modiNemeis the name of the resource (an atom).
A resource name may contain any character, except for $ and :, which are reserved for internal
usage by the resource libra@lassdescribes the what kind of object is stored in the resource.
In the current implementation, it is just an atoRileSpeds a file specification that may exploit
file _search _path/2 (seeabsolute _file _name/2).

Normally, resources are defined as unit clauses (facts), but the definition of this predicate also
allows for rules. For proper generation of the saved state, it must be possible to enumerate the
available resources by calling this predicate with all its arguments unbound.

Dynamic rules are useful to turn all files in a certain directory into resources, without specifying
a resources for each file. For example, assumdilthe _search _path/2 icons refers to

the resource directory containing icon-files. The following definition makes all these images
available as resources:

resource(Name, image, icons(XpmName)) :-
atom(Name), !,
file_name_extension(Name, xpm, XpmName).
resource(Name, image, XpmkFile) :-
var(Name),
absolute_file_name(icons(.), [type(directory)], Dir)
concat(Dir, '/*.xpm’, Pattern),
expand_file_name(Pattern, XpmFiles),
member(XpmFile, XpmFiles).

SWI-Prolog 4.0 Reference Manual

6.4. FINDING APPLICATION FILES 191

openresourcetName, ?Class, -Stregm
Opens the resource specifiedgmeandClass If the latter is a variable, it will be unified to
the class of the first resource found that has the spedifsade If successfulStreambecomes
a handle to a binary input stream, providing access to the content of the resource.

The predicat®pen _resource/3 first checksresource/3 . When succesful it will open

the returned resource source-file. Otherwise it will look in the programs resource database.
When creating a saved-state, the system normally saves the resource contents into the resource
archive, but does not save the resource clauses.

This way, the development environment uses the files (and modifications riesiherce/3
declarations and/or files containing resource info thus immediately affect the running environ-
ment, while the runtime system quickly accesses the system resources.

6.3.2 Theplrc program

The utility programplrc can be used to examine and manipulate the contents of a SWI-Prolog
resource file. The options are inspired by the Uarixprogram. The basic command is:

% plrc option resource-file member ...
The options are described below.

[
List contents of the archive.

X
Extract named (or all) members of the archive into the current directory.

a
Add files to the archive. If the archive already contains a member with the same name, the
contents is replaced. Anywhere in the sequence of members, the optilass= classand
--encoding= encodingmay appear. They affect the class and encoding of subsequent files.
The initial class iglata and encodingione .

d

Delete named members from the archive.

This command is also described in §hi¢ 1) Unix manual page.

6.4 Finding Application files

If your application uses files that are not part of the saved program such as database files, configuration
files, etc., the runtime version has to be able to locate these files.fil€he_search _path/2
mechanism in combination with the alias command-line argument is the preferred way to locate
runtime files. The first step is to define an alias for the toplevel directory of your application. We will
call this directorygnatdir in our examples.

A good place for storing data associated with SWI-Prolog runtime systems is below the emulator’s
home-directoryswi is a predefined alias for this directory. The following is a useful default definition
for the search path.

SWI-Prolog 4.0 Reference Manual

192 CHAPTER 6. GENERATING RUNTIME APPLICATIONS

user:file_search_path(gnatdir, swi(gnat)).

The application should locate all files using absalfiitee name. Suppose gnatdir contains a ¢ibs-
fig.pl to define local configuration. Then use the code below to load this file:

configure_gnat :-
(absolute_file_name(gnatdir(’config.pl’), ConfigFile)
-> consult(ConfigFile)
; format(user_error, 'gnat: Cannot lo-
cate config.pl'n”),
halt(1)
).

6.4.1 Passing a path to the application

Suppose the system administrator has installed the SWI-Prolog runtime environmfist/in

local/lib/rt-pl-3.2.0 . A user wants to instatinat , but gnat will look for its configuration
in fusr/local/lib/rt-pl-3.2.0/gnat where the user cannot write.
The user decides to install the gnat runtime filegusers/bob/lib/gnat . For one-time

usage, the user may decide to start gnat using the command:

% gnat -p gnatdir=/users/bob/lib/gnat

6.5 The Runtime Environment

6.5.1 The Runtime Emulator

The sources may be used to built two versions of the emulator. By defaultetledopment emulator

is built. This emulator contains all features for interactive development of Prolog applications. If the
system is configured usingenable-runtime , make(1) will create aruntime versiorof the
emulator. This emulator is equivalent to the development version, except for the following features:

¢ No input editing
The GNU library-lreadline that provides EMACS compatible editing of input lines will
not be linked to the system.

e No tracer
The tracer and all its options are removed, making the system a little faster too.

e No profiler
profile/3 and friends are not supported. This saves some space and provides better perfor-
mance.

e No interrupt
Keyboard interrupt (Control-C normally) is not rebound and will normally terminate the appli-
cation.

SWI-Prolog 4.0 Reference Manual

6.5. THE RUNTIME ENVIRONMENT 193

e currentprolog flag(runtime, true) succeeds
This may be used to verify your application is running in the runtime environment rather than
the development environment.

e clause/[2,3] do not work on static predicates
This prolog-flag inhibits listing your program. It is only a very limited protection however.

The following fragment is an example for building the runtime environmefn¢iwv{HOME}/
lib/rt-pl-3.2.0 . If possible, the shared-library interface should be configured to ensure it can
serve a large number of applications.

% cd pl-3.2.0

% mkdir runtime

% cd runtime

% ../src/configure --enable-runtime --prefix=$HOME
% make

% make rt-install

The runtime directory contains the components listed below. This directory may be tar’ed and shipped
with your application.

README.RT Info on the runtime environment
bin/ (arch)/pl | The emulator itself

man/pl.1 Manual page for pl

swipl pointer to the home directory (.
lib/ directory for shared libraries

lib/ (arch)/ machine-specific shared libraries

SWI-Prolog 4.0 Reference Manual

The SWI-Prolog library

This chapter documents the SWI-Prolog library. As SWI-Prolog provides auto-loading, there is little
difference between library predicates and built-in predicates. Part of the library is therefore docu-
mented in the rest of the manual. Library predicates differ from built-in predicates in the following
ways.

e User-definition of a built-in leads to a permission-error, while using the name of a library pred-
icate is allowed.

¢ If autoloading is disabled explicitely or because trapping unknown predicates is disabled (see
unknown/2 andcurrent _prolog _flag/2), library predicates must be loaded explicitely.

e Using libraries reduced the footprint of applications that don’t need them.

The documentation of the library is just started. Material from the standard packages
should be moved here, some material from other parts of the manual should be moved
too and various libraries are not documented at all.

A.1 library(check): Elementary completeness checks

This library defines the predicatheck/0 and a few friends that allow for a quick-and-dirty cross-
referencing.

check
Performs the three checking passes implemented bst _undefined/0
list _autoload/O and list _redefined/0 . Please check the definition of these
predicates for details.

The typical usage of this predicate is right after loading your program to get a quick overview
on the completeness and possible conflicts in your program.

list_undefined
Scans the database for predicates that have no definition. A predicate is considered defined if it
has clauses, is declared usohghamic/1 or multifile/1 . As a program is compiled calls
are translated to predicates. If the called predicate is not yet defined it is created as a predicate
without definition. The same happens with runtime generated calls. This predicate lists all such
undefined predicates that are not defined in the library. Sedistlso_autoload/0

Note: undefined predicates are never removed from the database. For proper results it is there-
fore adviced to rurtheck/0 right after loading your program.

SWI-Prolog 4.0 Reference Manual

A.2. LIBRARY(READUTIL): READING LINES, STREAMS AND FILES 195

list_autoload
Lists all undefined (selist _undefined/0) predicates that have a definition in the library
along with the file from which they will be autoloaded when accessed. Seautisioad/0

list_redefined
Lists predicates that are defined in the global modgler as well as in a normal module. |.e.
predicates for which the local definition overrules the global default definition.

A.2 library(readutil): Reading lines, streams and files

This library contains primitives to read lines, files, multiple terms, etc.

read_line_to_codes¢Stream, -Codés
Read the next line of input frorStreamand unify the result witlfCodes aftethe line has been
read. Aline is ended by a newline character or end-of-file. Unidieel _line _to _codes/3 ,
this predicate removes trailing newline character.

read_line_to_codes-Stream, -Codes, ?T3il
Diference-list version to read an input line to a list of character codes. Reading stops at the
newline or end-of-file character, but unlikead _line _to _codes/2 ,the newline is retained
in the output. This predicate is especially useful for readine a block of lines upto some delimiter.
The following example reads an HTTP header ended by a blank line:

read_header_data(Stream, Header) :-
read_line_to_codes(Stream, Header, Tail),
read_header_data(Header, Stream, Tail).

read_header_data("\r\n", _,) :- L
read_header_data("\n", _,) :- L
read_header_data(™, ,) :- L
read_header_data(_, Stream, Tail) :-
read_line_to_codes(Stream, Tail, NewTail),
read_header_data(Tail, Stream, NewTalil).

read_stream_to_codes¢Stream, -Codes
Read all input until end-of-file and unify the result@@des

read_stream_to_codes¢Stream, -Codes, ?Tall
Difference-list version ofead _stream _to _codes/2 .

read_file_to_codes¢Spec, -Codes, +Options
Read a file to a list of character codes. Spec is a file-specification for
absolute _file _name/3. Codesis the resulting code-list. Optionsis a list of op-
tions for absolute _file _name/3 andopen/4 . In addition, the optiortail (Tail) is
defined, forming a difference-list.

SWI-Prolog 4.0 Reference Manual

196 APPENDIX A. THE SWI-PROLOG LIBRARY

read._file_to_terms(+Spec, -Terms, +Options
Read a file to a list of character codes. Spec is a file-specification for
absolute file _name/3. Termsis the resulting list of Prolog terms.Optionsis a
list of options for absolute _file _name/3 and open/4 . In addition, the option
tail (Tail) is defined, forming a difference-list.

A.3 library(netscape): Activating your Web-browser

This library deals with the very system dependent task of opening a web-browser. See also li-
brary(url).

www_open.url(+URL)
OpenURL in an external web-browser. The reason to place this in the library is to centralise
the maintenance on this highly platform and browser specific task. It distinguishes between the
following cases:

e MS-Windows
If it detects MS-Windows it usewin _shell/l2 to open theURL The behaviour and
browser started depends on the Window and Windows-shell configuration, but in general
it should be the behaviour expected by the user.

e Other platforms
On other platforms it assumes the browsendétscape . It first tries to tell a running
netscape to open the page and only after this fails it starts a new browser.

A.4 library(registry): Manipulating the Windows registry

The libraryfegistry) is only available on the MS-Windows version of SWI-Prolog. It loads the
foreign extensiomlregtry.dll , providing the predicates described below. This library only
makes the most common operations on the registry available through the Prolog user. The underlying
DLL provides a more complete coverage of the Windows registry API. Please consult the sources in
pl/src/win32/foreign/plregtry.c for further details.

In all these predicate®ath refers to a '/’ separated path into the registry. Thisnat an atom
containing ‘/’-characters as used for filenames, but a term using the fufictoiWindows defines the
following roots for the registryclasses _root , current _user ,local _machine andusers

registry _get key(+Path, -Valug
Get the principal (default) value associated to this key. Fails silently of the key does not exist.

registry_get key(+Path, +Name, -Valug
Get a named value associated to this key.

registry _setkey(+Path, +Valué
Set the principal (default) value of this key. Creates (a path to) the key if this does not already
exist.

registry_setkey(+Path, +Name, +Valug
Associated a named value to this key. Creates (a path to) the key if this does not already exist.

SWI-Prolog 4.0 Reference Manual

A.5. LIBRARY(URLD: ANALYSING AND CONSTRUCTING URL 197

registry _delete key(+Path)
Delete the indicated key.

shellregister_file_type(+Ext, +Type, +Name, +OpenActign
Register a file-typeExtis the extension to associat&€ypeis the type name, often something

link prolog.type . Nameis the name visible in the Windows file-type browser. Findlipe-
nActiondefines the action to execute when a file with this extension is opened in the Windows
explorer.

shellregister_dde(+Type, +Action, +Service, +Topic, +Command, +IfNotRunning
Associate DDE actions to a typeTypeis the same type as used for the 2nd argument of
shell _register _file _type/4 , Actionis the a action to perforngerviceandTopicspec-
ify the DDE topic to address anfdommands the command to execute on this topic. Finally,
IfNotRunningdefines the command to execute if the required DDE server is not present.

shellregister_prolog(+Ext)
Default registration of SWI-Prolog, which is invoked as part of the initialisation process on
Windows systems. As the source also explains the above predicates, it is given as an example:

shell_register_prolog(Ext) :-
current_prolog_flag(argv, [Me|_]),

concat_atom(["’, Me, ™ "%1"™], OpenCommand),
shell_regqister_file_type(Ext, ’'prolog.type’, 'Pro-
log Source’,
OpenCommand),

shell_register_dde(’prolog.type’, consult,
prolog, control, 'con-
sult("%1")’, Me),
shell_register_dde('prolog.type’, edit,
prolog, control, 'edit("%1")’, Me).

A.5 library(url): Analysing and constructing URL

This library deals with the analysis and construction of a UBhiversalResourcd_ocator. URL is

the basis for communicating locations of resources (data) on the web. A URL consists of a protocol
identifier (e.g. HTTP, FTP), and a protocol-specific syntax further defining the location. URLs are
standardized in RFC-1738.

The implementation in this library covers only a small portion of the defined protocols. Though the
initial implementation followed RFC-1738 strictly, the current is more relaxed to deal with frequent
violations of the standard encountered in practical use.

This library contains code by Jan Wielemaker who wrote the initial version and Lukas Faulstich
who added various extensions.

parse.url(?URL, ?Part3
Construct or analyse HRL URL is an atom holding a URL or a variabld€artsis a list of
components. Each component is of the foridameValue). Defined components are:

SWI-Prolog 4.0 Reference Manual

198 APPENDIX A. THE SWI-PROLOG LIBRARY

protocol(Protocol)
The used protocol. This is, after the optional: , an identifier separated from the
remainder of the URL using. parse _url/2 assumes thbttp protocol if no protocol
is specified and the URL can be parsed as a valid HTTP url. In addition to the RFC-1738
specified protocols, thie: protocol is supported as well.

host(Hos)
Host-name or IP-address on which the resource is located. Supported by all network-based
protocols.

port(Port)
Integer port-number to access on tHest This only appears if the port is explicitly
specified in the URL. Implicit default ports (e.g. 80 for HTTP) mlat appear in the part-
list.

path(Path)
(File-) path addressed by the URL. This is supported forftfne, http andfile pro-
tocols. If no path appears, the library generates the path

search(istOfNameValug
Search-specification of HTTP URL. This is the part after?h@ormally used to transfer
data from HTML forms that use th&SET protocol. In the URL it consists of a www-
form-encoded list oName=Valuepairs. This is mapped to a list of ProldéameValue
terms with decoded names and values.

fragment(Fragmenj
Fragment specification of HTTP URL. This is the part after#heharacter.

The example below illustrates the all this for an HTTP UTL.

?- parse_url(http://swi.psy.uva.nl/message.cgi?msg=Hello+World%21#x’,
P).
P = [protocol(http),
host(’swi.psy.uva.nl’),
fragment(x),
search([msg = 'Hello World!’
D,
path('/message.cgi’)

].

By instantiating the parts-list this predicate can be used to create a URL.

parseurl(?URL, +BaseURL, ?Parjs
Same aparse _url/2 , but dealing a url that is relative to the givBaseURL This is used to
analyse or construct a URI found in the document beBaseURL

global_url(+URL, +BaseURL, -AbsoluteUyl
Transform a (possibly) relative URL into a global one.

http _location(?Parts, ?Locatioh
Similar toparse _url/2 , but only deals with the location part of an HTTP URL. That is, the
path, search and fragment specifiers. In the HTTP protocaol, the first line of a message is

SWI-Prolog 4.0 Reference Manual

A.5. LIBRARY(URLD: ANALYSING AND CONSTRUCTING URL 199

Action LocatiofHTTP/HttpVersior}

Locationis either an atom or a code-list.

www_form _encodefValue, ?WwwFormEncodged
Translate between a string-literal and the x-www-form-encoded representation used in path and
search specifications of the HTTP protocol.

Encoding implies mapping space to +, preserving alpha-numercial characters, map newlines to
%0D%0A and anything else to %XX. When decoding, newlines appear as a single newline (10)
character.

SWI-Prolog 4.0 Reference Manual

Hackers corner

This appendix describes a number of predicates which enable the Prolog user to inspect the Prolog
environment and manipulate (or even redefine) the debugger. They can be used as entry points for
experiments with debugging tools for Prolog. The predicates described here should be handled with
some care as it is easy to corrupt the consistency of the Prolog system by misusing them.

B.1 Examining the Environment Stack

prolog_current frame(-Frame
Unify Framewith an integer providing a reference to the parent of the current local stack frame.
A pointer to the current local frame cannot be provided as the predicate succeeds deterministi-
cally and therefore its frame is destroyed immediately after succeeding.

prolog_frame_attribute(+Frame, +Key, -Valug
Obtain information about the local stack frafamme Frameis a frame reference as obtained
throughprolog _current _frame/l , prolog _trace _interception/4 or this predi-
cate. The key values are described below.

alternative
Valueis unified with an integer reference to the local stack frame in which execution is
resumed if the goal associated witamefails. Fails if the frame has no alternative frame.

has alternatives
Valueis unified withtrue if Framestill is a candidate for backtrackindalse other-
wise.

goal
Valueis unified with the goal associated wiiname If the definition module of the active
predicate is nouser the goal is represented @sodule: (goal). Do not instantiate
variables in this goal unless ydumow what you are doing!

clause
Value is unified with a reference to the currently running clause. Fails if the current
goal is associated with a foreign (C) defined predicate. Seendttsaclause/3 and
clause _property/2

level
Valueis unified with the recursion level ¢dframe The top level frame is at level ‘0'.

parent
Valueis unified with an integer reference to the parent local stack franfreaohe Fails
if Frameis the top frame.

SWI-Prolog 4.0 Reference Manual

B.2. INTERCEPTING THE TRACER 201
contextmodule
Valueis unified with the name of the context module of the environment.
top
Valueis unified withtrue if Frameis the top Prolog goal from a recursive call back from
the foreign languagdalse otherwise.
hidden
Valueis unified withtrue if the frame is hidden from the user, either because a parent has
the hide-childs attribute (all system predicates), or the system has no trace-me attribute.
pc
Valueis unified with the program-pointer saved on behalve of the parent-goal if the parent-
goal is not owned by a foreign predicate.
argument(N)
Valueis unified with theN-th slot of the frame. Argument 1 is the first argument of the
goal. Arguments above the arity refer to local variables. Fails silenyisfout of range.
B.2 Intercepting the Tracer

prolog_trace_interception(+Port, +Frame, +PC, -Action

Dynamic predicate, normally not defined. This predicate is called from the SWI-Prolog debug-
ger just before it would show a port. If this predicate succeeds the debugger assumes the trace
action has been taken care of and continues execution as descridatidnty Otherwise the

normal Prolog debugger actions are performed.

Port is one ofcall , redo , exit , fail orunify . Frameis an integer reference to the
current local stack framePC is the current value of the program-counter, relative to the start
of the current clause, or 0 if it is invalid, for example because the current frame runs a for-
eign predicate, or no clause has been selected Aetion should be unified with one of the
atomscontinue (just continue executionjetry (retry the current goal) dail (force the
current goal to fail). Leaving it a variable is identicaldontinue

Together with the predicates described in secBot? and the other predicates of this chapter

this predicate enables the Prolog user to define a complete new debugger in Prolog. Besides
this it enables the Prolog programmer monitor the execution of a program. The example below
records all goals trapped by the tracer in the database.

prolog_trace_interception(Port, Frame, _PC, continue) :-
prolog_frame_attribute(Frame, goal, Goal),
prolog_frame_attribute(Frame, level, Level),
recordz(trace, trace(Port, Level, Goal)).

To trace the execution of ‘go’ this way the following query should be given:

?- trace, go, notrace.

SWI-Prolog 4.0 Reference Manual

202 APPENDIX B. HACKERS CORNER

prolog_skip_level(-Old, +New)
Unify Old with the old value of ‘skip level’ and than set this level accordingNien New is
an integer, or the special atovery _deep (meaning don't skip). The ‘skip level’ is a global
variable of the Prolog system that disables the debugger on all recursion levels deeper than the
level of the variable. Used to implement the trace options ‘skip’ (sets skip level to the level of
the frame) and ‘up’ (sets skip level to the level of the parent frame (i.e., the level of this frame
minus 1).

B.3 Hooks using theexception/3 predicate

This section describes the predicateeption/3 , which may be defined by the user in the module
user as a multifile predicate. Unlike the name suggests, this is actudlbolpredicate. Excep-
tions are handled by the ISO predicate¢éch/3 andthrow/1 . They all frames created after the
matchingcatch/3 to be discarded immediately.

The predicateexception/3 is called by the kernel on a couple of events, allowing the user to
alter the behaviour on some predefined events.

exception@-Exception, +Context, -Actign
Dynamic predicate, normally not defined. Called by the Prolog system on run-time exceptions.
Currentlyexception/3 is only used for trapping undefined predicates. Future versions might
handle signal handling, floating exceptions and other runtime errors via this mechanism. The
values forExceptionare described below.

undefined predicate

If Exceptionis undefined _predicate Contextis instantiated to a teriNaméArity.
Name refers to the name andirity to the arity of the undefined predicate.

If the definition module of the predicate is natser Context will be of the
form (Module: (Name/ (Arity). If the predicate fails Prolog will generate an
esistence _error exception. If the predicate succeeds it should instantiate the last
argument either to the atofail to tell Prolog to fail the predicate, the atamtry to

tell Prolog to retry the predicate error to make the system generate an exception. The
actionretry only makes sense if the exception handler has defined the predicate.

B.4 Hooks for integrating libraries

Some libraries realise an entirely new programming paradigm on top of Prolog. An example is XPCE
which adds an object-system to Prolog as well as an extensive set of graphical primitives. SWI-Prolog
provides several hooks to improve the integration of such libraries. See also sgdtfon editing

hooks and sectiof.9.3for hooking into the message system.

prolog_list_goal(:Goal)
Hook, normally not defined. This hook is called by the 'L’ command of the tracer in the module
user to listthe currently called predicate. This hook may be defined to list only relevant clauses
of the indicatedsoal and/or show the actual source-code in an editor. Seepaltoay/1
andmultifile/1

SWI-Prolog 4.0 Reference Manual

B.5. READLINE INTERACTION 203

prolog:debug control _hook(:Action)
Hook for the debugger-control predicates that allows the creator of more high-level program-
ming languages to use the common front-end predicates to control de debugger. For example,
XPCE uses these hooks to allow for spying methods rather then predidatEmis one of:

spy(Speg
Hook inspy/1 . If the hook succeedspy/1l takes no further action.

nospy(Speg
Hook in nospy/1 . If the hook succeedspy/1 takes no further action. Kpy/1 is

hooked, it is advised to place a complementary hooktspy/1 .

nospyall
Hook innospyall/0 . Should remove all spy-points. This hook is called in a failure-
driven loop.

debugging
Hook in debugging/0 . It can be used in two ways. It can report the status of the

additional debug-points controlled by the above hooks and fail to let the system report the
others or it succeed, overruling the entire behaviowdeifugging/0

prolog:help_hook(+Action)
Hook intohelp/0 andhelp/1 . If the hook succeeds, the built-in actions are not executed.
For example?- help(picture). is caught by the XPCE help-hook to give help on the
classpicture Defined actions are:

help
User entered plaihelp/0 to give default help. The default perforrelp(help/1) :
giving help on help.

help(Wha
Hook inhelp/1 on the topicWhat

apropos(Wha
Hook inapropos/1 on the topicWhat

B.5 Readline Interaction

The following predicates are available ¢urrent _prolog _flag(readline, true) suc-
ceeds. They allow for direct interaction with the GNU readline library. Seeratdliine(3)

rl _read.init file(+File)
Read a readline initialisation file. Readline by default readsputrc . This predicate may
be used to read alternative readline initialisation files.

rl _add_history(+Line)
Add a line to the Control-P/Control-N history system of the readline library.

SWI-Prolog 4.0 Reference Manual

Glossary of Terms

anonymous [variable]

The variable_is called theanonymousariable. Multiple occurrences ofin a singletermare
not shared

arguments
Arguments ardermsthat appear in @ompound term Al and a2 are the first and second
argument of the terrmyterm (A1, a2.

arity
Argument count (is number of arguments) af@mpound term

assert

Add aclauseto apredicate Clauses can be added at either end of the clause-ligpfthcate
Seeassert/l andassertz/1

atom
Textual constant. Used as name ompounderms, to represent constants or text.

backtracking
Searching process used by Prolog. If a predicate offers mutfiglssedo solve agoal, they are
tried one-by-one until onsucceedslf a subsequent part of the prove is not satisfied with the
resultingvariable binding it may ask for an alternativeolution (= binding of the variableg,
causing Prolog to reject the previously chostauseand try the next one.

binding [of a variable]
Current value of th@ariable See alsdacktrackingandquery.

built-in [predicate]
Predicate that is part of the Prolog system. Built in predicates cannot be redefined by the user,
unless this is overruled usingdefine _system _predicate/1l

body
Part of aclausebehind theneckoperator (-).

clause
‘Sentence’ of a Prolog program. élauseconsists of eheadandbodyseparated by theeck
operator (-) oritis afact For example:

parent(X) :-
father(X,).

SWI-Prolog 4.0 Reference Manual

205

Expressed “X is a parent if X is a father of someone”. See as@ble andpredicate

compile
Process where a Prolpgogramis translated to a sequence of instructions. Seeialsmpreted
SWiI-Prolog always compiles your program before executing it.

compound [term]
Also calledstructure It consists of a name followed by argumentseach of which aréerms
N is called thearity of the term.

context module
If a termis referring to apredicatein a module the context modulés used to find the target
module. The context module ofgoal is the module in which theredicateis defined, unless
this predicateis module transparentin which case theontext modulés inherited from the
parentgoal See alsanodule _transparent/1

dynamic [predicate]
A dynamicpredicate is a predicate to whichausesmay beasseréd and from whictclauses
may beretracted while the program is running. See aigmate view

exported [predicate]
A predicateis said to beexportedfrom a moduleif it appears in thepublic list This im-
plies that the predicate can baportedinto another module to make it visible there. See also
use _module/[1,2]

fact
Clausewithout abody This is called a fact because interpreted as logic, there is no condition
to be satisfied. The example below stgtédm is a person.
person(john).

fall
A goalis said to haved failed if it could not hgroven

float
Computers cripled representation of a real number. Represented as ‘IEEE double’.

foreign
Computer code expressed in other languages than Prolog. SWI-Prolog can only cooperate
directly with the C and C++ computer languages.

functor
Combination of name anakity of acompounderm. The ternfoo (a, b, g is said to be a term
belonging to the functdioo/3 . foo/0 is used to refer to thatomfoo .

goal

Question stated to the Prolog engine.géal is either anatomor a compounderm. A goal
succeeds, in which case thariablesin the compounderms have dinding or fails if Prolog
fails to prove thegoal.

SWI-Prolog 4.0 Reference Manual

206 APPENDIX C. GLOSSARY OF TERMS

hashing
Indexingtechnique used for quick lookup.

head
Part of aclausebefore theneckinstruction. This is an atom @ompounderm.

imported [predicate]
A predicateis said to bamportedinto amoduleif it is defined in anothemoduleand made
available in thismodule See also chaptek

indexing
Indexing is a technique used to quickly select candidtdasesof a predicatefor a specific
goal. In most Prolog systems, including SWI-Prolog, indexing is done on thediigestment
of the head If this argument is instantiated to atom integer, float or compounderm with
functor, hashingis used quickly select attlausesof which the first argument maynify with
the first argument of thgoal.

integer
Whole number. On most current machines, SWI-Prolog integers are represented
as ‘32-bit signed values’, ranging from -2147483648 to 2147483647. See also
current _prolog _flag/2

interpreted
As opposed tacompiled interpreted means the Prolog system attempts to prayeahby
directly reading thelausesather than executing instructions from an (abstract) instruction set
that is not or only indirectly related to Prolog.

meta predicate
A predicatethat reasons about othpredicates either by calling them, (re)defining them or
queryingproperties

module
Collection of predicates. Each module defines a name-space for predimaites predicates
are accessible from all modules. Predicates can be publisiipdrted andimportedto make
their definition available to other modules.

module transparent [predicate]
A predicatethat does not change tlegentext moduleSometimes also calledraeta predicate

multifile [predicate]
Predicate for which the definition is distributed over multiple source-files. See
multi _file/1

neck
Operator (-) separatindneadfrom bodyin a clause

operator
Symbol @tom) that may be placed before itgperant (prefix), after itsoperant(postfix) or
between its twoperantg(infix).

In Prolog, the expressiaatb is exactly the same as the canonical terta,b)

SWI-Prolog 4.0 Reference Manual

207

operant
Argumentbf anoperator.

precedence
The priority of an operator Operator precedence is used to interpegtb*c as
+(@, *(b,c))

predicate
Collection ofclauseswith the samdunctor (nameérity). If a goalis proved, the system looks
for a predicatewith the same functor, then us@tlexingto select candidatelausesand then
tries theselausesone-by-one. See aldmcktracking

priority
In the context obperatorsa synonym foiprecedence

program
Collection ofpredicates

property
Attribute of an object. SWI-Prolog defines varioupropertypredicates to query the status of
predicates, clauses. etc.

prove
Process where Prolog attempts to prowpiaryusing the availablgredicates

public list
List of predicatesexported from anodule

query
Seegoal

retract
Remove alausefrom apredicate See alsalynamic update viewandassert

shared
Two variablesare calledsharedafter they araunified This implies if either of them i®ound
the other is bound to the same value:

?-A =B, A=a

A = a,
B =a

singleton [variable]
Variableappearing only one time indause SWI-Prolog normally warns for this to avoid you
making spelling mistakes. If a variable appears on purpose only once in a clause, write it as
(seeanonymoujsor make sure the first character is aSee also thetyle _check/1 option
singletons

solution
Bindingsresulting from a successfullyroven goal.

SWI-Prolog 4.0 Reference Manual

208 APPENDIX C. GLOSSARY OF TERMS

structure
Synonym forcompounderm.

string
Used for the following representations of text: a packed array (see s&cH@nSWI-Prolog
specific), a list of character codes or a list of one-charattans

succeed
A goalis said to havesucceedeif it has beerproven

term
Value in Prolog. Atermis either avariable atom integer, float ocompounderm. In addition,
SWiI-Prolog also defines the tygéing

transparent
Seemodule transparent

unify
Prolog process to make two terms equal by assigning variables in one term to values at the
corresponding location of the other term. For example:

?- foo(a, B) = foo(A, b).

A = a,
B=>Db

Unlike assignment (which does not exist in Prolog), unification is not directed.

update view
How Prolog behaves whendynamic predicatés changed while it is running. There are two
models. In most older Prolog systems the change becomes immediately visibleytmthie
modern systems including SWI-Prolog, the runngmalis not affected. Only newoals'see’
the new definition.

variable
A Prolog variable is a value that ‘is not yet bound’. Afteinding a variable, it cannot be
modified. Backtrackingto a point in the execution before the variable was bound will turn it
back into a variable:

?-A=Dhb A=c

No

?- (A = b; true; A = ¢).
A =Db;

A = (G283 ;

A =c;

No

See alsanify.

SWI-Prolog 4.0 Reference Manual

Summary

D.1 Predicates

The predicate summary is used by the Prolog prediaptepos/1

keyword.

1/0
/1

, 12
->[2
*> [2
.12

| 12

abolish/1

abolish/2

abort/0
absolutefile_name/2
absolutefile_name/3
accesdile/2

Cut (discard choicepoints)

Cut block. Sedlock/3
Conjunction of goals
If-then-else

Soft-cut

Consult. Also list constructor
Disjunction of goals. Same §2
Arithmetic smaller

Unification

“Univ.” Term to list conversion
Arithmetic equal

Arithmetic smaller or equal
Identical

Structural identical

Arithmetic not equal

Arithmetic larger

Arithmetic larger or equal
Standard order smaller
Standard order smaller or equal
Standard order larger

Standard order larger or equal
Negation by failure. Same ast/1
Not unifyable

Not identical

Not structural identical
Existential quantificationb@gof/3
Disjunction of goals. Same a2

to suggest predicates from a

, setof/3)

Remove predicate definition from the database
Remove predicate definition from the database
Abort execution, return to top level

Get absolute path name

Get absolute path name with options
Check access permissions of a file

SWI-Prolog 4.0 Reference Manual

210 APPENDIX D. SUMMARY
append/1 Append to a file
append/3 Concatenate lists
apply/2 Call goal with additional arguments
apropos/1 librarygnline _help) Search manual
arg/3 Access argument of a term
arithmeticfunction/1 Register an evaluable function
assert/1 Add a clause to the database
assert/2 Add a clause to the database, give reference
asserta/l Add a clause to the database (first)
asserta/2 Add a clause to the database (first)
assertz/1 Add a clause to the database (last)
assertz/2 Add a clause to the database (last)

attachconsole/0
at end.of_stream/0
atendof_stream/1
at halt/1
at.initialization/1
atom/1
atomchars/2
atomcodes/2
atomlength/2
atom prefix/2
atomto_term/3
atomic/1
autoload/0
bagof/3
between/3
block/3

break/0

call/l

call/[2..]

call_sharedobjectfunction/2

call.with_depthlimit/3
callable/1

catch/3

charcode/2
charconversion/2
chartype/2
charactercount/2
chdir/1

checklist/2

clause/2

clause/3
clauseproperty/2
close/l

close/2
closeddeconversation/1

Attach I/O console to thread

Test for end of file on input

Test for end of file on stream

Register goal to run aalt/1

Register goal to run at start-up

Type check for an atom

Convert between atom and list of characters
Convert between atom and list of ASCII values
Determine length of an atom

Test for start of atom

Convert between atom and term

Type check for primitive

Autoload all predicates now

Find all solutions to a goal

Integer range checking/generating
Start a block (‘catch’/‘throw’)

Start interactive toplevel
Call a goal
Call with additional arguments

UNIX: Call C-function in shared (.so) file
Prove goal with bounded depth

Test for atom or compound term

Call goal, watching for exceptions
Convert between atom and ASCII value

Provide mapping of input characters
Classify characters

Get character index on a stream
Change working directory

Invoke goal on all members of a list
Get clauses of a predicate

Get clauses of a predicate

Get properties of a clause

Close stream

Close stream (forced)

Win32: Close DDE channel

SWI-Prolog 4.0 Reference Manual

D.1. PREDICATES

211

closesharedobject/1
compare/3
compiling/0
compound/1
atom.concat/3
codetype/2
concatatom/2
concatatom/3
consult/1
contextmodule/1
converttime/8
converttime/2
copy.streamdata/2
copy.streamdata/3
copy.term/2

currentarithmeticfunction/1

currentatom/1
currentchar.conversion/2
currentflag/l
currentforeign.library/2

currentformat predicate/2

currentfunctor/2
currentinput/1
currentkey/1
currentmodule/1
currentmodule/2
currentmutex/3
currentop/3
currentoutput/1
currentpredicate/2
currentsignal/3
currentstream/3
currentthread/2
ddecurrentconnection/2
ddecurrentservice/2
dde execute/2
dderegisterservice/2
dderequest/3
ddepoke/3
ddeunregisterservice/l
debug/0
debugcontrolLhook/1
debugging/0
defaultmodule/2
delete/3
deletedirectory/1
deletefile/1

UNIX: Close shared library (.so file)

Compare, using a predicate to determine the order
Is this a compilation run?

Test for compound term

Append two atoms

Classify a character-code

Append a list of atoms

Append a list of atoms with separator
Read (compile) a Prolog source file

Get context module of current goal
Break time stamp into fields

Convert time stamp to string

Copy all data from stream to stream
Copy n bytes from stream to stream
Make a copy of a term

Examine evaluable functions

Examine existing atoms

Query input character mapping
Examine existing flags

library@hlib) Examine loaded shared libraries (.so files)
Enumerate user-defined format codes
Examine existing name/arity pairs

Get current input stream

Examine existing database keys
Examine existing modules

Examine existing modules

Examine existing mutexes

Examine current operator declarations
Get the current output stream

Examine existing predicates

Current software signal mapping
Examine open streams

Examine Prolog threads

Win32: Examine open DDE connections
Win32: Examine DDE services provided
Win32: Execute command on DDE server
Win32: Become a DDE server

Win32: Make a DDE request

Win32: POKE operation on DDE server
Win32: Terminate a DDE service

Test for debugging mode

(hook) Extendpy/1 , etc.

Show debugger status

Get the default modules of a module
Delete all matching members from a list
Remove a folder from the file system
Remove a file from the file system

SWI-Prolog 4.0 Reference Manual

212

APPENDIX D. SUMMARY

discontiguous/1
dwim_match/2
dwim_match/3
dwim_predicate/2
dynamic/1

edit/1
ensureloaded/1
erase/l
exception/3
existsdirectory/1
existsfile/1

exit/2
expandanswer/2
expandfile_name/2
expandfile_searchpath/2
expandgoal/2
expandquery/4
expandterm/2
explain/1

explain/2

export/1
exportlist/2

fail/O

fail/l

currentprolog flag/2
file_basename/2
file_directory name/2
file_nameextension/3
file_searchpath/2
fileerrors/2

findall/3

flag/3

flatten/2

float/1
flush.output/O
flush.output/1
forall/2

format/1

format/2

format/3

format predicate/2
free variables/2
functor/3
garbagecollect/O
garbagecollectatoms/0
gensym/2

get/l

Indicate distributed definition of a predicate
Atoms match in “Do What | Mean” sense
Atoms match in “Do What | Mean” sense
Find predicate in “Do What | Mean” sense
Indicate predicate definition may change
Edit a file
Consult a file if that has not yet been done
Erase a database record or clause
(hook) Handle runtime exceptions
Check existence of directory
Check existence of file
Exit from named block. Sddock/3
Expand answer of query
Wildcard expansion of file names
Wildcard expansion of file paths
Compiler: expand goal in clause-body
Expanded entered query
Compiler: expand read term into clause(s)
libraryéxplain) Explain argument
libraryéxplain) 2nd argument is explanation of first
Export a predicate from a module
List of public predicates of a module
Always false
Immediately fail named block. Sddock/3
Get system configuration parameters
Get file part of path
Get directory part of path
Add, remove or test file extensions
Define path-aliases for locating files
Do/Don’t warn on file errors
Find all solutions to a goal
Simple global variable system
Transform nested list into flat list
Type check for a floating point number
Output pending characters on current stream
Output pending characters on specified stream
Prove goal for all solutions of another goal
Formatted output
Formatted output with arguments
Formatted output on a stream
Prograformat/[1,2]
Find unbound variables in a term
Get name and arity of a term or construct a term
Invoke the garbage collector
Invoke the atom garbage collector
Generate unique atoms from a base
Read first non-blank character

SWI-Prolog 4.0 Reference Manual

D.1. PREDICATES

213

get/2

get0/1

get0/2
getbyte/1
getbyte/2
getchar/l
getchar/2
getcode/l
getcode/2
getsinglechar/l
gettime/1
getenv/2

goal expansion/2
ground/1
guitracer/0
halt/0

halt/1
hashterm/2
help/0

help/1
help.hook/1
ignore/1
import/1
include/1
index/1
initialization/1
int_to_atom/2
int_to_atom/3
integer/1
interactor/O
intersection/3
is/2

is_absolutefile_name/1

is_list/1
is_set/1
keysort/2
last/2

leash/1
length/2
library_directory/1
limit _stack/2
line_count/2
line_position/2
list_to_set/2
listing/0
listing/1

load files/2

Read first non-blank character from a stream
Read next character
Read next character from a stream
Read next byte (ISO)
Read next byte from a stream (1ISO)
Read next character as an atom (ISO)
Read next character from a stream (ISO)
Read next character (ISO)
Read next character from a stream (ISO)
Read next character from the terminal
Get current time
Get shell environment variable
Hook for macro-expanding goals
Verify term holds no unbound variables
Install hooks for the graphical debugger
Exit from Prolog
Exit from Prolog with status
Hash-value of ground term
Give help on help
Give help on predicates and show parts of manual
(hook) User-hook in the help-system
Call the argument, but always succeed
Import a predicate from a module
Include a file with declarations
Change clause indexing
Initialization directive
Convert from integer to atom
Convert from integer to atom (non-decimal)
Type check for integer
Start new thread with console and toplevel
Set intersection
Evaluate arithmetic expression
True if arg defines an absolute path
Type check for a list
Type check for a set
Sort, using a key
Last element of a list
Change ports visited by the tracer
Length of a list
(hook) Directories holding Prolog libraries
Limit stack expansion
Line number on stream
Character position in line on stream
Remove duplicates
List program in current module
List predicate
Load source files with options

SWI-Prolog 4.0 Reference Manual

214

APPENDIX D. SUMMARY

load foreign.library/1
load foreign library/2
make/0
makedirectory/1
makefat filemap/1
makelibrary_index/1
maplist/3
member/2
memberchk/2
merge/3
mergeset/3
messagdiook/3
messageo_string/2
metapredicate/1
module/l
module/2
moduletransparent/1
msort/2

multifile/1

mutex create/1
mutexdestroy/1
mutexlock/1
mutextrylock/1
mutexunlock/1
mutex unlockall/O
name/2

nl/0

ni/1

nodebug/0
noguitracer/0
nonvar/1
noprotocol/0
nospy/1
nospyall/0

not/1

notrace/0
notrace/1

nth0/3

nth1/3
nth_clause/3
number/1
numberchars/2
numbercodes/2
numbervars/4
on.signal/3

once/l

op/3

libraryhlib) Load shared library (.so file)
library@hlib) Load shared library (.so file)
Reconsult all changed source files
Create a folder on the file system
Win32: Create file containing non-FAT filenames
Create autoload file INDEX.pl
Transform all elements of a list
Element is member of a list
Deterministimember/2
Merge two sorted lists
Merge two sorted sets
Intercepprint _message/2
Translate message-term to string
Quintus compatibility
Query/set current type-in module
Declare a module
Indicate module based meta predicate
Sort, do not remove duplicates
Indicate distributed definition of predicate
Create a thread-synchronisation device
Destroy a mutex
Become owner of a mutex
Become owner of a mutex (non-blocking)
Release ownership of mutex
Release ownership of all mutexes
Convert between atom and list of ASCII characters
Generate a newline
Generate a newline on a stream
Disable debugging
Disable the graphical debugger
Type check for bound term
Disable logging of user interaction
Remove spy point
Remove all spy points
Negation by failure (argument not provable). Same-As
Stop tracing
Do not debug argument goal
N-th element of a list (0-based)
N-th element of a list (1-based)
N-th clause of a predicate
Type check for integer or float
Convert between number and one-char atoms
Convert between number and ASCII values

Enumerate unbound variables of a term using a given base

Handle a software signal
Call a goal deterministically
Declare an operator

SWI-Prolog 4.0 Reference Manual

D.1. PREDICATES

215

open/3

open/4
openddeconversation/3
opennull_stream/1
openresource/3
opensharedobject/2
opensharedobject/3
peekbyte/1l
peekbyte/2
peekchar/l
peekchar/2
peekcode/1l
peekcode/2
phrase/2

phrase/3

please/3

plus/3

portray/1

portray clause/l
predicateproperty/2
predsort/3
preprocessor/2
print/1

print/2

print. message/2
print messagdines/3
profile/3
profile_count/3
profiler/2

prolog/0

prolog currentframe/1
prolog edit:locate/2
prolog edit:locate/3
prolog edit:editsource/1

prolog edit:editcommand/2

prolog edit:load/0
prologfile_type/2
prolog frame attribute/3
prologlist_goal/1
prolog load context/2
prolog skip_level/2
prolog to_os filename/2

prolog traceinterception/4

promptl/1
prompt/2
propetlist/1
protocol/1

Open afile (creating a stream)
Open afile (creating a stream)
Win32: Open DDE channel
Open a stream to discard output
Open a program resource as a stream
UNIX: Open shared library (.so file)
UNIX: Open shared library (.so file)
Read byte without removing
Read byte without removing
Read character without removing
Read character without removing
Read character-code without removing
Read character-code without removing
Activate grammar-rule set
Activate grammar-rule set (returning rest)
Query/change environment parameters
Logical integer addition
(hook) Modify behaviour gdrint/1
Pretty print a clause
Query predicate attributes
Sort, using a predicate to determine the order
Install a preprocessor before the compiler
Print a term
Print a term on a stream
Print message from (exception) term
Print message to stream
Obtain execution statistics
Obtain profile results on a predicate
Obtain/change status of the profiler
Run interactive toplevel
Reference to goal’'s environment stack
Locate targets fedit/1
Locate targets fedit/1
Call editor foedit/1
Specify editor activation
Loacedit/l extensions
Define meaning of file extension
Obtain information on a goal environment
Hook. Intercept tracer 'L’ command
Context information for directives
Indicate deepest recursion to trace
Convert between Prolog and OS filenames
libraryfser) Intercept the Prolog tracer
Change prompt for 1 line
Change the prompt usediaad/1
Type check for list
Make a log of the user interaction

SWI-Prolog 4.0 Reference Manual

216

APPENDIX D. SUMMARY

protocola/l
protocolling/1
put/1

put/2

put byte/1

put byte/2
put.char/1
putchar/2
put.code/l
put.code/2
gcompile/1
gsaveprogram/1
gsaveprogram/2
read/1

read/2
readclause/l
readclause/2
readhistory/6
readlink/3
readterm/2
readterm/3
recorda/2
recorda/3
recorded/2
recorded/3
recordz/2
recordz/3
redefinesystempredicate/1
renamefile/2
repeat/0
require/l
resetprofiler/0
resource/3
retract/1
retractall/1
reverse/2
samefile/2
see/l

seeing/1
seek/4

seen/0

select/3
setinput/1
setoutput/1
setprolog flag/2
setstream/2
setstreamposition/2

Append log of the user interaction to file
On what file is user interaction logged
Write a character
Write a character on a stream
Write a byte
Write a byte on a stream
Write a character
Write a character on a stream
Write a character-code
Write a character-code on a stream
Compile source to Quick Load File
Create runtime application
Create runtime application
Read Prolog term
Read Prolog term from stream
Read clause
Read clause from stream
Read using history substitution
Read a symbolic link
Read term with options
Read term with options from stream
Record term in the database (first)
Record term in the database (first)
Obtain term from the database
Obtain term from the database
Record term in the database (last)
Record term in the database (last)
Abolish system definition
Change name of file
Succeed, leaving infinite backtrack points
This file requires these predicates
Clear statistics obtained by the profiler
Declare a program resource
Remove clause from the database
Remove unifying clauses from the database
Inverse the order of the elements in a list
Succeeds if arguments refer to same file
Change the current input stream
Query the current input stream
Modify the current position in a stream
Close the current input stream
Select element of a list
Set current input stream from a stream
Set current output stream from a stream
Define a system feature
Set stream attribute
Seek stream to position

SWI-Prolog 4.0 Reference Manual

D.1. PREDICATES

217

setity/2
setarg/3
setenv/2
setof/3
sformat/2
sformat/3
shell/0

shell/1

shell/2

show profile/1
sizefile/2

skip/1

skip/2

rl_add history/1
rl_readinit_file/1
sleep/1

sort/2
sourcefile/1
sourcefile/2
sourcelocation/2
spy/1
stackparameter/4
statistics/O
statistics/2
streamproperty/2
string/1
string.concat/3
string length/2
string to_atom/2
string to_list/2
style check/1
subatom/5
sublist/3
subset/2
suhstring/5
subtract/3
succ/2

swritef/2
swritef/3

tab/1

tab/2

tell/1

telling/1
term.expansion/2
term.to_atom/2
threadat exit/1
threadcreate/3

Set ‘tty’ stream
Destructive assignment on term
Set shell environment variable
Find all unique solutions to a goal
Format on a string
Format on a string
Execute interactive subshell
Execute OS command
Execute OS command
Show results of the profiler
Get size of a file in characters
Skip to character in current input
Skip to character on stream
Add line to readline(3) history
Read readline(3) init file
Suspend execution for specified time
Sort elements in a list
Examine currently loaded source files
Obtain source file of predicate
Location of last read term
Force tracer on specified predicate
Some systems: Query/Set runtime stack parameter
Show execution statistics
Ohbtain collected statistics
Get stream properties
Type check for string
atom _concat/3 for strings
Determine length of a string
Conversion between string and atom
Conversion between string and list of ASCII
Change level of warnings
Take a substring from an atom
Determine elements that meet condition
Check subset relation for unordered sets
Take a substring from a string
Delete elements that do not meet condition
Logical integer successor relation
Formatted write on a string
Formatted write on a string
Output number of spaces
Output number of spaces on a stream
Change current output stream
Query current output stream
(hook) Convert term before compilation
Convert between term and atom
Register goal to be called at exit
Create a new Prolog task

SWI-Prolog 4.0 Reference Manual

218 APPENDIX D. SUMMARY
threadexit/1 Terminate Prolog task with value
threadget message/1 Wait for message
threadjoin/2 Wait for Prolog task-completion
threadpeekmessage/l Test for message in queue
threadself/1 Get identifier of current thread
threadsendmessage/2 Send message to another thread
threadsignal/2 Execute goal in another thread
threads/0 List running threads
throw/1 Raise an exception (seatch/3)
time/1 Determine time needed to execute goal
time_file/2 Get last modification time of file
tmp_file/2 Create a temporary filename
told/0 Close current output
trace/0 Start the tracer
trace/l Set trace-point on predicate
trace/2 Set/Clear trace-point on ports
tracing/0 Query status of the tracer
trim_stacks/0 Release unused memory resources
true/0 Succeed
tty_get.capability/3 Get terminal parameter
tty_goto/2 Goto position on screen
tty_put/2 Write control string to terminal
tty _size/2 Get row/column size of the terminal
ttyflush/0 Flush output on terminal
union/3 Union of two sets
unify_with_occurscheck/2 Logically sound unification
unix/1 OS interaction
unknown/2 Trap undefined predicates

unloadforeign.library/1
unsetenv/1
usemodule/1
usemodule/2

var/l

visible/1

volatile/1
wait_for_input/3
wildcard-match/2
win_exec/2

win_shell/2
win_registry getvalue/3
with_mutex/2

write/1

write/2

write_In/1
write_canonical/l
write_canonical/2
write_term/2

library@hlib) Detach shared library (.so file)

Delete shell environment variable

Import a module

Import predicates from a module
Type check for unbound variable

Ports that are visible in the tracer
Predicates that are not saved
Wait for input with optional timeout

Csh(1) style wildcard match

Win32: spawn Windows task

Win32: open document through Shell
Win32: get registry value

Run goal while holding mutex
Write term
Write term to stream
Write term, followed by a newline

Write a term with quotes, ignore operators

Write a term with quotes, ignore operators on a stream

Write term with options

SWI-Prolog 4.0 Reference Manual

D.1. PREDICATES 219

write_term/3 Write term with options to stream
writef/1 Formatted write

writef/2 Formatted write on stream

writeg/1 Write term, insert quotes

writeq/2 Write term, insert quotes on stream

SWI-Prolog 4.0 Reference Manual

220

APPENDIX D. SUMMARY

D.2 Library predicates
D.2.1 library(check)

check/0 Program completeness and consistency
list_undefined/0 List undefined predicates
list.autoload/0 List predicates that require autoload
list_redefined/0 List locally redefined predicates

D.2.2 library(readutil)

readline_to_codes/2 Read line from a stream
readline_to_codes/3 Read line from a stream
readstreamto_codes/2 Read contents of stream
readstreamto_codes/3 Read contents of stream
readfile_to_codes/3 Read contents of file
readfile_to_terms/3 Read contents of file to Prolog terms

D.2.3 library(netscape)

www_openurl/1l Open a web-page in a browser

D.2.4 library(registry)

registry getkey/2 Get principal value of key
registry.getkey/3 Get associated value of key
registry setkey/2 Set principal value of key
registry setkey/3 Set associated value of key
registry deletekey/1 Remove a key
shellregisterfile_type/4 Register a file-type
shellregisterdde/6 Register DDE action

shellregisterprolog/1 Register Prolog

D.2.5 library(url)

parseurl/2 Analyse or construct a URL
parseurl/3 Analyse or construct a relative URL
globalurl/3 Make relative URL global
http_location/2 Analyse or construct location

www_form_encode/2 Encode or decode form-data

SWI-Prolog 4.0 Reference Manual

D.3. ARITHMETIC FUNCTIONS

221

D.3 Arithmetic Functions

*[2

*% /2

+/2

-/11

-2

/12

Il 12

N /2
<</2
>>[2

.2

\/1

V /2

"2
abs/1
acos/1
asin/1
atan/1
atan/2
ceil/l
ceiling/1
cos/1
cputime/0
el0
exp/l
float/1
float fractional part/1
floatintegerpart/1
floor/1
integer/1
log/1
logl0/1
max/2
min/2
mod/2
random/1
rem/2
round/1
truncate/1
pi/0
sign/1
sin/1
sgrt/1
tan/1

Multiplication

Power function
Addition

Unary minus
Subtraction

Division

Integer division
Bitwise and
Bitwise left shift
Bitwise right shift
List of one character: character code
Bitwise negation
Bitwise or
Power function

Absolute value

Inverse (arc) cosine

Inverse (arc) sine

Inverse (arc) tangent
Rectangular to polar conversion
Smallest integer larger than arg
Smallest integer larger than arg
Cosine

Get CPU time

Mathematical constant
Exponent (basg

Explicitly convert to float
Fractional part of a float
Integer part of a float

Largest integer below argument
Round to nearest integer
Natural logarithm

10 base logarithm

Maximum of two numbers
Minimum of two numbers
Remainder of division
Generate random number
Remainder of division

Round to nearest integer
Truncate float to integer
Mathematical constant

Extract sign of value

Sine

Square root

Tangent

SWI-Prolog 4.0 Reference Manual

222 APPENDIX D. SUMMARY

xor/2 Bitwise exclusive or

SWI-Prolog 4.0 Reference Manual

D.4. OPERATORS

223

D.4 Operators

Xor

+ - .\) 1 +

=

1
200
200
300
400
400
400
400
400
400
500
500
500
500
500
500
500
500
600
700
700
700
700
700
700
700
700
700
700
700
700
700
700
700
700
700
700
900
900

1000
1050
1050
1100
1100

Bind toplevel variable

Predicate
Arithmetic function
Arithmetic function
Arithmetic function
Arithmetic function
Arithmetic function
Arithmetic function
Arithmetic function
Arithmetic function
Arithmetic function
Arithmetic function
XPCE: obtainer
Arithmetic function
Arithmetic function
Arithmetic function
Arithmetic function
Arithmetic function

module:term separator

Predicate
Predicate
Predicate
Predicate
Predicate
Predicate
Predicate
Predicate
Predicate
Predicate
Predicate
Predicate
Predicate
Predicate
Predicate
Predicate
Predicate
Predicate
Predicate
Predicate
Predicate
Predicate
Predicate
Predicate
Predicate

SWI-Prolog 4.0 Reference Manual

224 APPENDIX D. SUMMARY

discontiguous 1150 fz Predicate
dynamic 1150 fz Predicate
moduletransparent 1150 fx Predicate
multifile 1150 fz Predicate
volatile 1150 fx Predicate
initialization 1150 fz Predicate
- 1200 fx Introduces a directive
?- 1200 fz Introduces a directive
--> 1200 zfx DCGrammar: rewrite

- 1200 zfx head:- body. separator

SWI-Prolog 4.0 Reference Manual

Bibliography

[Anjewierden & Wielemaker, 1989A. Anjewierden and J. Wielemaker. Extensible objects. ESPRIT

[BIM, 1989]
[Bowen & Byrd, 1983]

[Bratko, 1986]

[Clocksin & Melish, 1987]

[Deransaret al., 1996]

[Hodgson, 1998]

[Kernighan & Ritchie, 1978]

[O’Keefe, 1990]

[Pereira, 1986]
[Qui, 1997]

[Sterling & Shapiro, 1986]

Project 1098 Technical Report UvA-C1-TR-006a, University of
Amsterdam, March 1989.

BIM Prolog release 2.4Everberg, Belgium, 1989.

D. L. Bowen and L. M. Byrd. A portable Prolog compiler. In
L. M. Pereira, editorProceedings of the Login Programming
Workshop 1983Lisabon, Portugal, 1983. Universidade nova de
Lisboa.

I. Bratko. Prolog Programming for Artificial Intelligence
Addison-Wesley, Reading, Massachusetts, 1986.

W. F. Clocksin and C. S. Melish.Programming in Prolog
Springer-Verlag, New York, Third, Revised and Extended edi-
tion, 1987.

P. Deransart, A. Ed-Dbali, and L. CervoniProlog: The Stan-
dard. Springer-Verlag, New York, 1996.

Jonathan Hodgson. validation suite for con-
formance with part 1 of the standard, 1998,
http://www.sju.edu/ jhodgson/pub/suite.tar.gz

B. W. Kernighan and D. M. RitchieThe C Programming Lan-
guage Prentice-Hall, Englewood Cliffs, New Jersey, 1978.

R. A. O’'Keefe.The Craft of Prolog MIT Press, Massachussetts,
1990.

F. PereiraC-Prolog User's Manugl1986.

Quintus Prolog, User Guide and Reference ManuBérkham-
sted, UK, 1997.

L. Sterling and E. Shapirdl'he Art of Prolog MIT Press, Cam-
bridge, Massachusetts, 1986.

SWI-Prolog 4.0 Reference Manual

Index

'MANUAL' library, 21

-Ipl library, 178
-Ireadlinelibrary, 192
==/2,91
N /2,93
=\=/2,91
| 12,54

, 12,54
1/0,53
/1,61
/12,92

. 12,93
=/2,52
==/2,52
>=/2,91
>/2,91
"12,94

Il 12,92
-> [2,54
=</2,91
<</2,93
</2,91
-/1,92
-12,92
\=/2,52
\ /1,94
\==/2,52
\+ /1,54
V 12,93
+/2,92

** [2,94
>>/2,93
;12,54
*> [2,54
=@+2,52
\=@=/2,52
@>#2,53
@%2,53
*[2,92
@=42,53
@<2,53
=. /2,82

SWI-Prolog 4.0 Reference Manual

_PL_getarg(),150

abolish/1,12, 63
abolish/2,63, 138
abolish/[1
2], 33
abort/0,20, 25, 34, 72, 74,114, 115,169, 171
abs/192
absolutefile_name/2,108
absolutefile_name/3,108
absolutefile_.name/2 15, 44, 46, 108, 190
absolutefile_name/3,31, 35, 43, 46, 108 138
195, 196
absolutefile_name/[2
3], 33,46
accesdile/2, 107
accesdile/2, 34, 108
acos/194
address/2113
Alpha
DEC,12
append/169, 70
append/385, 96
apply/2,55
apropos/121, 22, 36, 203, 209
arg/3,82
arithmethicfunction/1,163
arithmeticfunction/1,95
arithmeticfunction/1,95
asin/1,94
assert/144, 45, 63-66, 130, 133 204
assert/264, 68
asserta/120, 45, 64
asserta/264
assertz/164, 204
assertz/264
at end.of_stream/0,/7
at end.of_stream/1,/8
at halt/1,48
atinitialization/1,48
at end.of_stream/[0
1],73

INDEX 227

athalt/1,48, 112,115,171, 177 check/0/45, 194
at.initialization/1,48, 176 checkold_select/0,14
atan/194 checklist/2,99
atan/294 checkseleclibrary, 14
atom/1,51, 146 clause/268
atomchar/2,84 clause/364, 68, 69, 188
atomchars/2,13, 84 clause/[2
atomcodes/284 3], 33,193
atomconcat/385, 217 clauseproperty/2,69
atomlength/2,85 clauseproperty/2,46, 200
atom prefix/2,85 clib
atomto_term/3,85 packagel77
atomchars/232, 43, 76, 83, 84, 87 close/1,72
atom.codes/214, 32, 43, 83, 84, 87 close/2,72
atom.concat/385, 88 closedde conversation/1]123
atomlength/2,33, 88 closesharedobject/1,138
atomto_term/3,78 codetype/2,87
atomic/1,51 codetype/2,86
attachconsole/0114 commandline
attachconsole/0114 arguments20
autoload/045, 186, 187, 195 compare/353, 98, 166
compiling/0,48
backcomgibrary, 12, 14 compound/151
bagof/3,98, 99, 209 concatatom/2,85
between/390 concatatom/3,85
block/3,61, 209,212 concatatom/2,85
break/0,20, 25, 115, 169 consult/1,16, 17, 27, 4345, 48, 49, 66, 80,
118
call/1,13, 47,51, 55, 56, 117, 159 contextmodule/1,132
call/2,55 contextmodule/1,132, 160
call/[2-6], 55 converttime/2,107
call_sharedobjectfunction/2,138 converttime/8,106
call_with_depthlimit/3, 55 converttime/2,106
call_with_depthlimit/3, 55, 56 converttime/8,107
callable/151 converttime/[2
catch/3,12, 13,56, 57, 61, 80, 111, 202, 218 8], 107
ceil/1,93 copy.streamdata/2,78
ceiling/1,93 copy.streamdata/3,78
charcode/2,84 copy.term/2,83
charconversion/289 copy.term/2,83
chartype/2,86 cos/1,94
charcode/243 cputime/0,94
charconversion/233, 90 ctypelibrary, 86
chartype/2,87 currentarithmeticfunction/1,95
charactercount/2,75 currentatom/1,67
chdir/1,106, 109 currentcharconversion/290

checklibrary, 194, 220 currentflag/1,67

SWI-Prolog 4.0 Reference Manual

228

INDEX

currentforeignlibrary/2,138

currentformat predicate/2104

currentfunctor/2,67

currentinput/1,74

currentkey/1,67

currentmodule/1,132

currentmodule/2,132

currentmutex/3,114

currentop/3,89

currentoutput/1,74

currentpredicate/267

currentprolog flag/2,30

currentsignal/3,60

currentstream/314, 73, 109

currentthread/2111

currentatom/1,67

currentchar.conversion/289

currentinput/1,47

currentpredicate/2121

currentprolog flag/2, 14, 19, 20, 30, 36, 38,
43,52, 57,58, 78, 79, 81, 115, 118
123 137 139 159 173 178 194
206

currentsignal/3,60

currentstream/3,/3

currentthread/2,111, 112

DCG, 44, 62
ddecurrentconnection/2124
ddecurrentservice/2124
ddeexecute/2123
ddepoke/4,123
dderegisterservice/2123
dderequest/3123
ddeunregisterservice/1,124
debug/024, 26,57, 117, 169
debugging

exceptionsh7
debugging/036, 117, 203
DEC

Alpha, 12
defaultmodule/2,133
delete/396
deletedirectory/1,109
deletefile/1, 107
discontiguous/166
display/1,101, 151, 152

display/[1

2],12
displayg/1,102
displayqg/[1

2],12
did, 137
dup/2,14
dupstream/214
dupstream/214
dwim_match/2,124
dwim_match/3,124
dwim_predicate/268
dwim_match/2,68, 124
dynamic/133, 63, 66, 67, 132, 194

e/0,94
edit/1,15, 35, 45, 49, 50, 215
editsource/150
Emacs20
emacs/swiprologlibrary, 15
ensureloaded/145
ensureloaded/127, 43, 45, 128
erase/164, 68
exception/336, 202
exceptions

debuggings7
existsdirectory/1,107
existsfile/1, 107
existsfile/1, 34
exit/2,61
exp/1,92, 94
expandanswer/2116
expandfile_.name/2,109
expandfile_searchpath/2,46
expandgoal/2,48
expandquery/4,115
expandterm/2,47
expandanswer/2115
expandfile_name/2 34, 105, 108
expandgoal/2,33, 47
expandterm/2,47, 48, 62
explainlibrary, 212
explain/1,22
explain/2,22
export/1,132
exportlist/2, 132

SWI-Prolog 4.0 Reference Manual

INDEX

229

fail/0, 53
fail/1, 61
feature/2]14
file_basename/2107
file_directoryname/2,107
file_nameextension/3108
file_searchpath/2,35, 45
file_searchpath/2,17, 20, 33, 4446, 138, 181,
189-191

fileerrors/0,75
fileerrors/2,34, 75
findall/3,98, 133 134
flag/3,33, 65, 67
flatten/2,96
float/1,51, 91, 93
float fractionalpart/1,93
floatintegerpart/1,93
floatintegerpart/1,93
floor/1,93
flush.output/0,76
flush.output/1,76
flush.output/0,76
flush.output/1,58
flush.output/[0

1],71,76
foo/0, 205
foo/3,205
forall/2, 47, 99
format/1,58, 101
format/2,101, 103
format/3,58, 103
format/[1

2],32,78,99, 212
format/[2

3], 38
format predicate/2103
free.variables/233
freevariables/280
FTP,197
functor/3,8, 51, 82

garbagecollect/0,121
garbagecollectatoms/0,121
garbagecollectatoms/0,171
gensym/2125

get/1,77

get/2,77

get0/1,71, 77
get0/2,77
getbyte/1,76
getbyte/2,76
getchar/1,76
getchar/2,77
getcode/1,76
getcode/2,76
getsinglechar/1,77
gettime/1,106
getbyte/1,77
getbyte/2,77
getbyte/[1

2], 43
getchar/1,76, 77
getchar/2,77
getchar/[1

2], 43
getcode/1,77
getcode/2,77
getcode/[1

2], 43
getsinglechar/1,20, 34
gettime/1,106, 107
getenv/2,105
globalurl/3, 198
GNU-Emacs20
go/0,18
goalexpansion/235, 47
goalexpansion/247, 48
Graphics9
ground/151, 65
GUI 9
guitracer/0,15, 116

halt/0,25, 115
halt/1,115 169, 210
halt/[0

1], 48
hashterm/2,65
hashterm/2,65
help/0,21, 36, 190, 203
help/1,21, 36, 203
helpidxlibrary, 21
hooks,35
HTTP,197
http_location/2,198

SWI-Prolog 4.0 Reference Manual

230

INDEX

ignore/1,55
immediate

update viewg5
import/1,127, 128 132
include/1,43, 45
index/1,65, 66, 68
initialization/1,48, 137, 170, 188
install/0,188
int_to_atom/2,84
int_to_atom/3,84
integer/151, 93
interactor/0,74, 114
intersection/397
is/2,33,91, 93, 95
is_absolutefile_name/1,108
is_list/1, 95
is_set/1,97
is_list/1, 95

keysort/2,97, 98

last/2,96

leash/124, 118
length/2,96
library_directory/1,35, 45
library_directory/1,36, 37, 44
likes/2,16

limit _stack/2,121
limit_stack/2,121
line_count/2,75
line_position/2,75
line_count/2,104
line_position/2,104
list_autoload/0,195
list_redefined/0195
list_to_set/2,97
list_undefined/0194
list_autoload/0194
list_redefined/0194
list_undefined/0194, 195
listing/0,50

listing/1, 25, 50

load files/2,44

load foreign.library/1,138
load foreign.library/2,138
loadfiles/1,35
loadfiles/2,44

load foreignlibrary/1,188
load foreign.library/2,138
load foreignlibrary/[1

2], 45, 137
log/1,94
log10/1,94
logical

update viewg5

main/0,29
make/0,8, 36, 45
makedirectory/1,109
makelibrary_index/1,37
makelibrary_index/1,36
manpce/039
maplist/3,99, 130, 187
max/2,92
member/225, 69, 96, 214
memberchk/296
memory

layout,39
merge/396
mergeset/3,97
messagédook/3,35, 58
messageo_string/2,59
messagéook/3,13, 58
messageo_string/2,58, 59
metapredicate/1132 135
metapredicate/1133 135
min/2,92
mod/2,92
module/1,133
module/247, 127, 132
moduletransparent/1]32
moduletransparent/168, 133, 160, 205
msort/2,97
multi_file/1, 206
multifile/1, 49, 66, 67, 194, 202
mutexcreate/1113
mutexdestroy/1,113
mutexlock/1,113
mutextrylock/1,114
mutexunlock/1,114
mutexunlockall/0, 114
mutexcreate/1113
mutexcreate/2114
mutexlock/1,114

SWI-Prolog 4.0 Reference Manual

INDEX

231

name/283, 84
netmask/4175
netscapdibrary, 196, 220
nl/0, 75
nl/1,75
nl/[0

1], 100
nodebug/0117
nofileerrors/0,/5
noguitracer/0;117
nonvar/151
noprotocol/0,116
nospy/1,25, 36, 117, 203
nospyall/0,36, 117, 203
not/1,47, 55, 209
notrace/0,116
notrace/1117
nth0/3,96
nth1/3,96
nth_clause/369
nth_clause/369, 200
number/151
numberchars/2,14, 84
numbercodes/284
numberchars/2]14, 43, 84
numbercodes/2]14, 43, 83
numbervars/483

on.signal/3,59
onsignal/3,13, 59, 60
once/l55,114,117, 120 161
online.helplibrary, 210
op/3,14, 42, 66, 78, 89
open/3,34,71,72
open/4,11, 42, 71-74, 78, 195 196
opendde conversation/3122
opennull_stream/1,72
openresource/3191
opensharedobject/2,137
opensharedobject/3,137
openresource/313, 186, 189 191
opensharedobject/2,31, 137
operator

and modules89

package
clib, 177

parseurl/2, 197
parseurl/3, 198
parseurl/2, 198
peekbyte/1,77
peekbyte/2,77
peekchar/1,77
peekchar/2,77
peekcode/1,77
peekcode/2,77
peekbyte/[1

2], 43
peekchar/[1

2], 43
peekcode/[1

2], 43
phrase/262
phrase/362
pi/0, 94
PL_aborthook(),171
PL_abortunhook(),171
PL_action(),168
PL_agchook(),171
PL_atomchars(),144
PL_atomnchars(),151
PL_call(), 161
PL_call_predicate(),161
PL_charsto_term(), 158
PL_cleanup(),177
PL_closeforeignframe(),162
PL_closequery(),161
PL_compare()]166
PL_consfunctor(),154
PL_consfunctorv(), 154
PL_conslist(), 154
PL_context(),162
PL_copy.termref(), 142
PL_cut.query(),161
PL_discardforeignframe(),162
PL_dispatchhook(),171
PL_erase(),L67
PL_eraseexternal(),167
PL_exception(),L65
PL fail(), 143
PL_foreign.context(),144
PL_foreign.contextaddress()144
PL _foreign.control(),144
PL_functor.arity(), 146

SWI-Prolog 4.0 Reference Manual

232

INDEX

PL_functor.name(),146
PL_getarg(),150
PL_getatom(),148
PL_getatomchars(),148
PL_getatomnchars(),150
PL_getchars(),148
PL_getfloat(), 149
PL_getfunctor(),149
PL_gethead(),151
PL_getinteger(),149
PL_getlist(), 151
PL_getlist_chars(),149
PL_getlist_nchars(), 150
PL_getlong(), 149
PL_getmodule(),149
PL_getnamearity(), 149
PL_getnchars(),150
PL_getnil(), 151
PL_getpointer(),149
PL_getstring chars(),148
PL_gettail(), 151
PL_halt(),177

PL_ initialise(), 176
PL_installLreadline(),177
PL_is_.atom(),147
PL_is_atomic(),148
PL_is_.compound(),148
PL_is_float(), 148
PL_is_functor(),148

PL is_initialised(),177
PL.is_integer(),147

PL.is list(), 148
PL_is_.number(),148
PL_is_string(),147
PL_is_variable(),147
PL_load extensions()170
PL_modulename(),163
PL_new.atom(),144
PL_new.atomnchars(),150
PL_new functor(),146
PL_new.module(),163
PL_new.term.ref(), 141
PL_newtermrefs(),141
PL_nextsolution(),161
PL_on halt(),171
PL_openforeignframe(),161
PL_openquery(),160

PL_pred(),159
PL_predicate(),L59
PL_predicateinfo(), 160
PL_putatom(),153
PL_putatomchars(),153
PL_putatomnchars(),150
PL_putfloat(), 153
PL_putfunctor(),153
PL_putinteger(),153
PL_putlist(), 153
PL_putlist_chars(),153
PL_putlist_.nchars(),L50
PL_putlist_.ncodes(),L50
PL_putnil(), 153
PL_put_pointer(),153
PL_putstring chars(),153
PL_put.string nchars(), 150, 153
PL_putterm(),154
PL_put.variable(),153
PL_query(),168
PL_quote(),159
PL_raiseexception(),164
PL_record(),166
PL_recordexternal(),167
PL_recorded(),L66
PL_recordedexternal(),167
PL_registeratom(),146
PL_registerextensions()170
PL _registerforeign(),170
PL_resettermrefs(),142
PL_retry(), 144
PL_retry_.address()144
PL_rewind foreignframe(),162
PL_samecompound(),166
PL_signal(),168
PL_strip_-module(),162
PL_succeed()143
PL_termtype(),147
PL_threadattachengine(),165
PL_threaddestroyengine(),L66
PL_threadself(), 165
PL_throw(), 165
PL_toplevel(),177
PL_unify(), 155
PL_unify_arg(),157
PL_unify_atom(),155
PL_unify_atomchars(),155

SWI-Prolog 4.0 Reference Manual

INDEX

233

PL_unify_atomnchars(), 150
PL_unify_float(), 156
PL_unify_functor(),156
PL_unify_integer(),156
PL_unify_list(), 156
PL_unify_list_chars(),155
PL_unify_list_nchars(),150
PL_unify_list_ncodes(),L50
PL_unify_nil(), 156
PL_unify_pointer(),156
PL_unify_string.chars(),155
PL_unify_string.nchars(),150, 156
PL_unify_term(),157
PL_unregisteratom(),146
PL_warning(),168
plus/3,55, 90
portray/1,26, 32, 35, 78-80, 160, 172, 202
portray.clause/150
portray clause/150
predicateproperty/2,67
predicateproperty/2,132
predsort/398
preprocessor/2i8
print/1,32, 78-80, 101, 102, 160, 215
print/2,79
print/[1

2],78
print.message/A8, 214
print. nessagédines/3,58
printmessage/213, 34, 35, 57, 58, 80
print. nessagédines/3,13, 58, 59
profile file, 17
profile/3,120, 192
profile_.count/3,121
profiler/2,120
prolog/0,20, 31, 115 133 177
prolog:debugcontrolLhook/1,36, 203
prolog:helphook/1,36, 203
prolog currentframe/1,200
prolog edit:editcommand/235, 50
prolog edit:editsource/135, 50
prolog edit:load/0,50
prolog edit:locate/249
prolog edit:locate/335, 49
prologfile_type/2,46
prolog frame attribute/3,200
prolog list_goal/1,36, 202

prologload context/2,46
prolog skip_level/2,202
prolog to_os filename/2,109
prolog traceinterception/436, 201
prolog currentframe/1,200
prolog edit:editcommand/250
prolog edit:editsource/149
prolog edit:locate/349, 50
prolog file_type/2,43, 46
prolog frame attribute/3,69
prologload context/247
prolog to_os filename/2,108
prolog traceinterception/4,116, 200
prompt/2,81, 82
prompt1/1,82
properlist/1, 95
properlist/1, 97
protocol/1,116
protocola/1,116
protocolling/1,116
put/1,75, 76
put/2,75, 76
putbyte/1,75
putbyte/2,76
put.char/1,76
put.code/1,76
put.code/2,76
put byte/[1

2], 43
putchar/1,76
putchar/[1

2], 43
put.code/[1

2], 43

gcompile/1,44, 48, 49

gsaveprogram/1,186

gsaveprogram/2,186, 187

gsaveprogram/2,12, 29, 30, 186, 189

gsaveprogram/[1

2], 12, 13, 20, 29, 31, 48, 137, 176, 181,

187,188

quiet,18, 58

quintuslibrary, 14, 132, 135

random/193
read/1,32, 39, 71, 76, 79-81, 118 215

SWI-Prolog 4.0 Reference Manual

234

INDEX

read/2,80
readclause/180
readclause/280
readfile_to_codes/3,195
readfile_to_terms/3,196
readhistory/6,81
readline_to_codes/2195
readline_to_codes/3,195
readlink/3, 109
readstreamto_codes/2195
readstreamto_codes/3,195
readterm/2,80
readterm/3,81
readclause/180, 118
readhistory/6,81
readline_to_codes/2195
readline_to_codes/3,195
readstreamto_codes/2195
readterm/2,22, 32, 80, 81, 85
readterm/3,80, 89, 115
readterm/[2

3], 80
readutillibrary, 195, 220
reconsult/144
recorda/264
recorda/364, 67, 166, 167
recorded/264
recorded/364, 133 188
recordz/264, 133
recordz/364
redefinesystempredicate/163

redefinesystempredicate/1]11, 204

registry,39
registrylibrary, 196, 220
registry deletekey/1,197
registry getkey/2,196
registry getkey/3,196
registry setkey/2,196
registry setkey/3,196
rem/2,92

renamefile/2, 107
repeat/053, 56
require/1,45, 187
resetprofiler/0,121
resetprofiler/0,120

resource/313, 36, 186, 187, 189-191

retract/144, 45, 63, 65, 66, 133

retractall/1,63, 64
reverse/296, 127
RFC-1738,197
rl_add history/1,203
rl_readinit_file/1, 203
round/1,93

samefile/2, 107
see/1]13,69-71
seeing/169, 70, 109
seek/4,73
seen/0y/1
select/3,14, 96
setfeature/2,14
setinput/1,74
setoutput/1,74
setprolog flag/2,35
setstream/2/4
setstreamposition/2,73
settty/2, 104
setfeature/2,14
setinput/1,74
setprolog flag/2,14, 22, 30, 90
setstream/2/1
setarg/382
setenv/250, 105
setof/3,99, 209
sformat/2,103
sformat/3,78, 103
shell/0,105, 106
shell/1,50, 105, 106
shell/2,104
shell/[0-2],105
shell/[1

2], 104
shellregisterdde/6,197
shellregisterfile_type/4,197
shellregisterprolog/1,197
shellregisterfile_type/4,197
shliblibrary, 211, 214, 218
show profile/1,120
show profile/1,120
sign/1,92
silent,58
sin/1,92, 94
sizefile/2, 107
skip/1,77

SWI-Prolog 4.0 Reference Manual

INDEX 235
skip/2,77 term.expansion/235, 47

sleep/1,125 termto_atom/2,85

socketlibrary, 75 term.expansion/235, 44, 47, 49, 115
sort/2,97-99 term_position/3,73

sourcefile/1, 46
sourcefile/2, 46
sourcelocation/2,47
sourcefile/2, 49, 68
sourcefile/[1

2],132
sourcelocation/2,47

spy/1,24, 25, 34, 36, 117, 203 211

sqrt/1,94
stack

memory managemerit9
stackparameter/4122
startup file,17
statistics/0,120
statistics/294, 118 119
streamproperty/2,72
streamposition/3,71, 73, 81
streamproperty/2,73, 74
string/1,51, 102
string.concat/338
string length/2,88
string to_atom/2,88
string to_list/2, 88
string.concat/385
style check/1,118
style.check/1,39, 41, 66, 207
suhatom/5,85
suhstring/5,88
subatom/5,88
sublist/3,99
subset/297
subtract/397
succ/2,90
swi_editlibrary, 50
swi_helplibrary, 21
swritef/2,101
swritef/3,101

tab/1,76

tab/2,76

tan/1,94

tell/1, 13, 69-71
telling/1, 69, 70, 109

termto_atom/2,78, 158
threadat exit/1,112
threadcreate/3110
threadexit/1,111
threadget message/11,12
threadjoin/2, 111
threadpeekmessage/1112
threadself/1,111
threadsendmessage/2,12
threadsignal/2,112
threadexit/1,111
threadjoin/2,110 111
threadpeekmessage/1112
threadself/1,112
threadsignal/2,112 114
threads/0114
throw/1, 12, 24, 56, 61, 111, 113 115 164
165, 202
time/1,94, 120
time_file/2, 107
time_file/2, 106
tmp_file/2, 109
told/0, 71
trace/0,24, 113 116,117, 169
trace/1,34, 117
trace/2,117
tracing/0,116
trim_stacks/0121
trim_stacks/031, 121
true/0,33, 53, 56
truncate/193
tty_get capability/3,104
tty_goto/2,104
tty_put/2,104
tty_size/2,104
tty_get capability/2,104
tty_get.capability/3,104
tty_goto/2,104
tty_put/2,104
tty_size/2,104
ttyflush/0,76, 101

unify_with_occurscheck/2,52

SWI-Prolog 4.0 Reference Manual

236

INDEX

union/3,97
unix, 35
unix/1,14, 106
unknown/2,36, 66, 118, 132, 194
unloadforeignlibrary/1,138
unsetenv/1106
update viewg5
URL, 105
url library, 196, 197, 220
usemodule/1,128
usemodule/2,128
usemodule/2,36
usemodule/[1

2], 27,43-45, 127-129, 132 205
userlibrary, 215
user profile file, 17
utf-8, 42

var/l,11, 51, 146
verbose 18
visible/1,118
volatile/1,188

wait_for_input/3,74
wait_for_input/3,74
wildcard.match/2,124
win_exec/2,105
win_registry getvalue/3,105
win_shell/2,105
win_exec/2,104
win_shell/2,105, 196
Window interface9
windows,35
with_mutex/2,114
with_mutex/2,113 165
write/1,32, 79, 85, 101, 102, 149, 151
write/2,79
write_canonical/1,/9
write_canonical/2,79
write_In/1, 100
write_term/2,78
write_term/3,79
write_canonical/[1

2],12
write_term/2,24, 32,52, 78, 79, 101, 103
write_term/3,35
write_term/[2

3],12
writef/1, 100
writef/2, 15, 38, 78, 100, 101
writef/[1

2], 99
writeq/1,79, 101, 102
writeq/2,79
www_form_encode/2199
www_openurl/1, 196

X11,9
xor/2,93
XPCE,9

SWI-Prolog 4.0 Reference Manual

	Introduction
	SWI-Prolog
	Other books about Prolog

	Status
	Compliance to the ISO standard
	Should you be using SWI-Prolog?
	The XPCE GUI system for Prolog
	Release Notes
	Version 1.8 Release Notes
	Version 1.9 Release Notes
	Version 2.0 Release Notes
	Version 2.5 Release Notes
	Version 2.6 Release Notes
	Version 2.7 Release Notes
	Version 2.8 Release Notes
	Version 2.9 Release Notes
	Version 3.0 Release Notes
	Version 3.1 Release Notes
	Version 3.3 Release Notes
	Version 3.4 Release Notes
	Version 4.0 Release Notes

	Acknowledgements

	Overview
	Getting started quickly
	Starting SWI-Prolog
	Executing a query

	The user's initialisation file
	Initialisation files and goals
	Command line options
	GNU Emacs Interface
	Online Help
	Query Substitutions
	Limitations of the History System

	Reuse of toplevel bindings
	Overview of the Debugger
	Compilation
	During program development
	For running the result

	Environment Control (Prolog flags)
	An overview of hook predicates
	Automatic loading of libraries
	Garbage Collection
	Syntax Notes
	ISO Syntax Support

	System limits
	Limits on memory areas
	Other Limits
	Reserved Names

	Built-in predicates
	Notation of Predicate Descriptions
	Character representation
	Loading Prolog source files
	Quick load files

	Listing and Editor Interface
	Verify Type of a Term
	Comparison and Unification or Terms
	Standard Order of Terms

	Control Predicates
	Meta-Call Predicates
	ISO compliant Exception handling
	Debugging and exceptions
	The exception term
	Printing messages

	Handling signals
	Notes on signal handling

	The `block' control-structure
	DCG Grammar rules
	Database
	Update view
	Indexing databases

	Declaring predicates properties
	Examining the program
	Input and output
	Input and output using implicit source and destination
	Explicit Input and Output Streams
	Switching Between Implicit and Explicit I/O

	Status of streams
	Primitive character I/O
	Term reading and writing
	Analysing and Constructing Terms
	Analysing and constructing atoms
	Classifying characters
	Representing text in strings
	Operators
	Character Conversion
	Arithmetic
	Arithmetic Functions
	Adding Arithmetic Functions
	List Manipulation
	Set Manipulation
	Sorting Lists
	Finding all Solutions to a Goal
	Invoking Predicates on all Members of a List
	Forall
	Formatted Write
	Writef
	Format
	Programming Format

	Terminal Control
	Operating System Interaction
	File System Interaction
	Multi-threading (alpha code)
	Thread communication
	Thread synchronisation
	Thread-support library(threadutil)
	Status of the thread implementation

	User Toplevel Manipulation
	Creating a Protocol of the User Interaction
	Debugging and Tracing Programs
	Obtaining Runtime Statistics
	Finding Performance Bottlenecks
	Memory Management
	Windows DDE interface
	DDE client interface
	DDE server mode

	Miscellaneous

	Using Modules
	Why Using Modules?
	Name-based versus Predicate-based Modules
	Defining a Module
	Importing Predicates into a Module
	Reserved Modules

	Using the Module System
	Object Oriented Programming

	Meta-Predicates in Modules
	Definition and Context Module
	Overruling Module Boundaries

	Dynamic Modules
	Module Handling Predicates
	Compatibility of the Module System
	Emulating meta_predicate/1

	Foreign Language Interface
	Overview of the Interface
	Linking Foreign Modules
	What linking is provided?
	What kind of loading should I be using?

	Dynamic Linking of shared libraries
	Using the library shlib for .DLL and .so files
	Static Linking

	Interface Data types
	Type term_t: a reference to a Prolog term
	Other foreign interface types

	The Foreign Include File
	Argument Passing and Control
	Atoms and functors
	Analysing Terms via the Foreign Interface
	Constructing Terms
	Unifying data
	Calling Prolog from C
	Discarding Data
	Foreign Code and Modules
	Prolog exceptions in foreign code
	Foreign code and Prolog threads
	Miscellaneous
	Catching Signals (Software Interrupts)
	Errors and warnings
	Environment Control from Foreign Code
	Querying Prolog
	Registering Foreign Predicates
	Foreign Code Hooks
	Storing foreign data
	Embedding SWI-Prolog in a C-program

	Linking embedded applications using plld
	A simple example

	The Prolog `home' directory
	Example of Using the Foreign Interface
	Notes on Using Foreign Code
	Memory Allocation
	Debugging Foreign Code
	Name Conflicts in C modules
	Compatibility of the Foreign Interface

	Generating Runtime Applications
	Limitations of qsave_program
	Runtimes and Foreign Code
	Using program resources
	Predicates Definitions
	The plrc program

	Finding Application files
	Passing a path to the application

	The Runtime Environment
	The Runtime Emulator

	The SWI-Prolog library
	library(check): Elementary completeness checks
	library(readutil): Reading lines, streams and files
	library(netscape): Activating your Web-browser
	library(registry): Manipulating the Windows registry
	library(url): Analysing and constructing URL

	Hackers corner
	Examining the Environment Stack
	Intercepting the Tracer
	Hooks using the exception/3 predicate
	Hooks for integrating libraries
	Readline Interaction

	Glossary of Terms
	Summary
	Predicates
	Library predicates
	library(check)
	library(readutil)
	library(netscape)
	library(registry)
	library(url)

	Arithmetic Functions
	Operators

