SRecord

Reference Manual

Peter Miller
millerp@canb.auug.org.au

This document describes SRecord version 1.15
and was prepared 16 June 2003.

This document describing the SRecord program, and the SRecord program itself, are
Copyright © 1998, 1999, 2000, 2001, 2002, 2003 Peter Miller; All rights reserved.

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICU-
LAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if

not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111,
USA.

Table of Contents(SRecord)

srec_cat(1)
srec_cmp(1)
srec_info(1)
srec_lic(1)
srec_ascii_hex(5)
srec_atmel_generic(5)
srec_cosmac(b)
srec_dec_binary(5)
srec_emon52(5)
srec_fairchild(5)
srec_fastload(5)
srec_formatted_binary(5)
srec_fpc(5)
srec_intel(5)
srec_mos_tech(5)
srec_motorola(5)
srec_needham(5)
srec_0s65v(5)
srec_signetics(5)
srec_spasm(5)
srec_spectrum(5)
srec_tektronix(5)
srec_tektronix_extended(5)
srec_ti_tagged(5)
srec_wilson(5)

Reference Manual

Table of Contents(SRecord)

The README file

Release Notes

The BUILDING file

How to add a new file format .

manipulate eprom load files .
compare two eprom load files for equallty
information about eprom load files .

GNU General Public License .

Ascii-Hex file format

Atmel Generic file format .

RCA Cosmac EIf file format .

DEC Binary (XXDP) file format .

Elektor Monitor (EMONS52) file format

Fairchild Fairbug file format .

LSI Logic Fast Load file format .

Formatted Binary file format .

Four Packed Code (FPC) file format .
Intel Hexadecimal object file format specmcatlon
MOS Technologies file format

Motorola S-Record hexadecimal file format .
Needham EMP-series programmer ASCII file format
OS65V Loader file format . .
Signetics file format .

SPASM file format .

Spectrum file format

Tektronix hexadecimal file format .
Tektronix Extended hexadecimal file format .
Texas Instruments Tagged file format

wilson file format

SRecord

13
15
24
30
36
41
42
43
44
45
47
48
49
50
53
59
60
62
62
64
66
67
68
70
71
73

Table of Contents(SRecord)

srec_info(1)
srec_needham(5)

srec_ascii_hex(5)
srec_ascii_hex(5)
srec_atmel_generic(5)
srec_atmel_generic(5)
srec_formatted_binary(5)
srec_formatted_binary(5)
srec_dec_binary(5)
srec_cat(1)

srec_cmp(1)

srec_fpc(5)

srec_cmp(1)
srec_cosmac(b)
srec_cosmac(b)
srec_dec_binary(5)
srec_emon52(5)
srec_cosmac(b)
srec_emon52(5)
srec_needham(5)
srec_cat(1)

srec_info(1)

srec_cmp(1)

srec_cmp(1)
srec_tektronix_extended(5)
srec_tektronix_extended(5)

srec_fairchild(5)
srec_fairchild(5)
srec_fairchild(5)
srec_fastload(5)
srec_fastload(5)
srec_ascii_hex(5)
srec_atmel_generic(5)
srec_cosmac(b)
srec_fairchild(5)
srec_fastload(5)
srec_formatted_binary(5)
srec_mos_tech(5)
srec_motorola(5)

srec_needham(5)

srec_dec_binary(5)
srec_emon52(5)
srec_fpc(5)
srec_signetics(5)
srec_spasm(5)
srec_spectrum(5)
srec_tektronix_extended(5)

Reference Manual

30
62

41
41
42
42
49
49

15
24

70
70

47
47
47
48
48
41
42

47
48
49
59
60

64

67
70

srec info - information

srec needham - Needham EMP-series
programmer

srec

srec ascii hex -

srec

srec atmel generic -

srec formatted binary - Formatted
srec formatted

SRecord - DEC

srec

srec

SRecord - four packed

srec cmp -

srec cosmac - RCA

srec

SRecord -

SRecord -

srec cosmac - RCA Cosmac
SRecord - Elektor Monitor (

srec needham - Needham

srec cat - manipulate

srec info - information about

srec cmp - compare two

srec cmp - compare two eprom load files for
srec tektronix extended - Tektronix
srec tektronix

srec fairchild - Fairchild

srec fairchild -

srec

srec fastload - LSI Logic

srec

srec ascii hex - Ascii-Hex

srec atmel generic - Atmel Generic
srec cosmac - RCA Cosmac EIf

srec fairchild - Fairchild Fairbug

srec fastload - LSI Logic Fast Load
srec formatted binary - Formatted Binary
srec mos tech - MOS Technologies
srec motorola - Motorola S-Record
hexadecimal

srec needham - Needham EMP-series
programmer ASCII

SRecord - DEC Binary (XXDP)
SRecord - Elektor Monitor (EMON52)
SRecord - four packed code

SRecord - Signetics

srec spasm - SPASM

srec spectrum - Spectrum

srec tektronix extended - Tektronix
Extended hexadecimal

SRecord

Table of Contents(SRecord)

about eprom load files
ASCII file format

ascii hex - Ascii-Hex file format
Ascii-Hex file format

atmel generic - Atmel Generic file format
Atmel Generic file format

Binary file format

binary - Formatted Binary file format
Binary (XXDP) file format

cat - manipulate eprom load files

cmp - compare two eprom load files for
equality

code file format

compare two eprom load files for equality
Cosmac EIf file format

cosmac - RCA Cosmac ElIf file format
DEC Binary (XXDP) file format

Elektor Monitor (EMONS52) file format
EIf file format

EMONS52) file format

EMP-series programmer ASCI| file format
eprom load files

eprom load files

eprom load files for equality

equality

Extended hexadecimal file format
extended - Tektronix Extended hexadecimal
file format

Fairbug file format

Fairchild Fairbug file format

fairchild - Fairchild Fairbug file format
Fast Load file format

fastload - LSI Logic Fast Load file format
file format

file format

file format

file format

file format

file format

file format

file format

file format

file format
file format
file format
file format
file format
file format
file format

Table of Contents(SRecord)

srec_tektronix(5)
srec_ti_tagged(5)
srec_wilson(5)
srec_intel(5)
srec_cat(1)
srec_info(1)
srec_cmp(1)
srec_cmp(1)
srec_ascii_hex(5)
srec_atmel_generic(5)
srec_cosmac(b)
srec_fairchild(5)
srec_fastload(5)
srec_formatted_binary(5)
srec_mos_tech(5)
srec_motorola(5)

srec_needham(5)

srec_dec_binary(5)
srec_emon52(5)
srec_fpc(5)
srec_signetics(5)
srec_spasm(5)
srec_spectrum(5)
srec_tektronix_extended(5)

srec_tektronix(5)
srec_ti_tagged(5)

srec_wilson(5)
srec_intel(5)
srec_formatted_binary(5)
srec_formatted_binary(5)

srec_fpc(5)
srec_atmel_generic(5)
srec_atmel_generic(5)
srec_motorola(5)
srec_tektronix_extended(5)

srec_tektronix(5)
srec_intel(5)
srec_ascii_hex(5)
srec_ascii_hex(5)
srec_info(1)
srec_info(1)
srec_ti_tagged(5)
srec_intel(5)

srec_intel(5)

srec_fastload(5)

Reference Manual

68
71
73
53
15
30
24
24
41
42

47
48
49
59
60

44
45
50
64
66
67
70

68
71

73
53
49
49

50
42
42
60
70

68
53
41
41
30
30
71
53

53

srec tektronix - Tektronix hexadecimal
srec ti tagged - Texas Instruments Tagged
srec wilson - wilson

srec intel - Intel Hexadecimal object

srec cat - manipulate eprom load

srec info - information about eprom load
srec cmp - compare two eprom load

srec cmp - compare two eprom load files
srec ascii hex - Ascii-Hex file

srec atmel generic - Atmel Generic file
srec cosmac - RCA Cosmac ElIf file

srec fairchild - Fairchild Fairbug file

srec fastload - LSI Logic Fast Load file
srec formatted binary - Formatted Binary file
srec mos tech - MOS Technologies file
srec motorola - Motorola S-Record
hexadecimal file

srec needham - Needham EMP-series
programmer ASCII file

SRecord - DEC Binary (XXDP) file
SRecord - Elektor Monitor (EMONS52) file
SRecord - four packed code file

SRecord - Signetics file

srec spasm - SPASM file

srec spectrum - Spectrum file

srec tektronix extended - Tektronix
Extended hexadecimal file

srec tektronix - Tektronix hexadecimal file
srec ti tagged - Texas Instruments Tagged
file

srec wilson - wilson file

srec intel - Intel Hexadecimal object file
srec formatted binary -

srec

SRecord -

srec atmel

srec atmel generic - Atmel

srec motorola - Motorola S-Record
srec tektronix extended - Tektronix
Extended

srec tektronix - Tektronix

srec intel - Intel

srec ascii

srec ascii hex - Ascii-
srec

srec info -

srec ti tagged - Texas
srec intel -

srec

srec fastload - LSI Logic Fast

SRecord

Table of Contents(SRecord)

file format

file format

file format

file format specification
files

files

files for equality
for equality
format

format

format

format

format

format

format

format

format

format
format
format
format
format
format
format

format
format

format

format specification

Formatted Binary file format

formatted binary - Formatted Binary file
format

four packed code file format

generic - Atmel Generic file format
Generic file format

hexadecimal file format

hexadecimal file format

hexadecimal file format

Hexadecimal object file format specification
hex - Ascii-Hex file format

Hex file format

info - information about eprom load files
information about eprom load files
Instruments Tagged file format

Intel Hexadecimal object file format
specification

intel - Intel Hexadecimal object file format
specification

Load file format

Table of Contents(SRecord)

srec_cat(1)
srec_info(1)
srec_cmp(1)
srec_fastload(5)
srec_fastload(5)
srec_cat(1)
srec_emon52(5)
srec_mos_tech(5)
srec_mos_tech(5)
srec_motorola(5)

srec_motorola(5)
srec_needham(5)

srec_needham(5)

srec_intel(5)
srec_fpc(5)
srec_needham(5)
srec_cosmac(b)
srec_motorola(5)
srec_needham(5)
srec_signetics(5)
srec_spasm(5)
srec_spasm(5)
srec_intel(5)

srec_spectrum(5)
srec_spectrum(5)
srec_ascii_hex(5)

srec_atmel_generic(5)

srec_cat(1)
srec_cmp(1)

srec_cosmac(b)
srec_fairchild(5)
srec_fastload(5)

srec_formatted_binary(5)

srec_info(1)
srec_intel(5)
srec_mos_tech(5)
srec_motorola(5)
srec_needham(5)

srec_dec_binary(5)

Reference Manual

15
30
24
48
48
15
45
59
59
60

60
62

62

53
50
62
43
60
62
64
66
66
53

67
67
41
42
15
24

47
48

30

53

59

60

62

44

srec cat - manipulate eprom

srec info - information about eprom
srec cmp - compare two eprom
srec fastload - LSI

srec fastload -

srec cat -

SRecord - Elektor

srec

srec mos tech -

srec

srec motorola -
srec needham -

srec

srec intel - Intel Hexadecimal
SRecord - four

srec needham - Needham EMP-series

srec cosmac -
srec motorola - Motorola S-
srec needham - Needham EMP-
SRecord -

srec spasm -

srec

srec intel - Intel Hexadecimal object file

format
srec spectrum -
srec

SRecord

Table of Contents(SRecord)

load files

load files

load files for equality

Logic Fast Load file format

LSI Logic Fast Load file format
manipulate eprom load files

Monitor (EMONS52) file format

mos tech - MOS Technologies file format
MOS Technologies file format

motorola - Motorola S-Record hexadecimal
file format

Motorola S-Record hexadecimal file format
Needham EMP-series programmer ASCII
file format

needham - Needham EMP-series
programmer ASCII file format

object file format specification

packed code file format

programmer ASCII file format

RCA Cosmac ElIf file format

Record hexadecimal file format

series programmer ASCI|I file format
Signetics file format

SPASM file format

spasm - SPASM file format

specification

Spectrum file format

spectrum - Spectrum file format

srec ascii hex - Ascii-Hex file format

srec atmel generic - Atmel Generic file
format

srec cat - manipulate eprom load files

srec cmp - compare two eprom load files for
equality

srec cosmac - RCA Cosmac EIf file format
srec fairchild - Fairchild Fairbug file format
srec fastload - LSI Logic Fast Load file
format

srec formatted binary - Formatted Binary file
format

srec info - information about eprom load
files

srec intel - Intel Hexadecimal object file
format specification

srec mos tech - MOS Technologies file
format

srec motorola - Motorola S-Record
hexadecimal file format

srec needham - Needham EMP-series
programmer ASCII file format

SRecord - DEC Binary (XXDP) file format

Vi

Table of Contents(SRecord)

srec_emon52(5)

srec_fpc(5)
srec_motorola(5)
srec_signetics(5)
srec_spasm(5)
srec_spectrum(5)

srec_tektronix_extended(5)

srec_tektronix(5)
srec_ti_tagged(5)
srec_wilson(5)

srec_ti_tagged(5)
srec_ti_tagged(5)

srec_mos_tech(5)
srec_mos_tech(5)

srec_tektronix_extended(5)
srec_tektronix_extended(5)

srec_tektronix(5)
srec_tektronix(5)

srec_ti_tagged(5)
srec_ti_tagged(5)

srec_cmp(1)
srec_wilson(5)
srec_wilson(5)
srec_dec_binary(5)

Reference Manual

50
60
64
66
67
70

68

71

73
71
71

59
59
70
70

68
68

71
71

24
73
73
44

srec motorola - Motorola

srec ti tagged - Texas Instruments
srec ti

srec mos
srec mos tech - MOS
srec tektronix extended -
srec

srec tektronix -
srec

srec ti tagged -
srec

srec cmp - compare
srec wilson -

srec

SRecord - DEC Binary (

SRecord

Table of Contents(SRecord)

SRecord - Elektor Monitor (EMONS52) file
format

SRecord - four packed code file format
S-Record hexadecimal file format
SRecord - Signetics file format

srec spasm - SPASM file format

srec spectrum - Spectrum file format

srec tektronix extended - Tektronix
Extended hexadecimal file format

srec tektronix - Tektronix hexadecimal file
format

srec ti tagged - Texas Instruments Tagged
file format

srec wilson - wilson file format

Tagged file format

tagged - Texas Instruments Tagged file
format

tech - MOS Technologies file format
Technologies file format

Tektronix Extended hexadecimal file format
tektronix extended - Tektronix Extended
hexadecimal file format

Tektronix hexadecimal file format
tektronix - Tektronix hexadecimal file
format

Texas Instruments Tagged file format

ti tagged - Texas Instruments Tagged file
format

two eprom load files for equality

wilson file format

wilson - wilson file format

XXDP) file format

vii

Read Me(SRecord) Read Me(SRecord)

NAME
RSecord — manipulate EPROM load files

DESCRIPTION
The SRecord package is a collection of powerful tools for manipulating EPROM load files.

| wrote SRecord because when | was looking for programs to manipulate EPROM load files, | could not
find very many. The ones that | could find only did a few of the things | needed. SRecord is written in C++
and polymorphism is used to provide the file format flexibility and arbitrary filter chaining. Adding more
file formats and filters is relatively simple.

TheFile Formats
The SRecord package understands a number of file formats:
Ascii-Hex
The ascii-hex format is understood for both reading and writing. (Also known as the ascii-space-
hex format.)

ASM It is possible, for output only, to produce a serices of DB statements containing the data. This can
be useful for embedding data into assembler programs. This format cannot be read.

Atmel Generic
This format is produced by the Atmel AVR assembler. It is understood for both reading and
writing.

BASIC Itis possible, for output only, to produce a serices of DATA statements containing the data. This
can be useful for embedding data into BASIC programs. This format cannot be read.

Binary Binary files can both be read and written.

C It is also possible to write a C array declaration which contains the data. This can be useful when
you want to embed download data into C programs. This format cannot be read.

Cosmac The RCA Cosmac EIf format is understood for both reading and writing.

DEC Binary
The DEC Binary (XXDP) format is understood for both reading and writing.

Elektor Monitor (EMON52)
The EMONS52 format is understood for both reading and writing.

Fairchild Fairbug
The Fairchild Fairbug format is understood for both reading and writing.

LSI Logic Fast Load
The LSI Logic Fast Load format is understood for both reading and writing.

Formatted Binary
The Formatted Binary format is understood for both reading and writing.

Four Packed Code (FPC)
The FPC format is understood for both reading and writing.

Intel The Intel hexadecimal format is understood for both reading and writing. (Also known as the
Intel MCS-86 Object format.)

MOS Technology
The MOS Technology hexadecimal format is understood for both reading and writing.

Motorola S-Record
The Motorola hexadecimal S-Record format is understood for both reading and writing. (Also
known as the Exorciser, Exormacs or Exormax format.)

The Needham Electronics ASCII file format is understood for noth reading
and writing.

Reference Manual SRecord 1

Read Me(SRecord) Read Me(SRecord)

0S65V The Ohio Scientific hexadecimal format is understood for both reading and writing.

Signetics
The Signetics format is understood for both reading and writing.

SPASM The SPASM format is used by a variety of PIC programmers; it is understood for both reading
and writing.

Spectrum
The Spectrum format is understood for both reading and writing.

Tektronix (Extended)
The Tektronix hexadecimal format and the Tektronix Extended hexadecimal format are both
understood for both reading and writing.

Texas Instruments Tagged
The Texas Instruments Tagged format is understood for both reading and writing. (Also known
as the Tl-tagged or TI-SDSMAC format.)

VHDL Itis possible to write VHDL file. This is only supported for output.

Wilson The Wilson format is understood for both reading and writing. This mystery format was added
for a mysterious type of EPROM writer.

TheTools
The primary tools of the package are srec_cat and srec_cmp. All of the tools understand all of the file
formats, and all of the filters.

srec_cat The srec_cat program may be used to catenate (join) EPROM load files, or portions of EPROM
load files, together. Because it understands all of the input and output formats, it can also be used
to convert files from one format to another.

srec_cmp
The srec_cmp program may be use to compare EPROM load files, or portions of EPROM load
files, for equality.

srec_info
The srec_info program may be used to print summary information about EPROM load files.

TheFilters
The SRecord package is made more powerful by the concept of input filters. Wherever an input file may be
specified, filters may also be applied to that input file. The following filters are available:

checksum
The checksum filter may be used to insert the checksum of the data (bitnot, negative or positive)
into the data.

byte swap
The byte swap filter may be used to swap pairs of add and even bytes.

CRC The crc filters may be used to insert a CRC into the data.

crop The crop filter may be used to isolate an input address range, or ranges, and discard the rest.
exclude The exclude filter may be used to exclude an input address range, or ranges, and keep the rest.
fill The fill filter may be used to fill any holes in the data with a nominated value.

length The length filter may be used to insert the data length into the data.

maximum
The maximum filter may be used to insert the maximum data address into the data.

minimum
The minimum filter may be used to insert the minimum data address into the data.

offset The offset filter may be used to offset the address of data records, both forwards and backwards.

Reference Manual SRecord 2

Read Me(SRecord)

split
schemes.

unsplit

Read Me(SRecord)

The split filter may be used to split EPROM images for wide data buses or other memory striping

The unsplit filter may be reverse the effects of the split filter.

More than one filter may be applied to each input file. Different filters may be applied to each input file.

All filters may be applied to all file formats.

ARCHIVE SITE

The latest version of SRecord is available on the Web from:

the SRecord page
Description, from the tar file
Description, LSM format

URL: http://srecord.sourceforge.net/
File: srecord.html

File: srecord-1.15.README

File: srecord-1.15.Ism

File: srecord-1.15.spec

File: srecord-1.15.tar.gz
File: srecord-1.15.pdf

RedHat package specification
the complete source
Reference Manual

This Web page also contains a few other pieces of software written by me. Please have a look if you are

interested.

SRecord is also carried by sunsi t e. unc. edu in its Linux archives. You will be able to find SRecord

on any of its mirrors.

URL:

File: srecord-1.15.README
File: srecord-1.15.1sm

File: srecord-1.15.spec

File: srecord-1.15.tar.gz
File: srecord-1.15.pdf

ftp://sunsite.unc.edu/pub/Linux/apps/circuits/

Description, from the tar file
Description, LSM format

RedHat package specification
the complete source

Reference Manual

This site is extensively mirrored around the world, so look for a copy near you (you will get much better

response).
FTP by EMail

For those of you without Web or FTP access, | recommend the use of an ftp-by-email server. Here is a list

of a few (there may be more):

ftpmail@cs.uow.edu.au
ftpmail @ftp.uni-stuttgart.de
ftpmail@grasp.insa-lyon.fr
ftpmail@doc.ic.ac.uk
ftpmail@ieunet.ie
ftpmail@sunsite.unc.edu
ftpmail @ftp.uu.net

Australia
Germany
France

Great Britain
Ireland

USA

USA

In general, you can get a help message about how to use each system by sending email with a subject of
"help" and a message body containing just the word "help".

BUILDING SRECORD

Full instructions for building SRecord may be found in the BUILDING file included in this distribution.

It is also possible to build SRecord on Windows using the Cygwin (www.cygwin.com) or DJGPP
(www.delorie.com/djgpp) environments. Instructions are in the BUILDING file, including how to get

native Windows binaries.

COPYRIGHT
srecord version 1.15

Copyright © 1998, 1999, 2000, 2001, 2002, 2003 Peter Miller; All rights reserved.

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your

option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without

Reference Manual

SRecord

Read Me(SRecord) Read Me(SRecord)

even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write
to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA.

It should be in the LICENSE file included with this distribution.

AUTHOR
Peter Miller E-Mail: millerp@canb.auug.org.au
IAVAR WWW: http://www.canb.auug.org.au/"millerp/

Reference Manual SRecord 4

Read Me(SRecord) Read Me(SRecord)

RELEASE NOTES
This section details the various features and bug fixes of the various releases. For excruciating and
complete detail, and also credits for those of you who have generously sent me suggestions and bug reports,
see the etc/ CHANGES* files.

Version 1.15
* The Ascii-Hex implementation is now slightly more complete. 1 still haven’t found a definitive
description.

* The Fairchild Fairbug format has been added for reading and writing.

* The Spectrum format has been added for reading and writing.

* The Formatted Binary format has been added for reading and writing.

» The RCA Cosmac EIf format has been added for reading and writing.

» The Needham EMP programmer format has been added for reading and writing.

Version 1.14
* Numerous fixes have been made to header handling. It is now possible to specify an empty header with
the - header command line option.

» Some more GCC 3.2 build problems have been fixed.

Version 1.13
* Bugs have been fixed in the Texas Instruments Tagged and VHDL formats, which produced inconsistent
output.

* A couple of build problems have been fixed.
* There are two new output formats for ASM and BASIC.

Version 1.12
* It is now possible to put -minimum input.spec (also —maximum and —length) almost anywhere on the
command line that you can put a number. It allows, for example, the —offset value to be calculated from the
maximum of the previous file. The values calculated by —Minimum, -Maximum and —Length may also
be rounded to arbitrary boundaries, using —Round_Down, —Round_Nearest and —Round_Up.

» The malformed Motorola S5 records output by the Green Hills tool chain are now understood.

Version 1.11
» The Ohio Scientific OS65V audio tape format has been added for reading and writing.

» Some build problems have been fixed.
Version 1.10

Reference Manual SRecord 5

Read Me(SRecord) Read Me(SRecord)

» The Intel format now emits the redundant extended linear address record at the start of the file; some
loaders couldn’t cope without it.

* The Binary format now copes with writing to pipes.

» The Motorola format now understands the S6 (24-bit data record count) records for reading and writing.
» The DEC Binary format now works correctly on Windows machines.

* The LSI Logic Fast Load format is now understood for both reading and writing.

Version 1.9
» The DEC Binary (XXDP) format is now understood for both reading and writing.

* The Elektor Monitor (EMONS52) format is now understood for both reading and writing.
* The Signetics format is now understood for both reading and writing.
* The Four Packed Code (FPC) format is now understood for both reading and writing.

» Wherever possible, header data is now passed through by srec_cat(1). There is also a new srec_cat
—header option, so that you can set the header comment from the command line.

» The Atmel Generic format for Atmel AVR programmers is now understood for both reading and writing.

* The handling of termination records has been improved. It caused problems for a number of filters,
including the —fill filter.

* A bug has been fixed in the checksum calculations for the Tektronix format.
* There is a new SPASM format for PIC programmers.

Version 1.8
* There is a new “unfill” filter, which may be used to perform the reverse effect of the “fill”” filter.

* There is a new bit-wise NOT filter, which may be used to invert the data.
* A couple of bugs have been fixed in the CRC filters.

Version 1.7
* The documentation is now in PDF format. This was in order to make it more accessible to a wider range
of people.

* There is a new srec_cat --address-length option, so that you can set the length of the address fields in the
output file. For example, if you always want S3 data records in a Motorola hex file, use --address-length=4.
This helps when talking to brain-dead EPROM programmers which do not fully implement the format
specification.

* There is a new --multiple option to the commands, which permits an input file to contain multiple
(contradictory) values for some memory locations. The last value in the file will be used.

* A problem has been fixed which stopped SRecord from building under Cygwin.

* A bug has been fixed in the C array output. It used to generate invalid output when the input had holes in
the data.

Version 1.6

Reference Manual SRecord 6

Read Me(SRecord) Read Me(SRecord)

* A bug has been fixed in the C array output. (Holes in the input caused an invalid C file to be produced.)
* There is are new CRC input filters, both 16-bit and 32-bit, both big and little endian.
* There is a new VHDL output format.

* There are new checksum filters: in addition to the existing one’s complement (bitnot) checksum filter,
there are now negative and positive checksum filters.

* The checksum filters are now able to sum over 16-bit and 32-bit values, in addition to the existing byte
sums.

* The srec_cmp program now has a --ver bose option, which gives more information about how the two
inputs differ.

Version 1.5
* There is now a command line option to guess the input file format; all of the tools understand this option.

* The ““MOS Technologies™ file format is now understood for reading and writing.
* The “Tektronix Extended” file format is now understood for reading and writing.

* The “Texas Instruments Tagged” file format is now understood for reading and writing. (Also known as
the TI-Tagged or SDSMAC format.)

* The *“ascii-hex” file format is now understood for reading and writing. (Also known as the ascii-space-
hex format.)

* There is a new byte swap input filter, allowing pairs of odd and even input bytes to be swapped.

* The “wilson” file format is now understood for reading and writing. This mystery format was added for
a mysterious type of EPROM writer.

* The srec_cat program now has a -data-only option, which supresses all output except for the data records.
This helps when talking to brain-dead EPROM programmers which barf at anything but data.

* There is a new -Line-Length option for the srec_cat program, allowing you to specify the maximum width
of output lines.

Version 1.4
» SRecord can now cope with CRLF sequences in Unix files. This was unfortunately common where the
file was generated on a PC, but SRecord was being used on Unix.

Version 1.3
* A bug has been fixed which would cause the crop and exclude filters to dump core sometimes.

* A bug has been fixed where binary files were handled incorrectly on Windows NT (acually, any system in
which text files aren’t the same as binary files).

* There are three new data filters. The --OR filter, which may be used to bit-wise OR a value to each data
byte; the --AND filter, which may be used to bit-wise AND a value to each data byte; and the --eXclusive-
OR filter, which may be used to bit-wise XOR a value to each data byte.

Version 1.2

Reference Manual SRecord 7

Read Me(SRecord) Read Me(SRecord)

* This release includes file format man pages. The web page also includes a PostScript reference manual,
containing all of the man pages.

* The Intel hex format now has full 32-bit support.

* The Tektronix hex format is now supported (only the 16-bit version, Extended tektronix hex is not yet
suppported).

* There is a new split filter, useful for wide data buses and memory striping, and a complementary unsplit
filter to reverse it.

Version 1.1
First public release.

Reference Manual SRecord 8

Build(SRecord) Build(SRecord)

NAME
SRecord — manipulate EPROM load files

SPACE REQUIREMENTS
You will need about 3MB to unpack and build the SRecord package. Your milage may vary.

BEFORE YOU START
There are a few pieces of software you may want to fetch and install before you proceed with your
installation of SRecord.

GNU Groff
The documentation for the SRecord package was prepared using the GNU Groff package (version
1.14 or later). This distribution includes full documentation, which may be processed into
PostScript or DV files at install time — if GNU Groff has been installed.

GCC You may also want to consider fetching and installing the GNU C Compiler if you have not done
so already. This is not essential. SRecord was developed using the GNU C++ compiler, and the
GNU C++ libraries.

The GNU FTP archives may be found at f t p. gnu. or g, and are mirrored around the world.

SITE CONFIGURATION
The SRecord package is configured using the configure program included in this distribution.

The configure shell script attempts to guess correct values for various system-dependent variables used
during compilation, and creates the Makefile and include/config.h files. It also creates a shell script
config.status that you can run in the future to recreate the current configuration.

Normally, you just cd to the directory containing SRecord’s source code and then type
% ./ configure
...lots of output...
%
If you’re using csh on an old version of System V, you might need to type
% sh configure
...lots of output...
%
instead to prevent csh from trying to execute configure itself.

Running configure takes a minute or two. While it is running, it prints some messages that tell what it is
doing. If you don’t want to see the messages, run configure using the quiet option; for example,

% ./configure --quiet

%

To compile the SRecord package in a different directory from the one containing the source code, you must
use a version of make that supports the VPATH variable, such as GNU make. cd to the directory where you
want the object files and executables to go and run the configure script. configure automatically checks for
the source code in the directory that configure is in and in .. (the parent directory). If for some reason
configure is not in the source code directory that you are configuring, then it will report that it can’t find the
source code. In that case, run configure with the option - - sr cdi r =DIR, where DIR is the directory that
contains the source code.

By default, configure will arrange for the make install command to install the SRecord package’s files in
/usr/local/bin, and /usr/local/man. There are options which allow you to control the placement of these

files.

- - prefi x=PATH
This specifies the path prefix to be used in the installation. Defaults to /usr/local unless otherwise
specified.

- -exec- prefi x=PATH
You can specify separate installation prefixes for architecture-specific files files. Defaults to
${prefix} unless otherwise specified.

Reference Manual SRecord 9

Build(SRecord) Build(SRecord)

- - bi ndi r =PATH
This directory contains executable programs. On a network, this directory may be shared
between machines with identical hardware and operating systems; it may be mounted read-only.
Defaults to ${exec_prefix}/bin unless otherwise specified.

- - mandi r =PATH
This directory contains the on-line manual entries. On a network, this directory may be shared
between all machines; it may be mounted read-only. Defaults to ${prefix}/man unless otherwise
specified.

configure ignores most other arguments that you give it; use the - - hel p option for a complete list.

On systems that require unusual options for compilation or linking that the SRecord package’s configure
script does not know about, you can give configure initial values for variables by setting them in the
environment. In Bourne-compatible shells, you can do that on the command line like this:
$CXX="g++ -traditional’ LIBS=-1posix ./configure
...lots of output...
$
Here are the make variables that you might want to override with environment variables when running
configure.

Variable: CXX
C++ compiler program. The default is c++.

Variable: CPPFLAGS
Preprocessor flags, commonly defines and include search paths. Defaults to empty. It is common
to use CPPFLAGS=-1/usr /| ocal /i ncl ude to access other installed packages.

Variable: INSTALL
Program to use to install files. The default is install if you have it, cp otherwise.

Variable: LIBS
Libraries to link with, in the form - | foo - | bar. The configure script will append to this, rather
than replace it. It iscommon to use L1 BS=- L/ usr /1 ocal / | i b to access other installed
packages.

If you need to do unusual things to compile the package, the author encourages you to figure out how
configure could check whether to do them, and mail diffs or instructions to the author so that they can be
included in the next release.

BUILDING SRECORD
All you should need to do is use the
% make
...lots of output...
%
command and wait. When this finishes you should see a directory called bin containing three files:
srec_cat, srec_cmp and srec_info.

srec_cat srec_cat program is used to manipulate and convert EPROM load files. For more information,
see srec_cat(1).

srec_cmp
The srec_cmp program is used to compare EPROM load files. For more information, see
srec_cmp(1).

srec_info
The srec_info program is used to print information about EPROM load files. For more
information, see srec_info(1).

Reference Manual SRecord 10

Build(SRecord) Build(SRecord)

If you have GNU Groff installed, the build will also create a etc/reference.ps file. This contains the
README file, this BUILDING file, and all of the man pages.

You can remove the program binaries and object files from the source directory by using the
% make cl ean
...lots of output...
%
command. To remove all of the above files, and also remove the Makefile and include/config.h and
config.status files, use the
% make di stcl ean
...lots of output...
%
command.

The file etc/configure.in is used to create configure by a GNU program called autoconf. You only need to
know this if you want to regenerate configure using a newer version of autoconf .

Windows NT
It is possible to build SRecord on MS Windows platforms, using the Cygwin (see www. cygwi n. comj or
DJGPP (see wwv. del ori e. cont dj gpp) environments. This provides the *“porting layer” necessary to
run Unix programs on Windows. The build process is exactly as described above.

Note: if you are using GCC 3.x, you may need to edit the Makefile to change CXX = g++ toread CXX =
g++- 2 to fix some weird undefined symbols.

DJGPP always produces native binaries, however if you want to make native binaries with Cygwin (i.e.
ones which work outside Cygwin) there is one extra step you need after running edit the Makefile file, and
add - nmo- cygwi n to the end of the CXX=g++ line.

Once built (using either tool set) Windows binaries should test in the same way as described in the next
section.

TESTING SRECORD
The SRecord package comes with a test suite. To run this test suite, use the command
% make sure
...lots of output...
Passed All Tests
%

The tests take a few seconds each, with a few very fast, and a couple very slow, but it varies greatly
depending on your CPU.

If all went well, the message
Passed All Tests
should appear at the end of the make.

INSTALLING SRECORD
As explained in the SITE CONFIGURATION section, above, the SRecord package is installed under the
/usr/local tree by default. Use the - - pr ef i x=PATH option to configure if you want some other path.
More specific installation locations are assignable, use the - - hel p option to configure for details.

All that is required to install the SRecord package is to use the

% make install

...lots of output...

%
command. Control of the directories used may be found in the first few lines of the Makefile file and the
other files written by the configure script; it is best to reconfigure using the configure script, rather than
attempting to do this by hand.

Reference Manual SRecord 11

Build(SRecord) Build(SRecord)

GETTING HELP
If you need assistance with the SRecord package, please do not hesitate to contact the author at
Peter MIler <mllerp@anb. auug. org. au>
Any and all feedback is welcome.

When reporting problems, please include the version number given by the
% srec_cat -version
srecord version 1.15.D001
..warranty disclaimer...
%
command. Please do not send this example; run the program for the exact version number.
COPYRIGHT

srecord version 1.15
Copyright © 1998, 1999, 2000, 2001, 2002, 2003 Peter Miller; All rights reserved.

The SRecord package is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

It should be in the LICENSE file included with this distribution.

AUTHOR
Peter Miller E-Mail: millerp@canb.auug.org.au
IAVAR WWW: http://www.canb.auug.org.au/ millerp/

Reference Manual SRecord 12

New Format(SRecord) New Format(SRecord)

NAME
How to add a new file format

DESCRIPTION
This section describes how to add a new file format. 1t’s mostly a set of reminders for the maintainer. If
you want a format added to the distribution, use this method and e-mail the maintainer a patch (generated
with diff -u -r, usually) and it can be added to the sources if appropriate.

New Files
The following files need to be create for a new format.

lib/srec/output/file/name.cc
This file is how to write the new format. Take a look at the other files in the same directory for
examples. Also check out include/srec/output/file.h and include/srec/output.h for various helper
methods.

include/srec/output/file/name.h
This is the class declaration for the above file.

lib/srec/input/file/name.cc
This file is how to read the new format. Take a look at the other files in the same directory for
examples. Also check out include/srec/input/file.h and include/srec/input.h for various helper
methods.

include/srec/input/file/name.h
This is the class declaration for the above file.

man/man5/srec_name.5
This file describes the format. Take a look at the other files in the same directory for examples.

Modified Files
The following files need to be updated to mention the new format.

etc/README.man
Mention the new format in the section of this file which describes the supported file formats.

etc/srecord.html
Mention the new format in the section of this file which describes the supported file formats.

include/srec/arglex.h
Add the new format to the command line argument type enum.

lib/srec/arglex.cc
Add the new format to the array of command line arguments types. Add the new format to the
code which parses input formats.

lib/srec/arglex_output.cc
Add the new format to the code which parses output formats.

lib/srec/input/file/guess.cc
Add the new format to the list of formats which are tested.

man/manl/o_input.so
Mention the new format in the section of this file which describes the supported input file
formats.

man/manl/srec_cat.1
Mention the new format in the section of this file which describes the supported output file
formats.

Makefile
Actually, the system the maintainer uses automatically generates this file, but if you aren’t using
Aegis you will need to edit this file for your own use.

Reference Manual SRecord 13

New Format(SRecord)

AUTHOR
Peter Miller
AVAR

Reference Manual

E-Mail:
WWW:

millerp@canb.auug.org.au
http://www.canb.auug.org.au/ millerp/

SRecord

New Format(SRecord)

14

srec_cat(1) srec_cat(1)

NAME
srec_cat — manipulate eprom load files

SYNOPSIS
srec_cat [option...] filename...
srec_cat -Help
srec_cat -VERSion

DESCRIPTION
The srec_cat program is used to assemble the given input files into a single output file. The use of filters
(see below) allows significant manipulations to be performed by this command.

A warning will be emitted for each address wich is redundantly se to the same value. A fatal error will be
issued if any address is set with contradictory values. To supress this behaviour, use an —exclude —within
filter.

INPUT FILE SPECIFICATIONS
Input files may be qualified in a number of ways: you may specify their format and you may specify filters
to apply to them. An input file specification looks like this:
filename [format] filter ...]

The filename The filename may be specified as a file name, or the special name *“-” which is understood to
mean the standard input.

File Formats
The format is specified by the argument after the file name. The format defaults to Motorola S-Record if
not specified. The format specified are:

—Ascii-Hex
This option says to use the Ascii-Hex format to read the file. See srec_ascii_hex(5) for a
description of this file format.

—Atmel_Generic
This option says to use the Atmel Generic format to read the file. See srec_atmel_genetic(5) for a
description of this file format.

—-Binary
This option says the file is a raw binary file, and should be read literally. (May also be written
-Raw.)

—COsmac
This option says to use the RCA Cosmac EIf format to read the file. See srec_cosmac(5) for a
description of this file format.

—-Dec_Binary
This option says to use the DEC Binary (XXDP) format to read the file. See srec_dec_binary(5)
for a description of this file format.

—Elektor_Monitor52
This option says to use the EMON52 format to read the file. See srec_emon52(5) for a
description of this file format.

—FAlrchild
This option says to use the Fairchild Fairbug format to read the file. See srec_fairchild(5) for a
description of this file format.

—Fast_Load
This option says to use the LSI Logic Fast Load format to read the file. See srec_fastload(5) for a
description of this file format.

—Formatted_Binary
This option says to use the Formatted Binary format to read the file. See
srec_formatted_binary(5) for a description of this file format.

Reference Manual SRecord 15

srec_cat(1) srec_cat(1)

—Four_Packed_Code
This option says to use the FPC format to read the file. See srec_fpc(5) for a description of this
file format.

—Guess This option may be uased to ask srec_cat to guess the input format. This is slower than
specifying an explicit format, as it may open and close the file a number of times.

—Intel This option says to use the Intel hex format to read the file. See srec_intel(5) for a description of
this file format.

—-MOS_Technologies
This option says to use the Mos Technologies format to read the file. See srec_mos_tech(5) for a
description of this file format.

—Motorola
This option says to use the Motorola S-Record format to read the file. (May also be written —S-
Record.) See srec_motorola(5) for a description of this file format.

—Needham_Hexadecimal
This option says to use the Needham Electronics ASCII file format to read the file. See
srec_needham(5) for a description of this file format.

—Ohio_Scientific
This option says to use the Ohio Scientific format. See srec_os65v(5) for a description of this file
format.

-SIGnetics
This option says to use the Signetics format. See srec_spasm(5) for a description of this file
format.

—-SPAsm
This option says to use the SPASM assembler output format (commonly used by PIC
programmers). See srec_spasm(5) for a description of this file format.

—SPAsm_LittleEndian
This option says to use the SPASM assembler output format (commonly used by PIC
programmers). But with the data the other way around.

—Tektronix
This option says to use the Tektronix hex format to read the file. See srec_tektronix(5) for a
description of this file format.

—Tektronix_Extended
This option says to use the Tektronix extended hex format to read the file. See
srec_tektronix_extended (5) for a description of this file format.

—Texas_Instruments_Tagged
This option says to use the Texas Instruments Tagged format to read the file. See
srec_ti_tagged(5) for a description of this file format.

-WILson
This option says to use the wilson format to read the file. See srec_wilson(5) for a description of
this file format.

Input Filters
You may specify zero or more filters to be applied. Filters are applied in the order the user specifies.

-Big_Endian_Checksum_BitNot address [nbytes [width]]
This filter may be used to insert the one’s complement checksum of the data into the data, most
significant byte first. The data is literaly summed,; if there are duplicate bytes, this will produce
an incorrect result, if there are holes, it will be as if they were filled with zeros. If the data
already contains bytes at the checksum location, you need to use an exclude filter, or this will
generate errors. You need to apply and crop or fill filters before this filter. The value will be

Reference Manual SRecord 16

srec_cat(1) srec_cat(1)

written with the most significant byte first. The number of bytes of resulting checksum defaults
to 4. The width (the width in bytes of the values being summed) defaults to 1.

—-Big_Endian_Checksum_Negative address [nbytes [width]]
This filter may be used to insert the two’s complement (negative) checksum of the data into the
data. Otherwise similar to the above.

-Big_Endian_Checksum_Positive address [nbytes [width]]
This filter may be used to insert the simple checksum of the data into the data. Otherwise similar
to the above.

—Little_Endian_Checksum_BitNot address [nbytes [width]]
This filter may be used to insert the one’s complement (bitnot) checksum of the data into the data,
least significant byte first. Otherwise similar to the above.

—Little_Endian_Checksum_Negative address [nbytes [width]]
This filter may be used to insert the two’s complement (negative) checksum of the data into the
data. Otherwise similar to the above.

—Little_Endian_Checksum_Negative address [nbytes [width]]
This filter may be used to insert the simple checksum of the data into the data. Otherwise similar
to the above.

—Byte_Swap
This filter may be used to swap pairs of odd and even bytes.

-Big_Endian_CRC16 address
This filter may be used to insert an industry standard 16-bit CRC checksum of the data into the
data. Two bytes, big-endian order, are inserted at the address given. Holes in the input data are
ignored. Bytes are processed in ascending address order (not in the order they appear in the
input).

-Big_Endian_CRC16 address
As above, except little-endian order.

-Big_Endian_CRC32 address
This filter may be used to insert an industry standard 32-bit CRC checksum of the data into the
data. Four bytes, big-endian order, are inserted at the address given. Holes in the input data are
ignored. Bytes are processed in ascending address order (not in the order they appear in the
input).

-Big_Endian_CRC32 address
As above, except little-endian order.

—Crop address-range
This filter may be used to isolate a section of data, and discard the rest.

—Exclude address-range
This filter may be used to exclude a section of data, and keep the rest. The is the logical
complement of the —Crop filter.

—Fill value address-range
This filter may be used to fill any gaps in the data with bytes equal to value. The fill will only
occur in the address range given.

—=UnFill value [min-run-length]
This filter may be used to create gaps in the data with bytes equal to value. You can think of it as

reversing the effects of the —Fill filter. The gaps will only be created if the are at least min-run-
length bytes in a row (defaults to 1).

—-AND value
This filter may be used to bit-wise AND a value to every data byte. This is useful if you need to
clear bits. Only existing data is altered, no holes are filled.

Reference Manual SRecord 17

srec_cat(1) srec_cat(1)

—eXclusive-OR value
This filter may be used to bit-wise XOR a value to every data byte. This is useful if you need to
invert bits. Only existing data is altered, no holes are filled.

-OR value
This filter may be used to bit-wise OR a value to every data byte. This is useful if you need to set
bits. Only existing data is altered, no holes are filled.

-NOT This filter may be used to bit-wise NOT the value of every data byte. This is useful if you need to
invert the data. Only existing data is altered, no holes are filled.

—-Big_Endian_Length address [nbytes]
This filter may be used to insert the length of the data (high water minus low water) into the data.
This includes the length itself. If the data already contains bytes at the length location, you need
to use an exclude filter, or this will generate errors. The value will be written with the most
significant byte first. The number of bytes defaults to 4.

—Little_Endian_Length address [nbytes]
As above, however the value will be written with the least significant byte first.

-Big_Endian_MAXimum address [nbytes]
This filter may be used to insert the maximum address of the data (high water
+ 1) into the data. This includes the maximum itself. If the data already contains bytes at the
given address, you need to use an exclude filter, or this will generate errors. The value will be
written with the most significant byte first. The number of bytes defaults to 4.

—Little_Endian_MAXimum address [nbytes]
As above, however the value will be written with the least significant byte first.

-Big_Endian_MINimum address [nbytes]
This filter may be used to insert the minimum address of the data (low water) into the data. This
includes the minimum itself. If the data already contains bytes at the given address, you need to
use an exclude filter, or this will generate errors. The value will be written with the most
significant byte first. The number of bytes defaults to 4.

—Little_Endian_MINimum address [nbytes]
As above, however the value will be written with the least significant byte first.

—OFfset nbytes
This filter may be used to offset the addresses by the given number of bytes. No data is lost, the
addresses will wrap around in 32 bits, if necessary.

=SPIlit multiple [offset [width]]
This filter may be used to split the input into a subset of the data, and compress the address range
so as to leave no gaps. This useful for wide data buses and memory striping. The multiple is the
bytes multiple to split over, the offset is the byte offset into this range (defaults to 0), the width is
the number of bytes to extract (defaults to 1) within the multiple. In order to leave no gaps, the
output addresses are (width / multiple) times the input addresses.

-Un_SPIlit multiple [offset [width]]
This filter may be used to reverse the effects of the split filter. The arguments are identical. Note
that the address range is expanded (multiple/ width) times, leaving holes between the stripes.

Address Ranges
There are three ways to specify an address range:

minimum maximum
If you specify two number on the command line (decimal, octal and hexadecimal are understood,
using the C conventions) this is an explicit address range. The minimum is inclusive, the
maximum is exclusive (one more than the last address). If the maximum is given as zero then the
range extends to the end of the address space.

Reference Manual SRecord 18

srec_cat(1) srec_cat(1)

—Within input-specification
This says to use the specified input file as a mask. The range includes all the places the specified
input has data, and holes where it has holes. The input specification need not be just a file name,
it may be anything any other input specification can be.

—OVER input-specification
This says to use the specified input file as a mask. The range extends from the minimum to the
maximum address used by the input, and ignores any holes. The input specification need not be
just a file name, it may be anything any other input specification can be.

In addition, all of these methods may be used, and used more than once, and the results will be added
together.

Calculated Values
Most of the places above where a number is expected, you may supply one of the following:

—MINimum input-specification
This inserts the minimum address of the specified input file. The input specification need not be
just a file name, it may be anything any other input specification can be.

-MAXimum input-specification
This inserts the maximum address of the specified input file, plus one. The input specification
need not be just a file name, it may be anything any other input specification can be.

—Length input-specification
This inserts the length of the address range in the specified input file, ignoring any holes. The

input specification need not be just a file name, it may be anything any other input specification
can be.

For example, the -OVER file option can be thought of a short-hand for (—min file —max file)i, except that
it is much easier to type, and also more efficient.

In addition, calculated values may optionally be rounded in one of three ways:

value ~Round_Down number
The value is rounded down to the the largest integer smaller than or equal to a whole multiple of
the number.

value —Round_Nearest number
The value is rounded to the the nearest whole multiple of the number.

value —Round_Up number
The value is rounded up to the the smallest integer larger than or equal to a whole multiple of the
number.

OPTIONS
The following options are understood:

—Output filename [format]

This option may be used to specify the output file to be used. The special file name ““-” is
understood to mean the standard output. Output defaults to the standard output if this option is
not used.

The format may be specified as:

—Ascii_Hex
An Ascii-Hex file will be written. (See srec_ascii_hex(5) for a description of this file
format.)

—-ASM A series of assembler DB statements will be written.

—Atmel_Generic
An Atmel Generic file will be written. (See srec_atmel_generic(5) for a description of
this file format.)

Reference Manual SRecord 19

srec_cat(1) srec_cat(1)

—-BASic A series of BASIC DATA statements will be written.

—-Binary
A raw binary file will be written.

—C-Array identifier
A C array declaration will be written. The identifier is the name of the variable to be
defined.

—COsmac
An RCA Cosmac EIf format file will be written. (See srec_cosmac(5) for a description
of this file format.)

—-Dec_Binary
A DEC Binary (XXDP) format file will be written. (See srec_dec_binary(5) for a
description of this file format.)

—Elektor_Monitor52
This option says to use the EMONS52 format file when writing the file. (See
srec_emon52(5) for a description of this file format.)

—FAlrchild
This option says to use the Fairchild Fairbug format file when writing the file. (See
srec_fairchild(5) for a description of this file format.)

—-Fast_Load
This option says to use the LSI Logic Fast Load format file when writing the file. (See
srec_fastload(5) for a description of this file format.)

—Formatted_Binary
A Formatted Binary format file will be written. (See srec_formatted_binary(5) for a
description of this file format.)

—Four_Packed_Code
This option says to use the PFC format file when writing the file. (See srec_fpd(5) for
a description of this file format.)

—Intel An Intel hex format file will be written. (See srec_intel (5) for a description of this file
format.)

-MOS_Technologies
An Mos Technologies format file will be written. (See srec_mos_tech(5) for a
description of this file format.)

—Motorola
A Motorola S-Record file will be written. (See srec_motorola(5) for a description of
this file format.) This is the default.

—Needham_Hexadecimal
This option says to use the Needham Electronics ASCI|I file format to write the file.
See srec_needham(5) for a description of this file format.

—Ohio_Scientific
This option says to use the Ohio Scientific hexadecimal format. See srec_o0s65v(5) for
a description of this format.

—-SIGnetics
This option says to use the Signetics hex format. See srec_signetics(5) for a description
of this format.

-SPAsm
This option says to use the SPASM assembler output format (commonly used by PIC
programmers). See srec_spasm(5) for a description of this format.

Reference Manual SRecord 20

srec_cat(1) srec_cat(1)

-SPAsm_LittleEndian
This option says to use the SPASM assembler output format (commonly used by PIC
programmers). But with the data the other way around.

—Tektronix
A Tektronix hex format file will be written. (See srec_tektronix(5) for a description of
this file format.)

—Tektronix_Extended
A Tektronix extended hex format file will be written. (See srec_tektronix_extended(5)
for a description of this file format.)

—Texas_Instruments_Tagged
A TI-Tagged format file will be written. (See srec ti_tagged(5) for a description of this
file format.)

-VHdI [bytes-per-word [name]]
A VHDL format file will be written. The bytes-per-word defaaults to one, the name
defaults to epr om The etc/x_defs pack.vhd file in the source distribution contains an
example ROM definitions pack for the type-independent output.

-WILson
A wilson format file will be written. (See srec_wilson(5) for a description of this file
format.)

—Address_Length number
This option many be used to specify the minimum number of bytes to be used in the output to
represent an address (padding with leading zeros if necessary). This helps when talking to brain-
dead EPROM programmers which do not fully implement the format specification.

—-Data_Only
This option may be used to suppress all output except data fields. This helps when talking to
brain-dead EPROM programmers which do not fully implement the format specification.

-Line_Length number
This option may be used to limit the length of the output lines to at most number characters. (Not
meaningful for binary file format.) Defaults to something less than 80 characters, depending on
the format.

—HEAder string
This option may be used to set the header comment, in those format which support it.

-MULTiple
Use this option to permit a file to contain multiple (contradictory) values for some memory
locations. A warning will be printed. The last value in the file will be used. The default is for
this condition to be a fatal error.

All other options will produce a diagnostic error.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case
letters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments "-help”, "-HEL" and "-h" are all interpreted to mean the -Help option. The
argument "-hlp™ will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line.

The GNU long option names are understood. Since all option names for srec_cat are long, this means
ignoring the extra leading ’-’. The "--option=value" convention is also understood.

Reference Manual SRecord 21

srec_cat(1) srec_cat(1)

EXIT STATUS

The srec_cat command will exit with a status of 1 on any error. The srec_cat command will only exit with
a status of O if there are no errors.

EXAMPLES

The srec_cat command is very powerful, due to the ability to combine the the input filters in almost
unlimited ways.

Converting File Formats
The simplest case is converting files from Intel hex format to Motorola S-Record format:
srec_cat intel-file -intel -o srecfile
Converting the other was is just as simple:
srec_cat srec-file - o intel-file -i ntel
In each case, the default format is Motorola S-Record format, so it does not need to be specified.

Cropping the Data
A common activity is to crop your data to match your EPROM location. Your linker may add other junk
that you are not interested in, e.g. at the RAM location. In this example, there is a 1IMB EPROM at the
2MB boundary:
srec_cat infile -crop 0x200000 0x300000 -o outfile
The lower bound is inclusive, the upper bound is exclusive.

Address Offset
Just possibly, you have a moronic EPROM programmer, and it barfs if the eprom doesn’t start at zero.
Rather than butcher the linker command file, just offset the addresses:
srec_cat infile -crop 0x200000 0x300000 -of fset -0x200000 -o outfile
This example also demonstrates how the input filters may be chained together.

Joining Files Together
The srec_cat command takes its name from the UNIX cat(1) command, which is short for ‘catenate’ or ‘to

join’. Joining files together into a single file is simple, just name as many files on the command line as you
need:

srec_cat infilel infile2 - o outfile
However, this assumes that the files don’t overlap in any way (you will get an error if they do). If both files
start from address zero, you may need to use the offset filter:
srec_cat infilel infile2 - of fset 0x80000 - o outfile
Sometimes you want the two files to follow each other exactly, but you don’t know the offset in advance:
srec_cat infilel infile2 - of f set - maxi mum infilel - o outfile
Notice that where the was a number (0x80000) before, there is now a calculation (—maximum infilel). This
is possible most places a number may be used (also —minimum and -range).

Filling the Blanks
It is possible to fill the blanks where our data does not lie. The simplest example of this fills the entire
EPROM:
srec_cat infile -fill 0x00 0x200000 0x300000 -o outfile
This example fills the holes, if any, with zeros. You must specify a range - with a 32-bit address space,
filling everything generates huge load files.

If you only want to fill the gaps in your data, and don’t want to fill the entire EPROM, try:
srec_cat infile -fill 0x00 -over infile -0 outfile

This example demonstrates the fact that wherever an address range may be specified, the —over and

—within options may be used.

Unfilling the Blanks
It is common to need to “unfill”” an eprom image after you read it out of a chip. Usually, it will have had

all the holes filled with OXFF (areas of the EPROM you don’t program show as OXFF when you read them
back).

To get rid of all the OXFF bytes in the data, use this filter:
srec_cat infile -unfill OxFF -o outfile

Reference Manual SRecord 22

srec_cat(1) srec_cat(1)

This will get rid of all the OxXFF bytes, including the ones you actually wanted in there. There are two ways
to deal with this. First, you can specify a minimum run length to the un-fill:

srec_cat infile -unfill OxFF 5 -0 outfile
This says that runs of 1 to 4 bytes of OXFF are OK, and that a hole should only be created for runs of 5 or
more OXFF bytes in a row. The second method is to re-fill over the intermediate gaps:

srec_cat outile -fill OxFF -over outfile - 0 outfile2
Which method you choose depends on your needs, and the shape of the data in your EPROM. You may
need to combine both techniques.

Splitting an Image
If you have a 16-bit data bus, but you are using two 8-bit EPROMSs to hold your firmware, you can generate
the even and odd images by using the —SPlit filter. Assuming your firmware is in the firmware.hex file, use
the following:
srec_cat firmmvare.hex -split 2 0 -o firmare. even. hex
srec_cat firmmvare.hex -split 2 1 -o firmare. odd. hex
This will result in the two necessary EPROM images. Note that the output addresses are divided by the
split multiple, so if your EPROM images are at a particular offset (say 0x10000, in the following example),
you need to remove the offset, and then replace it...
srec_cat firmare. hex \
-of fset -0x10000 -split 2 0\
-of fset 0x10000 -o firnmware.even. hex
srec_cat firmare. hex \
-of fset -0x10000 -split 2 1\
-of fset 0x10000 -o firnmware.odd. hex
Note how the ability to apply multiple filters simplifies what would otherwise be a much longer script.

A second use for the —SPlit filter is memory striping. In this example, the hardware requires that 512-byte
blocks alternate between 4 EPROMs. Generating the 4 images would be done as follows:
srec_cat firmmvare. hex -split O0x800 0x000 0x200 -o firnmware. 0. hex
srec_cat firmmvare. hex -split O0x800 0x200 0x200 -o firnmnare. 1. hex
srec_cat firmmvare. hex -split O0x800 0x400 0x200 -o firnmware. 2. hex
srec_cat firmmvare. hex -split O0x800 0x600 0x200 -o firnmware. 3. hex

The unsplit filter may be used to reverse the effects of the split filter. Note that the address range is
expanded leaving holes between the stripes. By using all the stripes, the complete input is reassembled,
without any holes. For example, to reverse our previous 16-bit data bus example, use the following
command:
srec_cat -o firmare. hex \
firmnare. even. hex -unsplit 2 0\
firmmare. odd. hex -unsplit 2 1

COPYRIGHT
srec_cat version 1.15
Copyright © 1998, 1999, 2000, 2001, 2002, 2003 Peter Miller;
All rights reserved.

The srec_cat program comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_cat
-VERSion License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the ’srec_cat -VERSion License’ command.

AUTHOR
Peter Miller E-Mail: millerp@canb.auug.org.au
M* WWW: http://www.canb.auug.org.au/ millerp/

Reference Manual SRecord 23

srec_cmp(1) srec_cmp(1)

NAME
srec_cmp — compare two eprom load files for equality

SYNOPSIS
srec_cmp [option...] filename...
srec_cmp -Help
srec_cmp -VERSion

DESCRIPTION
The srec_cmp program is used to compare two eprom load files for equality. This comparison is performed
irrespective of the load order of the data in each of the files.

INPUT FILE SPECIFICATIONS
Input files may be qualified in a number of ways: you may specify their format and you may specify filters
to apply to them. An input file specification looks like this:
filename [format] filter ...]

The filename The filename may be specified as a file name, or the special name *“-”” which is understood to
mean the standard input.

File Formats
The format is specified by the argument after the file name. The format defaults to Motorola S-Record if
not specified. The format specified are:

—Ascii-Hex
This option says to use the Ascii-Hex format to read the file. See srec_ascii_hex(5) for a
description of this file format.

—Atmel_Generic
This option says to use the Atmel Generic format to read the file. See srec_atmel_genetic(5) for a
description of this file format.

—-Binary
This option says the file is a raw binary file, and should be read literally. (May also be written
-Raw.)

—COsmac
This option says to use the RCA Cosmac EIf format to read the file. See srec_cosmac(5) for a
description of this file format.

—-Dec_Binary
This option says to use the DEC Binary (XXDP) format to read the file. See srec_dec_binary(5)
for a description of this file format.

—Elektor_Monitor52
This option says to use the EMON52 format to read the file. See srec_emon52(5) for a
description of this file format.

—FAlrchild
This option says to use the Fairchild Fairbug format to read the file. See srec_fairchild(5) for a
description of this file format.

—Fast_Load
This option says to use the LSI Logic Fast Load format to read the file. See srec_fastload(5) for a
description of this file format.

—Formatted_Binary
This option says to use the Formatted Binary format to read the file. See
srec_formatted_binary(5) for a description of this file format.

—Four_Packed_Code
This option says to use the FPC format to read the file. See srec_fpc(5) for a description of this
file format.

Reference Manual SRecord 24

srec_cmp(1) srec_cmp(1)

—Guess This option may be uased to ask srec_cmp to guess the input format. This is slower than
specifying an explicit format, as it may open and close the file a number of times.

—Intel This option says to use the Intel hex format to read the file. See srec_intel(5) for a description of
this file format.

-MOS_Technologies
This option says to use the Mos Technologies format to read the file. See srec_mos_tech(5) for a
description of this file format.

—Motorola
This option says to use the Motorola S-Record format to read the file. (May also be written —S-
Record.) See srec_motorola(5) for a description of this file format.

—Needham_Hexadecimal
This option says to use the Needham Electronics ASCII file format to read the file. See
srec_needham(5) for a description of this file format.

—Ohio_Scientific
This option says to use the Ohio Scientific format. See srec_os65v(5) for a description of this file
format.

-SIGnetics
This option says to use the Signetics format. See srec_spasm(5) for a description of this file
format.

—-SPAsm
This option says to use the SPASM assembler output format (commonly used by PIC
programmers). See srec_spasm(5) for a description of this file format.

—SPAsm_LittleEndian
This option says to use the SPASM assembler output format (commonly used by PIC
programmers). But with the data the other way around.

—Tektronix
This option says to use the Tektronix hex format to read the file. See srec_tektronix(5) for a
description of this file format.

—Tektronix_Extended
This option says to use the Tektronix extended hex format to read the file. See
srec_tektronix_extended (5) for a description of this file format.

—Texas_Instruments_Tagged
This option says to use the Texas Instruments Tagged format to read the file. See
srec_ti_tagged(5) for a description of this file format.

-WILson
This option says to use the wilson format to read the file. See srec_wilson(5) for a description of
this file format.

Input Filters
You may specify zero or more filters to be applied. Filters are applied in the order the user specifies.

-Big_Endian_Checksum_BitNot address [nbytes [width]]
This filter may be used to insert the one’s complement checksum of the data into the data, most
significant byte first. The data is literaly summed,; if there are duplicate bytes, this will produce
an incorrect result, if there are holes, it will be as if they were filled with zeros. If the data
already contains bytes at the checksum location, you need to use an exclude filter, or this will
generate errors. You need to apply and crop or fill filters before this filter. The value will be
written with the most significant byte first. The number of bytes of resulting checksum defaults
to 4. The width (the width in bytes of the values being summed) defaults to 1.

Reference Manual SRecord 25

srec_cmp(1) srec_cmp(1)

—-Big_Endian_Checksum_Negative address [nbytes [width]]
This filter may be used to insert the two’s complement (negative) checksum of the data into the
data. Otherwise similar to the above.

-Big_Endian_Checksum_Positive address [nbytes [width]]
This filter may be used to insert the simple checksum of the data into the data. Otherwise similar
to the above.

—Little_Endian_Checksum_BitNot address [nbytes [width]]
This filter may be used to insert the one’s complement (bitnot) checksum of the data into the data,
least significant byte first. Otherwise similar to the above.

—Little_Endian_Checksum_Negative address [nbytes [width]]
This filter may be used to insert the two’s complement (negative) checksum of the data into the
data. Otherwise similar to the above.

—Little_Endian_Checksum_Negative address [nbytes [width]]
This filter may be used to insert the simple checksum of the data into the data. Otherwise similar
to the above.

—Byte_Swap
This filter may be used to swap pairs of odd and even bytes.

-Big_Endian_CRC16 address
This filter may be used to insert an industry standard 16-bit CRC checksum of the data into the
data. Two bytes, big-endian order, are inserted at the address given. Holes in the input data are
ignored. Bytes are processed in ascending address order (not in the order they appear in the
input).

-Big_Endian_CRC16 address
As above, except little-endian order.

-Big_Endian_CRC32 address
This filter may be used to insert an industry standard 32-bit CRC checksum of the data into the
data. Four bytes, big-endian order, are inserted at the address given. Holes in the input data are
ignored. Bytes are processed in ascending address order (not in the order they appear in the
input).

-Big_Endian_CRC32 address
As above, except little-endian order.

—Crop address-range
This filter may be used to isolate a section of data, and discard the rest.

—Exclude address-range
This filter may be used to exclude a section of data, and keep the rest. The is the logical
complement of the —Crop filter.

—Fill value address-range
This filter may be used to fill any gaps in the data with bytes equal to value. The fill will only
occur in the address range given.

—=UnFill value [min-run-length]
This filter may be used to create gaps in the data with bytes equal to value. You can think of it as

reversing the effects of the —Fill filter. The gaps will only be created if the are at least min-run-
length bytes in a row (defaults to 1).

—-AND value
This filter may be used to bit-wise AND a value to every data byte. This is useful if you need to
clear bits. Only existing data is altered, no holes are filled.

Reference Manual SRecord 26

srec_cmp(1) srec_cmp(1)

—eXclusive-OR value
This filter may be used to bit-wise XOR a value to every data byte. This is useful if you need to
invert bits. Only existing data is altered, no holes are filled.

-OR value
This filter may be used to bit-wise OR a value to every data byte. This is useful if you need to set
bits. Only existing data is altered, no holes are filled.

-NOT This filter may be used to bit-wise NOT the value of every data byte. This is useful if you need to
invert the data. Only existing data is altered, no holes are filled.

—-Big_Endian_Length address [nbytes]
This filter may be used to insert the length of the data (high water minus low water) into the data.
This includes the length itself. If the data already contains bytes at the length location, you need
to use an exclude filter, or this will generate errors. The value will be written with the most
significant byte first. The number of bytes defaults to 4.

—Little_Endian_Length address [nbytes]
As above, however the value will be written with the least significant byte first.

-Big_Endian_MAXimum address [nbytes]
This filter may be used to insert the maximum address of the data (high water
+ 1) into the data. This includes the maximum itself. If the data already contains bytes at the
given address, you need to use an exclude filter, or this will generate errors. The value will be
written with the most significant byte first. The number of bytes defaults to 4.

—Little_Endian_MAXimum address [nbytes]
As above, however the value will be written with the least significant byte first.

-Big_Endian_MINimum address [nbytes]
This filter may be used to insert the minimum address of the data (low water) into the data. This
includes the minimum itself. If the data already contains bytes at the given address, you need to
use an exclude filter, or this will generate errors. The value will be written with the most
significant byte first. The number of bytes defaults to 4.

—Little_Endian_MINimum address [nbytes]
As above, however the value will be written with the least significant byte first.

—OFfset nbytes
This filter may be used to offset the addresses by the given number of bytes. No data is lost, the
addresses will wrap around in 32 bits, if necessary.

=SPIlit multiple [offset [width]]
This filter may be used to split the input into a subset of the data, and compress the address range
so as to leave no gaps. This useful for wide data buses and memory striping. The multiple is the
bytes multiple to split over, the offset is the byte offset into this range (defaults to 0), the width is
the number of bytes to extract (defaults to 1) within the multiple. In order to leave no gaps, the
output addresses are (width / multiple) times the input addresses.

-Un_SPIlit multiple [offset [width]]
This filter may be used to reverse the effects of the split filter. The arguments are identical. Note
that the address range is expanded (multiple/ width) times, leaving holes between the stripes.

Address Ranges
There are three ways to specify an address range:

minimum maximum
If you specify two number on the command line (decimal, octal and hexadecimal are understood,
using the C conventions) this is an explicit address range. The minimum is inclusive, the
maximum is exclusive (one more than the last address). If the maximum is given as zero then the
range extends to the end of the address space.

Reference Manual SRecord 27

srec_cmp(1) srec_cmp(1)

—Within input-specification
This says to use the specified input file as a mask. The range includes all the places the specified
input has data, and holes where it has holes. The input specification need not be just a file name,
it may be anything any other input specification can be.

—OVER input-specification
This says to use the specified input file as a mask. The range extends from the minimum to the
maximum address used by the input, and ignores any holes. The input specification need not be
just a file name, it may be anything any other input specification can be.

In addition, all of these methods may be used, and used more than once, and the results will be added
together.

Calculated Values

Most of the places above where a number is expected, you may supply one of the following:

—MINimum input-specification
This inserts the minimum address of the specified input file. The input specification need not be
just a file name, it may be anything any other input specification can be.

-MAXimum input-specification
This inserts the maximum address of the specified input file, plus one. The input specification
need not be just a file name, it may be anything any other input specification can be.

—Length input-specification
This inserts the length of the address range in the specified input file, ignoring any holes. The
input specification need not be just a file name, it may be anything any other input specification
can be.

For example, the -OVER file option can be thought of a short-hand for (—min file —max file)i, except that
it is much easier to type, and also more efficient.

In addition, calculated values may optionally be rounded in one of three ways:

value ~Round_Down number
The value is rounded down to the the largest integer smaller than or equal to a whole multiple of
the number.

value —Round_Nearest number
The value is rounded to the the nearest whole multiple of the number.

value —Round_Up number
The value is rounded up to the the smallest integer larger than or equal to a whole multiple of the
number.

OPTIONS
The following options are understood:

-Help
Provide some help with using the srec_cmp program.

-MULTiple
Use this option to permit a file to contain multiple (contradictory) values for some memory
locations. A warning will be printed. The last value in the file will be used. The default is for
this condition to be a fatal error.

-VERSion
Print the version of the srec_cmp program being executed.

-Verbose
This option may be used to obtain more information about how and where the two files differ.
Please note that this takes longer, and the output can be voluminous.

All other options will produce a diagnostic error.

Reference Manual SRecord 28

srec_cmp(1) srec_cmp(1)

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case
letters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments "-help”, "-HEL" and "-h" are all interpreted to mean the -Help option. The
argument "-hlp™ will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line.

The GNU long option names are understood. Since all option names for srec_cmp are long, this means
ignoring the extra leading ’-’. The "--option=value" convention is also understood.

EXIT STATUS
The srec_cmp command will exit with a status of 1 on any error. The srec_cmp command will only exit
with a status of O if there are no errors.

EXAMPLE
A common use for the srec_cmp command is to verify that a particular signature is present in the code. In
this example, the signature is in a file called*‘signature”, and the EPROM image is in a file called “image”.
We assume they are both Motorola S-Record format, although this will work for all formats:

srec_cnp signature image -crop -within signature

The signature need not be at the start of memory, nor need it be one single contiguous piece of memory. In
the above example, the portions of the image which have the same address range as the signature are
compared with the signature.

COPYRIGHT
srec_cmp version 1.15
Copyright © 1998, 1999, 2000, 2001, 2002, 2003 Peter Miller;
All rights reserved.

The srec_cmp program comes with ABSOLUTELY NO WARRANTY; for details use the *srec_cmp
-VERSon License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the *srec_cmp -VERS on License’ command.

AUTHOR
Peter Miller E-Mail: millerp@canb.auug.org.au
M* WWW: http://www.canb.auug.org.au/ millerp/

Reference Manual SRecord 29

srec_info(1) srec_info(1)

NAME
srec_info — information about eprom load files

SYNOPSIS
srec_info [option...] filename...
srec_info -Help
srec_info -VERSion

DESCRIPTION
The srec_info program is used to obtain input about eprom load files. It reads the files specified, and then
presents statistics about them. These statistics include: the file header if any, the start address if any, and
the address ranges covered by the data if any.

INPUT FILE SPECIFICATIONS
Input files may be qualified in a number of ways: you may specify their format and you may specify filters
to apply to them. An input file specification looks like this:
filename [format] filter ...]

The filename The filename may be specified as a file name, or the special name *“-”” which is understood to
mean the standard input.

File Formats
The format is specified by the argument after the file name. The format defaults to Motorola S-Record if
not specified. The format specified are:

—Ascii-Hex
This option says to use the Ascii-Hex format to read the file. See srec_ascii_hex(5) for a
description of this file format.

—Atmel_Generic
This option says to use the Atmel Generic format to read the file. See srec_atmel_genetic(5) for a
description of this file format.

—-Binary
This option says the file is a raw binary file, and should be read literally. (May also be written
-Raw.)

—COsmac
This option says to use the RCA Cosmac EIf format to read the file. See srec_cosmac(5) for a
description of this file format.

—-Dec_Binary
This option says to use the DEC Binary (XXDP) format to read the file. See srec_dec_binary(5)
for a description of this file format.

—Elektor_Monitor52
This option says to use the EMONS52 format to read the file. See srec_emon52(5) for a
description of this file format.

—FAlrchild
This option says to use the Fairchild Fairbug format to read the file. See srec_fairchild(5) for a
description of this file format.

—Fast_Load
This option says to use the LSI Logic Fast Load format to read the file. See srec_fastload(5) for a
description of this file format.

—Formatted_Binary
This option says to use the Formatted Binary format to read the file. See
srec_formatted_binary(5) for a description of this file format.

Reference Manual SRecord 30

srec_info(1) srec_info(1)

—Four_Packed_Code
This option says to use the FPC format to read the file. See srec_fpc(5) for a description of this
file format.

—Guess This option may be uased to ask srec_info to guess the input format. This is slower than
specifying an explicit format, as it may open and close the file a number of times.

—Intel This option says to use the Intel hex format to read the file. See srec_intel(5) for a description of
this file format.

—-MOS_Technologies
This option says to use the Mos Technologies format to read the file. See srec_mos_tech(5) for a
description of this file format.

—Motorola
This option says to use the Motorola S-Record format to read the file. (May also be written —S-
Record.) See srec_motorola(5) for a description of this file format.

—Needham_Hexadecimal
This option says to use the Needham Electronics ASCII file format to read the file. See
srec_needham(5) for a description of this file format.

—Ohio_Scientific
This option says to use the Ohio Scientific format. See srec_os65v(5) for a description of this file
format.

-SIGnetics
This option says to use the Signetics format. See srec_spasm(5) for a description of this file
format.

—-SPAsm
This option says to use the SPASM assembler output format (commonly used by PIC
programmers). See srec_spasm(5) for a description of this file format.

—SPAsm_LittleEndian
This option says to use the SPASM assembler output format (commonly used by PIC
programmers). But with the data the other way around.

—Tektronix
This option says to use the Tektronix hex format to read the file. See srec_tektronix(5) for a
description of this file format.

—Tektronix_Extended
This option says to use the Tektronix extended hex format to read the file. See
srec_tektronix_extended (5) for a description of this file format.

—Texas_Instruments_Tagged
This option says to use the Texas Instruments Tagged format to read the file. See
srec_ti_tagged(5) for a description of this file format.

-WILson
This option says to use the wilson format to read the file. See srec_wilson(5) for a description of
this file format.

Input Filters
You may specify zero or more filters to be applied. Filters are applied in the order the user specifies.

-Big_Endian_Checksum_BitNot address [nbytes [width]]
This filter may be used to insert the one’s complement checksum of the data into the data, most
significant byte first. The data is literaly summed,; if there are duplicate bytes, this will produce
an incorrect result, if there are holes, it will be as if they were filled with zeros. If the data
already contains bytes at the checksum location, you need to use an exclude filter, or this will
generate errors. You need to apply and crop or fill filters before this filter. The value will be

Reference Manual SRecord 31

srec_info(1) srec_info(1)

written with the most significant byte first. The number of bytes of resulting checksum defaults
to 4. The width (the width in bytes of the values being summed) defaults to 1.

—-Big_Endian_Checksum_Negative address [nbytes [width]]
This filter may be used to insert the two’s complement (negative) checksum of the data into the
data. Otherwise similar to the above.

-Big_Endian_Checksum_Positive address [nbytes [width]]
This filter may be used to insert the simple checksum of the data into the data. Otherwise similar
to the above.

—Little_Endian_Checksum_BitNot address [nbytes [width]]
This filter may be used to insert the one’s complement (bitnot) checksum of the data into the data,
least significant byte first. Otherwise similar to the above.

—Little_Endian_Checksum_Negative address [nbytes [width]]
This filter may be used to insert the two’s complement (negative) checksum of the data into the
data. Otherwise similar to the above.

—Little_Endian_Checksum_Negative address [nbytes [width]]
This filter may be used to insert the simple checksum of the data into the data. Otherwise similar
to the above.

—Byte_Swap
This filter may be used to swap pairs of odd and even bytes.

-Big_Endian_CRC16 address
This filter may be used to insert an industry standard 16-bit CRC checksum of the data into the
data. Two bytes, big-endian order, are inserted at the address given. Holes in the input data are
ignored. Bytes are processed in ascending address order (not in the order they appear in the
input).

-Big_Endian_CRC16 address
As above, except little-endian order.

-Big_Endian_CRC32 address
This filter may be used to insert an industry standard 32-bit CRC checksum of the data into the
data. Four bytes, big-endian order, are inserted at the address given. Holes in the input data are
ignored. Bytes are processed in ascending address order (not in the order they appear in the
input).

-Big_Endian_CRC32 address
As above, except little-endian order.

—Crop address-range
This filter may be used to isolate a section of data, and discard the rest.

—Exclude address-range
This filter may be used to exclude a section of data, and keep the rest. The is the logical
complement of the —Crop filter.

—Fill value address-range
This filter may be used to fill any gaps in the data with bytes equal to value. The fill will only
occur in the address range given.

—=UnFill value [min-run-length]
This filter may be used to create gaps in the data with bytes equal to value. You can think of it as

reversing the effects of the —Fill filter. The gaps will only be created if the are at least min-run-
length bytes in a row (defaults to 1).

—-AND value
This filter may be used to bit-wise AND a value to every data byte. This is useful if you need to
clear bits. Only existing data is altered, no holes are filled.

Reference Manual SRecord 32

srec_info(1) srec_info(1)

—eXclusive-OR value
This filter may be used to bit-wise XOR a value to every data byte. This is useful if you need to
invert bits. Only existing data is altered, no holes are filled.

-OR value
This filter may be used to bit-wise OR a value to every data byte. This is useful if you need to set
bits. Only existing data is altered, no holes are filled.

-NOT This filter may be used to bit-wise NOT the value of every data byte. This is useful if you need to
invert the data. Only existing data is altered, no holes are filled.

—-Big_Endian_Length address [nbytes]
This filter may be used to insert the length of the data (high water minus low water) into the data.
This includes the length itself. If the data already contains bytes at the length location, you need
to use an exclude filter, or this will generate errors. The value will be written with the most
significant byte first. The number of bytes defaults to 4.

—Little_Endian_Length address [nbytes]
As above, however the value will be written with the least significant byte first.

-Big_Endian_MAXimum address [nbytes]
This filter may be used to insert the maximum address of the data (high water
+ 1) into the data. This includes the maximum itself. If the data already contains bytes at the
given address, you need to use an exclude filter, or this will generate errors. The value will be
written with the most significant byte first. The number of bytes defaults to 4.

—Little_Endian_MAXimum address [nbytes]
As above, however the value will be written with the least significant byte first.

-Big_Endian_MINimum address [nbytes]
This filter may be used to insert the minimum address of the data (low water) into the data. This
includes the minimum itself. If the data already contains bytes at the given address, you need to
use an exclude filter, or this will generate errors. The value will be written with the most
significant byte first. The number of bytes defaults to 4.

—Little_Endian_MINimum address [nbytes]
As above, however the value will be written with the least significant byte first.

—OFfset nbytes
This filter may be used to offset the addresses by the given number of bytes. No data is lost, the
addresses will wrap around in 32 bits, if necessary.

=SPIlit multiple [offset [width]]
This filter may be used to split the input into a subset of the data, and compress the address range
so as to leave no gaps. This useful for wide data buses and memory striping. The multiple is the
bytes multiple to split over, the offset is the byte offset into this range (defaults to 0), the width is
the number of bytes to extract (defaults to 1) within the multiple. In order to leave no gaps, the
output addresses are (width / multiple) times the input addresses.

-Un_SPIlit multiple [offset [width]]
This filter may be used to reverse the effects of the split filter. The arguments are identical. Note
that the address range is expanded (multiple/ width) times, leaving holes between the stripes.

Address Ranges
There are three ways to specify an address range:

minimum maximum
If you specify two number on the command line (decimal, octal and hexadecimal are understood,
using the C conventions) this is an explicit address range. The minimum is inclusive, the
maximum is exclusive (one more than the last address). If the maximum is given as zero then the
range extends to the end of the address space.

Reference Manual SRecord 33

srec_info(1) srec_info(1)

—Within input-specification
This says to use the specified input file as a mask. The range includes all the places the specified
input has data, and holes where it has holes. The input specification need not be just a file name,
it may be anything any other input specification can be.

—OVER input-specification
This says to use the specified input file as a mask. The range extends from the minimum to the
maximum address used by the input, and ignores any holes. The input specification need not be
just a file name, it may be anything any other input specification can be.

In addition, all of these methods may be used, and used more than once, and the results will be added
together.

Calculated Values
Most of the places above where a number is expected, you may supply one of the following:

—MINimum input-specification
This inserts the minimum address of the specified input file. The input specification need not be
just a file name, it may be anything any other input specification can be.

-MAXimum input-specification
This inserts the maximum address of the specified input file, plus one. The input specification
need not be just a file name, it may be anything any other input specification can be.

—Length input-specification
This inserts the length of the address range in the specified input file, ignoring any holes. The
input specification need not be just a file name, it may be anything any other input specification
can be.

For example, the -OVER file option can be thought of a short-hand for (—min file —max file)i, except that
it is much easier to type, and also more efficient.

In addition, calculated values may optionally be rounded in one of three ways:

value ~Round_Down number
The value is rounded down to the the largest integer smaller than or equal to a whole multiple of
the number.

value —Round_Nearest number
The value is rounded to the the nearest whole multiple of the number.

value —Round_Up number
The value is rounded up to the the smallest integer larger than or equal to a whole multiple of the
number.

OPTIONS
The following options are understood:

-Help
Provide some help with using the srec_info program.

-MULTiple
Use this option to permit a file to contain multiple (contradictory) values for some memory
locations. A warning will be printed. The last value in the file will be used. The default is for
this condition to be a fatal error.

-VERSion
Print the version of the srec_info program being executed.

All other options will produce a diagnostic error.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case
letters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,

Reference Manual SRecord 34

srec_info(1) srec_info(1)

case is not important.

For example: the arguments "-help”, "-HEL" and "-h" are all interpreted to mean the -Help option. The
argument "-hlp™ will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line.

The GNU long option names are understood. Since all option names for srec_info are long, this means
ignoring the extra leading ’-’. The "--option=value" convention is also understood.

EXIT STATUS
The srec_info command will exit with a status of 1 on any error. The srec_info command will only exit
with a status of 0 if there are no errors.

COPYRIGHT
srec_info version 1.15
Copyright © 1998, 1999, 2000, 2001, 2002, 2003 Peter Miller;
All rights reserved.

The srec_info program comes with ABSOLUTELY NO WARRANTY; for details use the "srec_info
-VERSon License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the *srec_info -VERSon License’ command.

AUTHOR
Peter Miller E-Mail: millerp@canb.auug.org.au
M* WWW: http://www.canb.auug.org.au/ millerp/

Reference Manual SRecord 35

GPL(GNU) Free Software Foundation GPL(GNU)

GNU

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111, USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is
not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast,
the GNU General Public License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This General Public License applies to most of
the Free Software Foundation’s software and to any other program whose authors commit to using it.
(Some other Free Software Foundation software is covered by the GNU Library General Public License
instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for this
service if you wish), that you receive source code or can get it if you want it, that you can change the
software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask
you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute
copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives
you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands that there is
no warranty for this free software. If the software is modified by someone else and passed on, we want its
recipients to know that what they have is not the original, so that any problems introduced by others will
not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that
redistributors of a free program will individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone’s free use
or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

GPL 36

GPL(GNU) Free Software Foundation GPL(GNU)

GNU

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright
holder saying it may be distributed under the terms of this General Public License. The "Program"”, below,
refers to any such program or work, and a "work based on the Program" means either the Program or any
derivative work under copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter, translation is included
without limitation in the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this License; they are
outside its scope. The act of running the Program is not restricted, and the output from the Program is
covered only if its contents constitute a work based on the Program (independent of having been made by
running the Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright
notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of
any warranty; and give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty
protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on
the Program, and copy and distribute such modifications or work under the terms of Section 1 above,
provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you changed the files and the
date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived
from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under
the terms of this License.

c) If the modified program normally reads commands interactively when run, you must cause it, when
started running for such interactive use in the most ordinary way, to print or display an announcement
including an appropriate copyright notice and a notice that there is no warranty (or else, saying that
you provide a warranty) and that users may redistribute the program under these conditions, and
telling the user how to view a copy of this License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on the Program is not required to
print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not
derived from the Program, and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those sections when you distribute them as
separate works. But when you distribute the same sections as part of a whole which is a work based on the
Program, the distribution of the whole must be on the terms of this License, whose permissions for other
licensees extend to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you;
rather, the intent is to exercise the right to control the distribution of derivative or collective works based on
the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work
based on the Program) on a volume of a storage or distribution medium does not bring the other work under
the scope of this License.

GPL 37

GPL(GNU) Free Software Foundation GPL(GNU)

GNU

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no
more than your cost of physically performing source distribution, a complete machine-readable copy
of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer to distribute corresponding source
code. (This alternative is allowed only for noncommercial distribution and only if you received the
program in object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For an
executable work, complete source code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to control compilation and installation of the
executable. However, as a special exception, the source code distributed need not include anything that is
normally distributed (in either source or binary form) with the major components (compiler, kernel, and so
on) of the operating system on which the executable runs, unless that component itself accompanies the
executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then
offering equivalent access to copy the source code from the same place counts as distribution of the source
code, even though third parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this
License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain in
full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else grants
you permission to modify or distribute the Program or its derivative works. These actions are prohibited by
law if you do not accept this License. Therefore, by modifying or distributing the Program (or any work
based on the Program), you indicate your acceptance of this License to do so, and all its terms and
conditions for copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically
receives a license from the original licensor to copy, distribute or modify the Program subject to these terms
and conditions. You may not impose any further restrictions on the recipients’ exercise of the rights
granted herein. You are not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not
limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise)
that contradict the conditions of this License, they do not excuse you from the conditions of this License. If
you cannot distribute so as to satisfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a
patent license would not permit royalty-free redistribution of the Program by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance
of the section is intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to
contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free
software distribution system, which is implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed through that system in reliance on

GPL 38

GPL(GNU) Free Software Foundation GPL(GNU)

GNU

consistent application of that system; it is up to the author/donor to decide if he or she is willing to
distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this
License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Program under this License may add an
explicit geographical distribution limitation excluding those countries, so that distribution is permitted only
in or among countries not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail
to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of this
License which applies to it and "any later version”, you have the option of following the terms and
conditions either of that version or of any later version published by the Free Software Foundation. If the
Program does not specify a version number of this License, you may choose any version ever published by
the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions
are different, write to the author to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status of all derivatives of our free software
and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR
THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO
THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES
SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE
WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

GPL 39

GPL(GNU) Free Software Foundation GPL(GNU)

Appendix: How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way
to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source
file to most effectively convey the exclusion of warranty; and each file should have at least the “copyright"
line and a pointer to where the full notice is found.

one lineto give the program’s name and a brief idea of what it does.
Copyright (C) 19yy name of author

This program is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not,
write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA.

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’. This is free
software, and you are welcome to redistribute it under certain conditions; type ‘show ¢’ for details.

The hypothetical commands ‘show w’ and ‘show ¢’ should show the appropriate parts of the General Public
License. Of course, the commands you use may be called something other than ‘show w’ and ‘show c’;
they could even be mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a
"copyright disclaimer" for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program ‘Gnomovision’ (which makes
passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs. If
your program is a subroutine library, you may consider it more useful to permit linking proprietary
applications with the library. If this is what you want to do, use the GNU Library General Public License
instead of this License.

GNU GPL 40

srec_ascii_hex(5) srec_ascii_hex(5)

NAME
srec_ascii_hex — Ascii-Hex file format

DESCRIPTION
This format is also known as the Ascii-Space-Hex or Ascii-Hex-Space format. If you know who invented

this format, please let me know. If you have a better or more complete description, 1’d like to know that,
too.

The file starts with a start-of-text (STX or Control-B) character (0x02). Everything before the STX is
ignored.

Each data byte is represented as 2 hexadecimal characters, followd by an "execution character". The
default execution character is a space, although many programs which write this format omit the space
character immediately preceeding end-of-line.

The address for data bytes is set by using a sequence of $Annnn, characters, where nnnn is the
4-character ascii representation of the address. The comma is required. There is no need for an address
record unless there are gaps. Implicitly, the file starts a address 0 if no address is set before the first data
byte.

The file ends with an end-of-text (ETX or Control-C) character (0x03). Everything following the ETX is
ignored.

It is also possible to specify a running 16-bit checksum using a sequence of $Snnnn, characters, although
this usually appears after the ETX character and is thus often ignored.

Variant Forms
In addition to a space character, the execution character can also be percent (%) called "ascii-hex-percent"
format, apostrophe (”) or comma (,) called "ascii-hex-comma" format. The file must use the same
execution character throughout.

If the execution character is a comma, the address and checksum commands are terminated by a dot (.)
rather than a comma (,).

Size Multiplier
In general, binary data will expand in sized by approximately 3.0 times when represented with this format.

EXAMPLE
Here is an example ascii-hex file. It contains the data “Hello, World™ to be loaded at address 0x1000.
~B $A1000,
48 65 6C 6C 6F 2C 20 57 6F 72 6C 64 OA “C

COPYRIGHT
srec_cat version 1.15
Copyright © 1998, 1999, 2000, 2001, 2002, 2003 Peter Miller;
All rights reserved.

The srec_cat program comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_cat
-VERSon License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the *srec_cat -VERSon License’ command.

AUTHOR
Peter Miller E-Mail: millerp@canb.auug.org.au
M* WWW: http://www.canb.auug.org.au/ millerp/

Reference Manual SRecord 41

srec_atmel_generic.5(5)

NAME

srec_atmel_generic.5(5)

srec_atmel_generic — Atmel Generic file format

DESCRIPTION

This format is the output of the Atmel AVR assembler. The file contains two columns of hexadecimal
coded values. The first column is the 24-bit word address, the second column is the 16-bit word data. The
columns are separated by a colon (*:”) character.

By default, SRecord treats this is little-endian data (the least significant byte first). If you want big endian
order, use the —atmel-generic-be argument instead.

Size Multiplier

In general, binary data will expand in sized by approximately 6.0 times when represented with this format
(6.5 times in Windows).

EXAMPLE

Here is an example Atmel Generic file. It contains the data *““Hello, World™ to be loaded at bytes address

0x0100 (but remember, the file contents are word addressed).

000080:
000081:
000082:
000083:
000084:
000085:

COPYRIGHT

4865
6C6C
6F2C
2057
6F72
6C64

srec_cat version 1.15
Copyright © 1998, 1999, 2000, 2001, 2002, 2003 Peter Miller;

All rights reserved.

The srec_cat program comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_cat
-VERSon License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the *srec_cat -VERSon License’ command.

AUTHOR

Peter Miller E-Mail:
N* WWW:

Reference Manual

millerp@canb.auug.org.au
http://www.canb.auug.org.au/ millerp/

SRecord

42

srec_cosmac(b) srec_cosmac(b)

NAME
srec_cosmac — RCA Cosmac EIf file format

DESCRIPTION
This file takes the form of one or more RCA Cosmac EIf monitor commands, also known as the IDIOT/4
monitor. Only the change memory command (IM) is allowed.

The general form of the 'M command takes the form

IMaaaa dd ... dd
The M command writes data byte bytes (represented by character pairs dd) into successive memory
locations, started at address aaaa. Spaces between data bytes are ignored.

Using the comma (,) line continuation character resumes from the next address in sequence.
!Maaaa dd ... dd, dd ... dd

Using the semicolon (;) line continuation character takes an address on the next line
IMaaaa dd ... dd; aaaa dd ... dd

It is also possible to have the semicolon immediately after the command.
IM; aaaadd ... dd

All of these forms may be used in combination.

Size Multiplier
In general, binary data will expand in size by approximately 2.0 times when represented with this format.

EXAMPLE
Here is an example ascii-hex file. It contains the data “Hello, World™ to be loaded at address 0x1000.
~B $A1000,
48 65 6C 6C 6F 2C 20 57 6F 72 6C 64 OA “C

COPYRIGHT
srec_cat version 1.15
Copyright © 1998, 1999, 2000, 2001, 2002, 2003 Peter Miller;
All rights reserved.

The srec_cat program comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_cat
-VERSon License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the ’srec_cat -VERSon License’ command.

AUTHOR
Peter Miller E-Mail: millerp@canb.auug.org.au
M* WWW: http://www.canb.auug.org.au/ millerp/

Reference Manual SRecord 43

srec_dec_binary(5) srec_dec_binary(5)

NAME
srec_dec_binary — DEC Binary (XXDP) file format

DESCRIPTION
The DEC Binary (XXDP) format was used on the PDP 11 series machines. This is a binary format, and is
not readable or editable with a text editor. The file consists of records of the form
| type [length | address | ..data.. | checksum
The field are defined as follows:

type Two byte little-endian value. Must always be 1.

length Two byte little-endian value. This is the number of bytes in the data, plus six.
address Two byte little-endian value. This is the load address of the data.

data The data is simple raw bytes. There are (Iength-6) of them.

checksum
The checcksum is a single byte. It is the negative of the simple summ of all the header and data
bytes.

If the record length is exactly 6 (i.e. no data), this is the start address record, indicating the transfer address.

In addition there may be NUL padding characters between records. It is common for records to be padded
so that they start on even byte boundaries. In the days of paper tape, it was common for the file to have
many leading NULS, to generate blank leader on the tape.

Size Multiplier
In general, raw binary data will expand in sized by approximately 1.03 times when represented with this
format.

AUTHOR

COPYRIGHT
srec_dec_binary version 1.15
Copyright © 1998, 1999, 2000, 2001, 2002, 2003 Peter Miller;
All rights reserved.

The srec_dec_binary program comes with ABSOLUTELY NO WARRANTY; for details use the
’srec_dec_binary -VERSon License’ command. This is free software and you are welcome to redistribute
it under certain conditions; for details use the srec_dec_binary -VERSon License’ command.

AUTHOR
Peter Miller E-Mail: millerp@canb.auug.org.au
M* WWW: http://www.canb.auug.org.au/ millerp/

Reference Manual SRecord 44

srec_emon52(5) srec_emon52(5)

NAME
srec_emon52 — Elektor Monitor (EMONS52) file format

DESCRIPTION
This format is used by the monitor EMON52, devolped by the European electronics magazine Elektor
(Elektuur in Holland). Elektor wouldn’t be Elektor if they didn’t try to reinvent the wheel. It’s a mystery
why they didn’t use an existing format for the project. Only the Elektor Assembler will produce this file
format, reducing the choice of development tools dramatically.

Records
All data lines are called records, and each record contains the following four fields:

lcc | aaaa | : | dd..dd [ssss |

The field are defined as follows:

cc The byte count. A two digit hex value (1 byte), counting the actual data bytes in the record. The
byte count is seperated from the next field by a space.

aaaa The address field. A four hex digit (2 byte) number representing the first address to be used by
this record.

The address field and the data field are seperated by a colon.

dd The actual data of this record. There can be 1 to 255 data bytes per record (see cc) All bytes in
the record are seperated from each other (and the checksum) by a space.

SSSS Data Checksum, adding all bytes of the dataline together, forming a 16 bit checksum. Covers
only all the data bytes of this record.

Please note that there is no End Of File record defined.

Byte Count
The byte count cc counts the actual data bytes in the current record. Usually records have 16 data bytes. |
don’t know what the maximum number of data bytes is. It depends on the size of the data buffer in the
EMONS52.

Address Field
This is the address where the first data byte of the record should be stored. After storing that data byte, the
address is incremented by 1 to point to the address for the next data byte of the record. And so on, until all
data bytes are stored.

The address is represented by a 4 digit hex number (2 bytes), with the MSD first.

Data Field
The payload of the record is formed by the Data field. The number of data bytes expected is given by the
Byte Count field.

Checksum
The checksum is a 16 bit result from adding all data bytes of the record together.

Size Multiplier
In general, binary data will expand in sized by approximately 3.8 times when represented with this format.

EXAMPLE
Here is an example of an EMONS2 file:
10 0000: 57 6F 77 21 20 44 69 64 20 79 6F 75 20 72 65 61 0564
10 0010: 6C 6C 79 20 67 6F 20 74 68 72 6F 75 67 68 20 61 O5E9
10 0020: 6C 6C 20 74 68 69 73 20 74 72 6F 75 62 6C 65 20 O5ED
10 0030: 74 6F 20 72 65 61 64 20 74 68 69 73 20 73 74 72 05F0
04 0040:69 6E 67 21 015F

SEE ALSO
http://sbprojects.fol.nl/knowledge/fileformats/emon52.htm

Reference Manual SRecord 45

srec_emon52(5)

AUTHOR
This man page was taken from the above Web page. 1t was written by San Bergmans
<sanmail @bigfoot.com>

Reference Manual SRecord

srec_emon52(5)

46

srec_fairchild(5) srec_fairchild(5)

NAME
srec_fairchild — Fairchild Fairbug file format

DESCRIPTION
The Fairchild Fairbug format has 8-byte records. A file begins with an address record and ends with an
end-of-file record.

There are three record types in this file format.

Address records are of the form

indicating the address for the following data records.

Data records are of the form

| X | it | c |
Each data record begins with an X and always contains 8 data bytes. The ff characters are hexadecimal byte
values (8 bytes). Each data byte is represented by 2 hexadecimal characters. The ¢ character is a hex digit
being the the nibble-sum of the data bytes. A 1-digit hexadecimal checksum follows the data in each data
record. The checksum represents, in hexadecimal notation, the sum of the binary equivalents of the 16
digits in the record; the half carry from the fourth bit is ignored. The programmer ignores any character
(except for address characters and the asterisk character, which terminates the data transfer) between a
checksum and the start character of the next data record. This space can be used for comments.

The end-of-file record has the form

*
The last record consists of an asterisk only, which intes the end of file.

Size Multiplier
In general, binary data will expand in sized by approximately 2.4 times when represented with this format.

EXAMPLE
Here is an example Fairchild Fairbug file. It contains the data ““Hello, World” to be loaded at address
0x1000. Notice how the last record is padded with OXFF bytes.
S1000
X48656C6C6F2C2057C
X6F726C64210AFFFF3

*

COPYRIGHT
srec_cat version 1.15
Copyright © 1998, 1999, 2000, 2001, 2002, 2003 Peter Miller;
All rights reserved.

The srec_cat program comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_cat
-VERSon License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the ’srec_cat -VERSon License’ command.

AUTHOR
Peter Miller E-Mail: millerp@canb.auug.org.au
M* WWW: http://www.canb.auug.org.au/ millerp/

Reference Manual SRecord 47

srec_fastload.5(1) srec_fastload.5(1)

NAME
srec_fastload — LSI Logic Fast Load file format

DESCRIPTION
The FastLoad Format uses a compressed ASCII format that permits files to be downloaded in less than half
the time taken for Motorola S-records.

The base-64 encoding used is "A-Za-z0-9,.". The data is encoded in groups of 4 characters (3 bytes, 24
bits).

The character ’/” is used to introduce a special function. Special functions are:

Annnnnn
Defines an address.

Bnn Define a single byte.
Cnnnn Compare the checksums. The checksum is a simple positive 16-bit sum, of the data bytes only.

EAA Define the program’s entry point. The address will be the current address as defined by the A
command. (The AA number in this command is ignored.) This must be the last entry in the file.

KAA Clear the checksum. (The AA number in this command is ignored.)

Sname, X
Define a symbol. The address of the symbol will be the current address as defined by the A
command.
Znn Clear a number of bytes.
Size Multiplier

In general, binary data will expand in sized by approximately 1.4 times when represented with this format.

EXAMPLE
Here is an example LSI Logic Fast Load format file. It contains the data “Hello, World™ to be loaded at
address 0.
| AAAA
SGVsbh@G8s| Fdvenxk/ BAK/ CARS/ AAAA EAA

COPYRIGHT
srec_cat version 1.15
Copyright © 1998, 1999, 2000, 2001, 2002, 2003 Peter Miller;
All rights reserved.

The srec_cat program comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_cat
-VERSon License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the *srec_cat -VERSon License’ command.

AUTHOR
Peter Miller E-Mail: millerp@canb.auug.org.au
M* WWW: http://www.canb.auug.org.au/ millerp/

Reference Manual SRecord 48

srec_formatted_binary(5) srec_formatted_binary(5)

NAME
srec_formatted_binary — Formatted Binary file format

DESCRIPTION
This is the PDP-11 paper tape format, described in the DEC-11-GGPC-D PDP-11 "Paper Tape Software
Programming Handbook™ 1972.

The file startes with a charcter sequence which appears as an arrow when punched on 8-hole paper tape.
0x08, 0x1C, 0x2A, 0x49, 0x08, 0x00

Then follows a byte count, encoded big-endian in the low 4 bits of the next 4 bytes. The high bits should
be zero.

Then follows a OXFF byte.
The data follows, as many bytes as specified in the header.

The trailer consists of the following bytes:
0x00, 0x00,
and then a 2-byte checksum (big-endian).

The alternate header sequence
0x08, 0x1C, 0x3E, 0x6B, 0x08, 0x00
is followed by an 8-nibble big-endian byte count.
Size Multiplier
In general, binary data will expand in sized very little when represented with this format.
EXAMPLE

Here is a hex dump of a formatted binary file containing the data "Hello, World!".
0000: 08 1C 2A 49 08 00 00 00 ..*I....

0008: 00 OE FF 48 65 6C 6C 6F ...Hello
0010: 2C 20 57 6F 72 6C 64 21 , World!
0018: OA 00 00 04 73S

COPYRIGHT
srec_cat version 1.15

Copyright © 1998, 1999, 2000, 2001, 2002, 2003 Peter Miller;
All rights reserved.

The srec_cat program comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_cat
-VERSon License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the *srec_cat -VERSon License’ command.

AUTHOR
Peter Miller E-Mail: millerp@canb.auug.org.au
M* WWW: http://www.canb.auug.org.au/ millerp/

Reference Manual SRecord 49

srec_fpc(5) srec_fpc(5)

NAME
srec_fpc — four packed code file format

SYNOPSIS
All ASCII based file formats have one disadvantage in common: they all need more than double the amount
of characters as opposed to the number of bytes to be sent. Address fields and checksums will add even
more characters. So the shorter the records, the more characters have to be sent to get the file across.

The FPC format helps to reduce the number of characters needed to send a file in ASCII format, although it
still needs more characters than the actual bytes it sends. FPC stands for "Four Packed Code". The
reduction is accomplished by squeezing 4 real bytes into 5 ASCII characters. In fact every ASCII character
will be a digit in the base 85 number system. There aren’t enough letters, digits and punctuation marks
available to get 85 different characters, but if we use both upper case and lower case letters we will manage.
This implies that the FPC is case sensitive, as opposed to all other ASCII based file formats.

Base 85
The numbering system is in base 85, and is somewhat hard to understand for us humans who are usually
only familiar with base 10 numbers. Some of us understand base 2 and base 16 as well, but base 85 is for
most people something new. Luckily we don’t have to do any math with this number system. We just
convert a 32 bit number into a 5 digit number in base 85. A 32 bit number has a range of 4,294,967,296,
while a 5 digit number in base 85 has a range of 4,437,053,125, which is enough to do the trick. One
drawback is that we always have to send multiples of 4 bytes, even if we actually want to send 1, 2 or 3
bytes. Unused bytes are padded with zeroes, and are discarded at the receiving end.

The digits of the base 85 numbering system start at %, which represents the value of 0. The highest value
of a digit in base 85 is 84, and is represented by the character *z’. If you want to check this with a normal
ASCII table you will notice that we have used one character too many! Why? | don’t know, but for some
reason we have to skip the **’ character in the row. This means that after the *)’ character follows the ’+’
character.

We can use normal number conversion algorithms to generate the FPC digits, with this tiny difference. We
have to check whether the digit is going to be equal or larger than the ASCII value for **’. If this is the
case we have to increment the digit once to stay clear of the **’. In base 85 MSD digits go first, like in all
number systems!

The benefit of this all is hopefully clear. For every 4 bytes we only have to send 5 ASCII characters, as
opposed to 8 characters for all other formats.

Records
Now we take a look at the the formatting of the FPC records. We look at the record at byte level, not at the
actual base 85 encoded level. Only after formatting the FPC record at byte level we convert 4 bytes at a
time to a 5 digit base 85 number. If we don’t have enough bytes in the record to fill the last group of 5
digits we will add bytes with the value of 0 behind the record.

[$ | ss | cc | ffff | aaaasaaa | dddddddd |

The field are defined as:

$ Every line starts with the character $, all other characters are digits of base 85.
SS The checksum. A one byte 2’s-complement checksum of all bytes of the record.
cc The byte-count. A one byte value, counting all the bytes in the record minus 4.
ffff Format code, a two byte value, defining the record type.
aaaaaaaa

The address field. A 4 byte number representing the first address of this record.
dddddddd

The actual data of this record.

Record Begin
Every record begins with the ASCII character "$". No spaces or tabs are allowed in a record. All other
characters in the record are formed by groups of 5 digits of base 85.

Reference Manual SRecord 50

srec_fpc(5) srec_fpc(5)

Checksum field
This field is a one byte 2’s-complement checksum of the entire record. To create the checksum make a one
byte sum from all of the bytes from all of the fields of the record:

Then take the 2’s-complement of this sum to create the final checksum. The 2’s-complement is simply
inverting all bits and then increment by 1 (or using the negative operator). Checking the checksum at the
receivers end is done by adding all bytes together including the checksum itself, discarding all carries, and
the result must be $00. The padding bytes at the end of the line, should they exist, should not be included
in checksum. But it doesn’t really matter if they are, for their influence will be 0 anyway.

Byte Count
The byte count cc counts the number of bytes in the current record minus 4. So only the number of address
bytes and the data bytes are counted and not the first 4 bytes of the record (checksum, byte count and
format flags). The byte count can have any value from 0 to 255.

Usually records have 32 data bytes. It is not recommended to send too many data bytes in a record for that
may increase the transmission time in case of errors. Also avoid sending only a few data bytes per record,
because the address overhead will be too heavy in comparison to the payload.

Format Flags
This is a 2 byte number, indicating what format is represented in this record. Only a few formats are
available, so we actually waste 1 byte in each record for the sake of having multiples of 4 bytes.

Format code 0 means that the address field in this record is to be treated as the absolute address where the
first data byte of the record should be stored.

Format code 1 means that the address field in this record is missing. Simply the last known address of the
previous record +1 is used to store the first data byte. As if the FPC format wasn’t fast enough already ;-)

Format code 2 means that the address field in this record is to be treated as a relative address. Relative to
what is not really clear. The relative address will remain in effect until an absolute address is received
again.

Address Field
The first data byte of the record is stored in the address specified by the Address field aaaaaaaa. After
storing that data byte, the address is incremented by 1 to point to the address for the next data byte of the
record. And so on, until all data bytes are stored.

The length of the address field is always 4 bytes, if present of course. So the address range for the FPC
format is always 2**32.

If only the address field is given, without any data bytes, the address will be set as starting address for
records that have no address field.

Addresses between records are non sequential. There may be gaps in the addressing or the address pointer
may even point to lower addresses as before in the same file. But every time the sequence of addressing
must be changed, a format 0 record must be used. Addressing within one single record is sequential of
course.

Data Field
This field contains 0 or more data bytes. The actual number of data bytes is indicated by the byte count in
the beginning of the record less the number of address bytes. The first data byte is stored in the location
indicated by the address in the address field. After that the address is incremented by 1 and the next data
byte is stored in that new location. This continues until all bytes are stored. If there are not enough data
bytes to obtain a multiple of 4 we use 0x00 as padding bytes at the end of the record. These padding bytes
are ignored on the receiving side.

End of File
End of file is recognized if the first four bytes of the record all contain 0x00. In base 85 this will be
“$988484846°. This is the only decent way to terminate the file.

Reference Manual SRecord 51

srec_fpc(5) srec_fpc(5)

Size Multiplier
In general, binary data will expand in sized by approximately 1.7 times when represented with this format.

Example
Now it’s time for an example. In the first table you can see the byte representation of the file to be
transferred. The 4th row of bytes is not a multiple of 4 bytes. But that does not matter, for we append $00
bytes at the end until we do have a multiple of 4 bytes. These padding bytes are not counted in the byte
count however!
D81400000000B000576F77212044696420796F7520726561
431400000000B0106C6C7920676F207468726F7567682061
361400000000B0206C6C20746861742074726F75626C6520
591100000000B030746F207265616420746869733F000000
00000000
Only after converting the bytes to base 85 we get the records of the FPC type file format presented in the
next table. Note that there is always a multiple of 5 characters to represent a multiple of 4 bytes in each

record.
$kL&E@ YA : , B.\ 200EPUuX0K3r C0JI))
$; UPR 984 : <HNn&FCG at <GVF(; GOW w
$7FD1p%84 : LHmy: >GTVY KJI7@5E[kYz
$B[6\ ; W% : \ KI n?GFWY/ gKI 1G5: ; - _e
$9000800
As you can see the length of the lines is clearly shorter than the original ASCII lines.
SEE ALSO
http://sbprojects.fol.nl/knowledge/fileformats/pfc.htm
AUTHOR

This man page was taken from the above Web page. It was written by San Bergmans
<sanmail@bigfoot.com>

For extra points: Who invented this format? Where is it used?

Reference Manual SRecord 52

srec_intel(5) srec_intel(5)

srec_intel — Intel Hexadecimal object file format specification

DESCRIPTION

This format is also known as the Intel MCS-86 Object format.

This document describes the hexadecimal object file format for the Intel 8-bit, 16-bit, and 32-bit
microprocessors. The hexadecimal format is suitable as input to PROM programmers or hardware
emulators.

Hexadecimal object file format is a way of representing an absolute binary object file in ASCII. Because
the file is in ASCII instead of binary, it is possible to store the file is non-binary medium such as paper-tape,
punch cards, etc.; and the file can also be displayed on CRT terminals, line printers, etc.. The 8-bit
hexadecimal object file format allows for the placement of code and data within the 16-bit linear address
space of the Intel 8-bit processors. The 16-bit hexadecimal format allows for the 20-bit segmented address
space of the Intel 16-bit processors. And the 32-bit format allows for the 32-bit linear address space of the
Intel 32-bit processors.

The hexadecimal representation of binary is coded in ASCII alphanumeric characters. For example, the
8-bit binary value 0011-1111 is 3F in hexadecimal. To code this in ASCII, one 8-bit byte containing the
ASCII code for the character ’3’ (0011-0011 or 0x33) and one 8-bit byte containing the) ASCII code for
the character *F’ (0100-0110 or 0x46) are required. For each byte value, the high-order hexadecimal digit
is always the first digit of the pair of hexadecimal digits. This representation (ASCII hexadecimal) requires
twice as many bytes as the binary representation.

A hexadecimal object file is blocked into records, each of which contains the record type, length, memory
load address and checksum in addition to the data. There are currently six (6) different types of records that
are defined, not all combinations of these records are meaningful, however. The record are:

» Data Record (8-, 16-, or 32-bit formats)

» End of File Record (8-, 16-, or 32-bit formats)

» Extended Segment Address Record (16- or 32-bit formats)
* Start Segment Address Record (16- or 32-bit formats)

» Extended Linear Address Record (32-bit format only)

« Start Linear Address Record (32-bit format only)

General Record Format

Record Record Load Record Data | Checksum
Mark Length Offset Type

Record Mark.
Each record begins with a Record Mark field containing 0x3A, the ASCII code for the colon
(*“:™) character.

Record Length
Each record has a Record Length field which specifies the number of bytes of information or data
which follows the Record Type field of the record. This field is one byte, represented as two
hexadecimal characters. The maximum value of the Record Length field is hexadecimal "FF’ or
255.

Load Offset
Each record has a Load Offset field which specifies the 16-bit starting load offset of the data
bytes, therefore this field is only used for Data Records. In other records where this field is not
used, it should be coded as four ASCII zero characters (““0000” or 0x30303030). This field is
two byte, represented as four hexadecimal characters.

Record Type
Each record has a Record Type field which specifies the record type of this record. The Record
Type field is used to interpret the remaining information within the record. This field is one byte,

Reference Manual SRecord 53

srec_intel(5) srec_intel(5)

represented as two hexadecimal characters. The encoding for all the current record types are:
0 Data Record

1 End of File Record

2 Extended Segment Address Record

3 Start Segment Address Record

4 Extended Linear Address Record

5 Start Linear Address Record

Data Each record has a variable length Data field, it consists of zero or more bytes encoded as pairs of
hexadecimal digits. The interpretation of this field depends on the Record Type field.

Checksum
Each record ends with a Checksum field that contains the ASCII hexadecimal representation of
the two’s complement of the 8-bit bytes that result from converting each pair of ASCII
hexadecimal digits to one byte of binary, from and including the Record Length field to and
including the last byte of the Data field. Therefore, the sum of all the ASCII pairs in a record
after converting to binary, from the Record Length field to and including the Checksum field, is
zero.

Extended Linear Address Record

(32-bit format only)

Record Record Load Record ULBA Checksum
Mark Length (2) | Offset (0) Type (4) (2 bytes)
(")

The 32-bit Extended Linear Address Record is used to specify bits 16-31 of the Linear Base Address
(LBA), where bits 0-15 of the LBA are zero. Bits 16-31 of the LBA are referred to as the Upper Linear
Base Address (ULBA). The absolute memory address of a content byte in a subsequent Data Record is)
obtained by adding the LBA to an offset calculated by adding the Load Offset field of the containing Data
Record to the index of the byte in the Data Record (0, 1, 2, ... n). This offset addition is done) modulo 4G
(i.e. 32-bits from OxFFFFFFFF to 0x00000000) results in wrapping around from the end to the beginning of
the 4G linear address defined by the LBA. The linear address at which a particular byte is loaded is
calculated as:

(LBA + DRLO + DRI) MOD 4G
where:

DRLO is the Load Offset field of a Data Record.

DRI is the data byte index within the Data Record.
When an Extended Linear Address Record defines the value of LBA, it may appear anywhere within a
32-bit hexadecimal object file. This value remains in effect until another Extended Linear Address Record
is encountered. The LBA defaults to zero until an Extended Linear Address Record is encountered. The
contents of the individual fields within the record are:

Record Mark
This field contains 0x3A, the hexadecimal encoding of the ASCII colon (*“:”) character.

Record Length
The field contains 0x3032, the hexadecimal encoding of the ASCII characters “02”, which is the
length, in bytes, of the ULBA data information within this record.

Load Offset
This field contains 0x30303030, the hexadecimal encoding of the ASCII characters ““0000”,
since this field is not used for this record.

Record Type
This field contains 0x3034, the hexadecimal encoding of the ASCII character “04”, which
specifies the record type to be an Extended Linear Address Record.

Reference Manual SRecord 54

srec_intel(5) srec_intel(5)

ULBA This field contains four ASCII hexadecimal digits that specify the 16-bit Upper Linear Base
Address value. The value is encoded big-endian (most significant digit first).

Checksum
This field contains the check sum on the Record Length, Load Offset, Record Type, and ULBA
fields.

Extended Segment Address Record
(16- or 32-bit formats)

Record Record Load Record USBA Checksum
Mark Length (2) | Offset (0) Type (2) (2 bytes)
(")
The 16-bit Extended Segment Address Record is used to specify bits 4-19 of the Segment Base Address

(SBA), where bits 0-3 of the SBA are zero. Bits 4-19 of the SBA are referred to as the Upper Segment
Base Address (USBA). The absolute memory address of a content byte in a subsequent Data Record is)
obtained by adding the SBA to an offset calculated by adding the Load Offset field of the containing Data
Record to the index of the byte in the Data Record (0, 1, 2, ... n). This offset addition is done modulo 64K
(i.e. 16-bits from OXFFFF to 0x0000 results in wrapping around from the end to the beginning of the 64K
segment defined by the SBA. The address at which a particular byte is loaded is calculated as:

SBA + ((DRLO + DRI) MOD 64K)
where:

DRLO
DRI

When an Extended Segment Address Record defines the value of SBA, it may appear anywhere within a
16-bit hexadecimal object file. This value remains in effect until another Extended Segment Address
Record is encountered. The SBA defaults to zero until an Extended Segment Address Record is
encountered.

is the LOAD OFFSET field of a Data Record.
is the data byte index within the Data Record.

The contents of the individual fields within the record are:

Record Mark
This field contains 0x3A, the hexadecimal encoding of the ASCII colon (*“:”) character.

Record Length
The field contains 0x3032, the hexadecimal encoding of the ASCII characters *02’, which is the
length, in bytes, of the USBA data information within this record.

Load Offset
This field contains 0x30303030, the hexadecimal encoding of the ASCII characters *0000’, since
this field is not used for this record.

Record Type
This field contains 0x3032, the hexadecimal encoding of the ASCII character “02”, which
specifies the record type to be an Extended Segment Address Record.

USBA This field contains four ASCII hexadecimal digits that specify the 16-bit Upper Segment Base
Address value. The field is encoded big-endian (most significant digit first).
Checksum
This field contains the check sum on the Record length, Load Offset, Record Type, and USBA
fields.
Data Record
(8-, 16- or 32-bit formats)
Record Record Load Record Data | Checksum
Mark Length Offset Type
(")
The Data Record provides a set of hexadecimal digits that represent the ASCII code for data bytes that

make up a portion of a memory image. The method for calculating the absolute address (linear in the 8-bit

Reference Manual SRecord 55

srec_intel(5) srec_intel(5)

and 32-bit case and segmented in the 16-bit case) for each byte of data is described in the discussions of the
Extended Linear Address Record and the Extended Segment Address Record.

The contents of the individual fields within the record are:

Record Mark
This field contains 0x3A, the hexadecimal encoding of the ASCII colon (*“:””) character.

Record Length
The field contains two ASCII hexadecimal digits that specify the number of data bytes in the
record. The maximum value is 255 decimal.

Load Offset
This field contains four ASCII hexadecimal digits representing the offset from the LBA (see
Extended Linear Address Record see Extended Segment Address Record) defining the address
which the first byte of the data is to be placed.

Record Type
This field contains 0x3030, the hexadecimal encoding of the ASCII character “00”", which
specifies the record type to be a Data Record.

Data This field contains pairs of ASCII hexadecimal digits, one pair for each data byte.

Checksum
This field contains the check sum on the Record Length, Load Offset, Record Type, and Data
fields.

Start Linear Address Record
(32-bit format only)

Record Record Load Record EIP Checksum
Mark Length (4) | Offset (0) Type (5) (4 bytes)
(")

The Start Linear Address Record is used to specify the execution start address for the object file. The value
given is the 32-bit linear address for the EIP register. Note that this record only specifies the code address
within the 32-bit linear address space of the 80386. If the code is to start execution in the real mode of the
80386, then the Start Segment Address Record should be used instead, since that record specifies both the
CS and IP register contents necessary for real mode.

The Start Linear Address Record can appear anywhere in a 32-bit hexadecimal object file. 1f such a record
is not present in a hexadecimal object file, a loader is free to assign a default start address.

The contents of the individual fields within the record are:

Record mark
This field contains 0x3A, the hexadecimal encoding of the ASCII colon (*“:”) character.

Record length
The field contains 0x3034, the hexadecimal encoding of the ASCII characters “04”, which is the
length, in bytes, of the EIP register content within this record.

Load Offset
This field contains 0x30303030, the hexadecimal encoding of the ASCII characters ““0000”,
since this field is not used for this record.

Record Type
This field contains 0x3035, the hexadecimal encoding of the ASCII character “05”, which
specifies the record type to be a Start Linear Address Record.

EIP This field contains eight ASCII hexadecimal digits that specify the 32-bit EIP register contents.
The field is encoded big-endian (most significant digit first).

Checksum
This field contains the check sum on the Record length, Load Offset, Record Type, and EIP
fields.

Reference Manual SRecord 56

srec_intel(5) srec_intel(5)

Start Segment Address Record

(16- or 32-bit formats)

Record Record Load Record CS (2 bytes) | IP (2 bytes) | Checksum
Mark Length (4) | Offset (0) Type (3)
(u:!!)

The Start Segment Address Record is used to specify the execution start address for the object file. The
value given is the 20-bit segment address for the CS and IP registers. Note that this record only specifies
the code address within the 20-bit segmented address space of the 8086/80186. The Start Segment Address
Record can appear anywhere in a 16-bit hexadecimal object file. If such a record is not present in a
hexadecimal object file, a loader is free to assign a default start address.

The contents of the individual fields within the record are:

Record Mark
This field contains 0x3A, the hexadecimal encoding of the ASCII colon (*“:”) character.

Record Length
The field contains 0x3034, the hexadecimal encoding of the ASCII characters “04”, which is the
length, in bytes, of the CS and IP register contents within this record.

Load Offset

This field contains 0x30303030, the hexadecimal encoding of the ASCII characters ““0000”,
since this field is not used for this record.

Record Type
This field contains 0x3033, the hexadecimal encoding of the ASCII character *03’, which
specifies the record type to be a Start Segment Address Record.

CS This field contains four ASCII hexadecimal digits that specify the 16-bit CS register contents.
The field is encoded big-endian (most significant digit first).

IP This field contains four ASCII hexadecimal digits that specify the 16-bit IP register contents. The
field is encoded big-endian (most significant digit first).

Checksum
This field contains the check sum on the Record length, Load Offset, Record Type, CS, and IP
fields.

End of File Record

(8-, 16-, or 32-bit formats)

Record Record Load Record Checksum (OxFF)
Mark Length (0) | Offset (0) Type (1)
(")

The End of File Record specifies the end of the hexadecimal object file.

The contents of the individual fields within the record are:

Record mark
This field contains 0x3A, the hexadecimal encoding of the ASCII colon (*“:”’) character.

Record Length
The field contains 0x3030, the hexadecimal encoding of the ASCII characters “00”. Since this
record does not contain any Data bytes, the length is zero.

Load Offset
This field contains 0x30303030, the hexadecimal encoding of the ASCII characters ““0000”,
since this field is not used for this record.

Record Type
This field contains 0x3031, the hexadecimal encoding of the ASCII character “01”, which
specifies the record type to be an End of File Record.

Reference Manual SRecord 57

srec_intel(5) srec_intel(5)

Checksum
This field contains the check sum an the Record Length, Load Offset, and Record Type fields.
Since all the fields are static, the check sum can also be calculated statically, and the value is
0x4646, the hexadecimal encoding of the ASCII characters “FF”.

Size Multiplier
In general, binary data will expand in sized by approximately 2.3 times when represented with this format.

EXAMPLE
Here is an example Intel hex file. It contains the data “Hello, World”’ to be loaded at address 0.
: 0D00000048656C6C6F2C20576F726C640AA1
: 00000001FF

REFERENCE
This information comes (very indirectly) from Microprocessors and Programmed Logic, Second Edition,
Kenneth L. Short, 1987, Prentice-Hall, ISBN 0-13-580606-2.

COPYRIGHT
srec_cat version 1.15
Copyright © 1998, 1999, 2000, 2001, 2002, 2003 Peter Miller;
All rights reserved.

The srec_cat program comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_cat
-VERSon License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the ’srec_cat -VERSon License’ command.

AUTHOR

Peter Miller E-Mail: millerp@canb.auug.org.au

M* WWW: http://www.canb.auug.org.au/ millerp/
Derivation

This manual page is derived from a file marked as follows:
Intel Hexadecimal Object File Format Specification; Revision A, 1/6/88

Disclaimer: Intel makes no representation or warranties with respect to the contents hereof and specifically
disclaims any implied warranties of merchantability or fitness for any particular purpose. Further, Intel
reserves the right to revise this publication from time to time in the content hereof without obligation of
Intel to notify any person of such revision or changes. The publication of this specification should not be
construed as a commitment on Intel’s part to implement any product.

Reference Manual SRecord 58

srec_mos_tech(5) srec_mos_tech(5)

NAME
srec_mos_tech — MOS Technologies file format

DESCRIPTION
The Mos Technologies format allows binary files to be uploaded and downloaded between between a
computer system (such as a PC, Macintosh, or workstation) and an emulator or evaluation board for
microcontrollers and microprocessors.

ThelLines
Each line consists of 5 fields. These are the length field, address field, data field, and the checksum. The
lines always start with a semicolon (;) character.

TheFields

; | Length | Address | Data [Checksum | |

Length The record length field is a 2 character (1 byte) field that specifies the number of data bytes in the
record.

Address This is a 2-byte address that specifies where the data in the record is to be loaded into memory.

Data The data field contains the executable code, memory-loadable data or descriptive information to
be transferred.

Checksum
The checksum is an 2-byte field that represents the least significant two byte of the the sum of the
values represented by the pairs of characters making up the record’s length, address, and data
fields.

Size Multiplier
In general, binary data will expand in sized by approximately 2.4 times when represented with this format.

EXAMPLE
Here is an example MOS Technologies format file. It contains the data *““Hello, World” to be loaded at
address 0.
$110000048656C6C6F2C20576F726C640A9D
; 00
COPYRIGHT
srec_cat version 1.15
Copyright © 1998, 1999, 2000, 2001, 2002, 2003 Peter Miller;
All rights reserved.

The srec_cat program comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_cat
-VERSon License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the ’srec_cat -VERSon License’ command.

AUTHOR
Peter Miller E-Mail: millerp@canb.auug.org.au
M* WWW: http://www.canb.auug.org.au/ millerp/

Reference Manual SRecord 59

srec_motorola(5)

NAME

srec_motorola(5)

srec_motorola — Motorola S-Record hexadecimal file format

DESCRIPTION

This format is also known as the Exorciser, Exormacs or Exormax format.

Motorola’

s S-record format allows binary files to be uploaded and downloaded between two computer

systems. This type of format is widely used when transferring programs and data between a computer
system (such as a PC, Macintosh, or workstation) and an emulator or evaluation board for Motorola
microcontrollers and microprocessors.

ThelLines

Most S-Record file contain only S-Record lines (see the next section), which always start with a capital S

character.

Some systems generate various ““extensions” which usually manifest as lines which start with

something else. These “extension” lines may or may not break other systems made by other vendors.
Caveat emptor.

TheFields

The S-record format consists of 5 fields. These are the type field, length field, address field, data field, and
the checksum. The lines always start with a capital S character.

Type

| S | Type | Record Length | Address | Data | Checksum

The type field is a 1 character field that specifies whether the record is an S0, S1, S2, S3, S5, S7,
S8 or S9 field.

Record Length

Address

The record length field is a 2 character (1 byte) field that specifies the number of character pairs
(bytes) in the record, excluding the type and record length fields.

This is a 2-, 3- or 4-byte address that specifies where the data in the S-record is to be loaded into
memory.

Data The data field contains the executable code, memory-loadable data or descriptive information to
be transferred.

Checksum
The checksum is an 8-bit field that represents the least significant byte of the one’s complement
of the sum of the values represented by the pairs of characters making up the record’s length,
address, and data fields.

Record Types

SO This type of record is the header record for each block of S-records. The data field may contain
any descriptive information identifying the following block of S-records. (It is commonly
“HDR” on many systems.) The address field is normally zero.

S1 A record containing data and the 2-byte address at which the data is to reside.

S2 A record containing data and the 3-byte address at which the data is to reside.

S3 A record containing data and the 4-byte address at which the data is to reside.

S5 A record containing the number of S1, S2 and S3 records transmitted in a particular block. The
count appears in the two-byte address field. There is no data field.

S6 A record containing the number of S1, S2 and S3 records transmitted in a particular block. The
count appears in the three-byte address field. There is no data field.

S7 A termination record for a block of S3 records. The address field may contain the 4-byte address
of the instruction to which control is passed. There is no data field.

S8 A termination record for a block of S2 records. The address field may optionally contain the
3-byte address of the instruction to which control is passed. There is no data field.

S9 A termination record for a block of S1 records. The address field may optionally contain the

Reference Manual

2-byte address of the instruction to which control is passed. If not specified, the first entry point

SRecord 60

srec_motorola(5) srec_motorola(5)

specification encountered in the object module input will be used. There is no data field.

Size Multiplier
In general, binary data will expand in sized by approximately 2.4 times when represented with this format.
EXAMPLE
Here is an example S-Record file. It contains the data “Hello, World™’ to be loaded at address 0.
S00600004844521B
S110000048656C6C6F2C20576F726C640A9D
S5030001FB
S9030000FC
COPYRIGHT

srec_cat version 1.15
Copyright © 1998, 1999, 2000, 2001, 2002, 2003 Peter Miller;
All rights reserved.

The srec_cat program comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_cat
-VERSon License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the ’srec_cat -VERSon License’ command.

AUTHOR

Peter Miller E-Mail: millerp@canb.auug.org.au

M* WWW: http://www.canb.auug.org.au/ millerp/
Reference Manual SRecord

61

srec_needham(5) srec_needham(5)

NAME
srec_needham — Needham EMP-series programmer ASCII file format

DESCRIPTION
This format is understood by Needham Electronics’ EMP-series programmers. See
wwv. needhans. com wi nman. pdf for more information. (This format is very similar to the ASCII-
Hex format, but without the "B and "C guard characters.)

Each data byte is represented as 2 hexadecimal characters, and is separated by white space from all other
data bytes.

The address for data bytes is set by using a sequence of $Annnn, characters, where nnnn is the
8-character ascii representation of the address. The comma is required. There is no need for an address
record unless there are gaps. Implicitly, the file starts a address 0 if no address is set before the first data

byte.
Size Multiplier
In general, binary data will expand in sized by approximately 3.0 times when represented with this format.
EXAMPLE
Here is an example ascii-hex file. It contains the data “Hello, World™ to be loaded at address 0x1000.
$A1000,
48 65 6C 6C 6F 2C 20 57 6F 72 6C 64 OA
COPYRIGHT

srec_cat version 1.15
Copyright © 1998, 1999, 2000, 2001, 2002, 2003 Peter Miller;
All rights reserved.

The srec_cat program comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_cat
-VERSon License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the *srec_cat -VERSon License’ command.

AUTHOR
Peter Miller E-Mail: millerp@canb.auug.org.au
M* WWW: http://www.canb.auug.org.au/ millerp/
srec_ascii_hex — Ascii-Hex file format

DESCRIPTION

This format is used by Ohio Scientific OS65V-compatible loaders. This family of machines includes the
OSI C1P, Superboard I1, C2, C4, C8, and Challenger I11, as well as the UK101, and Elektor Junior.

The file startes with a period ’.” (0x2E), to ensure address entry mode. then a 4-digit hex address, followed
by a slash ’/* (0X2F) to enter the data entry mode. The initial address is always present. There is no need
for an additional address record unless there are gaps.

Each data byte is represented as 2 hexadecimal characters, and is separated by a carriage return character
(Ox0D) (advance address). The final return character may be omitted.

The data is concluded with a period *.” (Ox2E) to re-enter address mode. If an address to start execution is
specified, then the last 5 bytes are nnnnG where nnnn is the 4-digit execution address, and G is the *Go’
command.

Size Multiplier
In general, binary data will expand in sized by approximately 3.0 times when represented with this format.

Reference Manual SRecord 62

srec_needham(5) srec_needham(5)

EXAMPLE
Here is an example ascii-hex file. It contains the data “Hello, World™ to be loaded at address 0x1000, with
execution at 0x1003. (On a 6502, this is the opcode for indirect jump to 0x2C6F.)
1000/48"M65"M6C"M6C"M6F"M2C"M20"M57"M6F"M72"M6C"M64"MOA"M.1010G

COPYRIGHT
srec_cat version 1.15
Copyright © 1998, 1999, 2000, 2001, 2002, 2003 Peter Miller;
All rights reserved.

The srec_cat program comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_cat
-VERSon License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the *srec_cat -VERSon License’ command.

AUTHOR
Peter Miller E-Mail: millerp@canb.auug.org.au
M* WWW: http://www.canb.auug.org.au/ millerp/

Reference Manual SRecord 63

srec_signetics(5) srec_signetics(5)

NAME
srec_signetics — Signetics file format

DESCRIPTION
The Signetics file format is not often used. The major disadvantage in modern applications is that the
addressing range is limited to only 64kb.
Records
All data lines are called records, and each record contains the following 5 fields:
|: | aaaa [cc | as | dd | ss]

The field are defined as follows:
Every record starts with this identifier.
aaaa The address field. A four digit (2 byte) number representing the first address to be used by this

record.
cc The byte-count. A two digit value (1 byte), counting the actual data bytes in the record.
as Address checksum. Covers 2 address bytes and the byte count.
dd The actual data of this record. There can be 1 to 255 data bytes per record (see cc)
SS Data Checksum. Covers only all the data bytes of this record.

Record Begin
Every record begins with a colon ““:”” character. Records contain only ASCII characters. No spaces or tabs
are allowed in a record. In fact, apart from the 1st colon, no other characters than 0..9 and A..F are allowed
in a record. Interpretation of a record should be case less, it does not matter if you use a..f or A..F.

Unfortunately the colon was chosen for the Signetics file format, similar to the Intel format (see
srec_intel(5) for more information). However, SRecord is able to automatically detect the dofference
between the two format, when you use the —Guess format specifier.

Address Field
This is the address where the first data byte of the record should be stored. After storing that data byte, the
address is incremented by 1 to point to the address for the next data byte of the record. And so on, until all
data bytes are stored. The address is represented by a 4 digit hex number (2 bytes), with the MSD first.
The order of addresses in the records of a file is not important. The file may also contain address gaps, to
skip a portion of unused memory.

Byte Count
The byte count cc counts the actual data bytes in the current record. Usually records have 32 data bytes,

but any number between 1 and 255 is possible.

A value of 0x00 for cc indicates the end of the file. In this case not even the address checksum will follow!
The record (and file) are terminated immediately.

It is not recommended to send too many data bytes in a record for that may increase the transmission time
in case of errors. Also avoid sending only a few data bytes per record, because the address overhead will be
too heavy in comparison to the payload.

Address Checksum
This is not really a checksum anymore, it looks more like a CRC. The checksum can not only detect errors

in the values of the bytes, but also bytes out of order can be detected.

The checksum is calculated by this algorithm:
checksum =0
fori=1to3
checksum = checkum XOR byte
ROL checksum
next i
For the Address Checksum we only need 2 Address bytes and 1 Byte Count byte to be added. That’s why
we count to 3 in the loop. Every byte is XORed with the previous result. Then the intermediate result is

Reference Manual SRecord 64

srec_signetics(5) srec_signetics(5)

rolled left (carry rolls back into b0).
This results in a very reliable checksum, and that for only 3 bytes!
The last record of the file does not contain any checksums! So the file ends right after the Byte Count of 0.

Data Field
The payload of the record is formed by the Data field. The number of data bytes expected is given by the
Byte Count field. The last record of the file may not contain a Data field.

Data Checksum
This checksum uses the same algorithm as used for the Address Checksum. This time we calculate the
checksum with only the data bytes of this record.

checksum =0
fori=1tocc
checksum = checksum XOR byte
ROL checksum
next i
Note that we count to the Byte Count cc this time.
Size Multiplier
In general, binary data will expand in sized by approximately 2.4 times when represented with this format.
EXAMPLE

Here is an example Signetics file

: BOOO10A5576F77212044696420796F75207265617B

: BO1010E56C6C7920676F207468726F756768206136

: B02010256C6C20746861742074726F75626C652068

: BO300D5F746F207265616420746869733FD1

: BO3DOO
In the example above you can see a piece of code in Signetics format. The first 3 lines have 16 bytes of
data each, which can be seen by the byte count. The 4th line has only 13 bytes, because the program is at
it’s end there.

Notice that the last record of the file contains no data bytes, and not even an Address Checksum.

SEE ALSO
http://sbprojects.fol.nl/knowledge/fileformats/signetics.htm

AUTHOR
This man page was taken from the above Web page. It was written by San Bergmans
<sanmail@bigfoot.com>

Reference Manual SRecord 65

srec_spasm(5) srec_spasm(5)

NAME
srec_spasm — SPASM file format

DESCRIPTION
This format is the output of the Paralax SPASM assembler (now defunct, I’m told). The file contains two
columns of 16-bit hexadecimal coded values. The first column is the word address, the second column is
the word data.

By default, SRecord treats this is big-endian data (the most significant byte first). If you want little endian
order, use the —spasm-le argument instead.

Size Multiplier
In general, binary data will expand in sized by approximately 5.0 times when represented with this format
(5.5 times in Windows).

EXAMPLE
Here is an example SPASM file. It contains the data *““Hello, World™ to be loaded at bytes address 0x0100
(but remember, the file contents are word addressed).
0080 6548
0081 6C6C
0082 2C6F
0083 5720
0084 726F
0085 646C

COPYRIGHT
srec_cat version 1.15
Copyright © 1998, 1999, 2000, 2001, 2002, 2003 Peter Miller;
All rights reserved.

The srec_cat program comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_cat
-VERSon License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the *srec_cat -VERSon License’ command.

AUTHOR
Peter Miller E-Mail: millerp@canb.auug.org.au
M* WWW: http://www.canb.auug.org.au/ millerp/

Reference Manual SRecord 66

srec_spectrum(5)

NAME

srec_spectrum(5)

srec_spectrum — Spectrum file format

DESCRIPTION
In this format, bytes are recorded as ASCII code with binary digits represented by 1s and 0s. Each byte is
preceeded by a decimal address.

The file ends with a Control-C character (0x03).
Size Multiplier

In general, binary data will expand in sized by approximately 14 times when represented with this format

(or 15 times on DOS or Windows).

EXAMPLE

Here is an example Spectrum file. It contains the data ‘““Hello, World” to be loaded at address 0x0.

COPYRIGHT

B

0000 01001000
0001 01100101
0002 01101100
0003 01101100
0004 01101111
0005 00101100
0006 00100000
0007 01010111
0008 01101111
0009 01110010
0010 01101100
0011 01100100
0012 00100001
0013 00001010
c

srec_cat version 1.15
Copyright © 1998, 1999, 2000, 2001, 2002, 2003 Peter Miller;
All rights reserved.

The srec_cat program comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_cat
-VERSon License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the *srec_cat -VERSon License’ command.

AUTHOR
Peter Miller E-Mail:
N* WWW:

Reference Manual

millerp@canb.auug.org.au
http://www.canb.auug.org.au/ millerp/

SRecord

67

srec_tektronix(5) srec_tektronix(5)

NAME
srec_tektronix — Tektronix hexadecimal file format

DESCRIPTION
The Tektronix hexadecimal file format is no longer very common. It serves a similar purpose to the
Motorola and Intel formats, usually used to transfer data into EPROM programmers.

ThelLines
Most Tektronix hex files contain only Tektronix hex lines (see the next section), which always start with a
slash (**/””) character. There are only two types of lines — data lines and a termination line.
DatalLines
Data lines have five fields: address, length, checksum 1, data and checksum 2. The lines always start with a
slash (**/””) character.
|/ | Address | Length | Checksuml | Data | Checksum2
Address This is a 4 character (2 byte) address that specifies where the data in the record is to be loaded
into memory.
Data Length
The data length field is a 2 character (1 byte) field that specifies the number of character pairs
(bytes) in the data field. This field never has a value of zero.
Checksum 1

The checksum 1 field is a 2 character (1 byte) field. Its value is the 8-bit sum of the six 4-bit
values which make up the address and length fields.

Data The data field contains character pairs (bytes); the number of character pairs (bytes) is indicated
by the length field.

Checksum 2
The checksum 2 field is a 2 character (1 byte) field. Its value is the least significant byte of the
sum of the all the 4-bit values of the data field.

Termination Line
Termination lines have three fields: address, zero and checksum. The lines always start with a slash (*/*)
character.

|/ | Address | Zero | Checksum
Address This is a 4 character (2 byte) address that specifies where to begin execution.

Zero The data length field is a 2 character (1 byte) field of value zero.

Checksum
The checksum 1 field is a 2 character (1 byte) field. Its value is the 8-bit sum of the six 4-bit
values which make up the address and zero fields.

Size Multiplier
In general, binary data will expand in sized by approximately 2.4 times when represented with this format.

EXAMPLE
Here is an example Tektronix hex file. It contains the data “Hello, World™ to be loaded at address 0.
/ 00000D0D48656C6CE6F2C20576F726C640A52
/ 00000000

COPYRIGHT
srec_cat version 1.15
Copyright © 1998, 1999, 2000, 2001, 2002, 2003 Peter Miller;
All rights reserved.

The srec_cat program comes with ABSOLUTELY NO WARRANTY; for details use the *srec_cat
-VERSon License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the srec_cat -VERSon License’ command.

Reference Manual SRecord 68

srec_tektronix(5) srec_tektronix(5)

AUTHOR
Peter Miller E-Mail: millerp@canb.auug.org.au
M* WWW: http://www.canb.auug.org.au/ millerp/

Reference Manual SRecord 69

srec_tektronix_extended(5) srec_tektronix_extended(5)

NAME
srec_tektronix_extended — Tektronix Extended hexadecimal file format

DESCRIPTION
This format allows binary files to be uploaded and downloaded between two computer systems, typically
between a computer system (such as a PC, Macintosh, or workstation) and an emulator or evaluation board
for microcontrollers and microprocessors.

ThelLines
Lines always start with a percent (%) character. Each line consists of 5 fields. These are the length field,
the type field, the checksum, the address field (including address length), and the data field.

TheFields

| % | Length | Type | Checksum | Address | Data |

Record Length
The record length field is a 2 character (1 byte) field that specifies the number of characters (not
bytes) in the record, excluding the percent, the length field, the type field and the checksum.

Type The type field is a 1 character field that specifies whether the record is data (6) or termination (8).

Checksum
The checksum is an 2 character (1 byte) field that represents the sum of all the nibbles on the line,
excluding the checksum.

Address This is a 9 character field. The first character is the address size; it is always 8. The remaining 8
chgaracters are the 4-byte address that specifies where the data is to be loaded into memory.

Data The data field contains the executable code, memory-loadable data or descriptive information to
be transferred.

Record Types
6 A record containing data. The data is placed at the address specified.

8 A termination record. The address field may optionally contain the address of the instruction to
which control is passed. There is no data field.

Size Multiplier
In general, binary data will expand in sized by approximately 2.5 times when represented with this format.

EXAMPLE
Here is an example Tektronix extended file. It contains the data ““Hello, World™ to be loaded at address
0x006B.
%256D980000006B48656C6C6F2C20576F726C64210A
%99819800000000

COPYRIGHT
srec_cat version 1.15
Copyright © 1998, 1999, 2000, 2001, 2002, 2003 Peter Miller;
All rights reserved.

The srec_cat program comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_cat
-VERSon License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the ’srec_cat -VERSon License’ command.

AUTHOR
Peter Miller E-Mail: millerp@canb.auug.org.au
M* WWW: http://www.canb.auug.org.au/ millerp/

Reference Manual SRecord 70

srec_ti_tagged(5) srec_ti_tagged(5)

NAME
srec_ti_tagged — Texas Instruments Tagged file format

DESCRIPTION
This format is also known as the TI-Tagged or TI-SDSMAC format.

This format allows binary files to be uploaded and downloaded between two computer systems, typically
between a computer system (such as a PC, Macintosh, or workstation) and an emulator or evaluation board
for microcontrollers and microprocessors.

ThelLines
Unlike many other object formats, the lines themselves are not especially significant. The format consits of
a number of tagged fields, and lines are composed of a series of these fields.
Tag Description
* Data byte.
: End of file.
7 Address.
8 Dummy checksum (ignored).
9 Address.
B Data word.
F
K

End of data record.
Program identifier.

Data Byte
B[n[n]

One byte of data. The nn is 8-bit big-endian hexadecimal.

End of File
[[CRLF]

The end of data is indicated by this tag. The end of line sequence (LF on Unix systems, CRLF on PCs)
follows this tag.

Checksum

(7 nln[n[n]

The checksum is the 2s complement sum of the 8-bit ASCII values of characters, beginning with the first
tag character and ending with the checksum tag character (7). The nnnn is 16-bit big-endian hexadecimal.

Dummy Checksum

(8[nf[nfn[n]
The checksum is the 2s complement sum of the 8-bit ASCII values of characters, beginning with the first
tag character and ending with the checksum tag character (8). The nnnn is 16-bit big-endian hexadecimal.
Address

(9 [n]n[n[n]

Addresses may be given for any data byte, but none is mandatory. The file begins at 0000 if no address is
given before the first data field. The nnnn is 16-bit big-endian hexadecimal.

Reference Manual SRecord 71

srec_ti_tagged(5) srec_ti_tagged(5)

Data Word

[(Blala[b[b]

Two bytes of data. The aa and bb are each 8-bit big-endian hexadecimal.

End of Record

The end of line sequence (LF on Unix systems, CRLF on PCs) is escaped using this tag.

Program lIdentifier

[(K[n]n[n[n]te

The program identifier can contain a brief description of the program, or can be empty (i.e. the text portion
is optional). The nnnn length of the field includes the ‘K’, the length and the text; it is at least 5.

Size Multiplier
In general, binary data will expand in sized by approximately 2.9 times when represented with this format.

EXAMPLE
Here is an example TI-Tagged file. It contains the data ““Hello, World” to be loaded at address 0x0100.
K000590100B4865B6C6CB6F2CB2057B6F72B6C64* 0A7F648F

COPYRIGHT
srec_cat version 1.15
Copyright © 1998, 1999, 2000, 2001, 2002, 2003 Peter Miller;
All rights reserved.

The srec_cat program comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_cat
-VERSon License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the *srec_cat -VERSon License’ command.

AUTHOR
Peter Miller E-Mail: millerp@canb.auug.org.au
M* WWW: http://www.canb.auug.org.au/ millerp/

Reference Manual SRecord 72

srec_wilson.5(5)

NAME
srec_wilson — wilson file format

DESCRIPTION

This is a mystery format, added to support a mysery EPROM loader used by Alan Wilson

<dvdsales@dvdlibrary.co.uk>

srec_wilson.5(5)

If you know the true name of this format, please let me know! It bears a remarkable similarity to the
Motorola S-Record format, however | can find no reference to a "compressed" Motorola format.

ThelLines

Each line contains normal ASCII characters, and “high bit on” characters, but the ASCII control characters
are avoided (the high-bit-on con characters are not avoided). Normal line termination characters (CRLF or

LF, depending on your system) are used.

The presence of high-bit-on characters makes this format unattractive to send via email, as it must be
wrapped as a binary attachment, increasing its size.

In general, a single byte per byte is used to encode values, however some values use two bytes, according to

the following table:

Byte Value

0x00 ..
0xAO0 ..
0xBO ..
0xCO ..
0xDO ..
oxEO ..

Ox9F
OxAF
OxBF
OxCF
OxDF
OxFF

Encoding (1 or 2 chars)

0x40 ..
0x3A 0x30 ..
0x3B 0x30 ..
0x3C 0x30 ..
0x3D 0x30 ..
OxEO ..

OxDF
0x3A 0x3F
0x3B 0x3F
0x3C Ox3F
0x3D 0x3F
OxFF

The rest of this description, when refering to ““bytes” means byte values encoded using the above table.

TheFields

Each line consists of 5 fields. These are the type field, length field, address field, data field, and the

checksum.

| Type | Record Length

Address \ Data \ Checksum\

Type The type field is a 1 character field that specifies whether the record is data (0x43), or termination

(0x47).
Record Length

The record length field is a 1 byte field that specifies the number of bytes in the record, excluding
the type and record length fields.

Address This is a 4-byte address that specifies where the data is to be loaded into memory.

Data The data field contains the executable code, memory-loadable data or descriptive information to

be transferred.
Checksum

The checksum is an 1-byte field that represents the least significant byte of the one’s complement
of the sum of the values represented by the bytes making up the length, address, and data fields.

Reference Manual

SRecord

73

srec_wilson.5(5) srec_wilson.5(5)

Record Types
0x43 (#) A record containing data and the 4-byte address at which the data is to reside.

0x47 (’) A termination record. The address field may contain the 4-byte address of the instruction to
which control is passed. There is no data field.

Size Multiplier
In general, binary data will expand in sized by approximately 1.5 times when represented with this format.
COPYRIGHT
srec_cat version 1.15

Copyright © 1998, 1999, 2000, 2001, 2002, 2003 Peter Miller;
All rights reserved.

The srec_cat program comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_cat
-VERSon License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the *srec_cat -VERSon License’ command.

AUTHOR
Peter Miller E-Mail: millerp@canb.auug.org.au
M* WWW: http://www.canb.auug.org.au/ millerp/

Reference Manual SRecord 1000

