
-

RANDOM DATA
By Robert Reiling

A survey of hobbyists attending the June 9th meet-
ing reveals the following distributions of CPUs in use:
8080-53, 6502-18, 8008-6, PDP-8-4, LSI-11-3,
Z80-2, 4004-1, PDPll/20-1 and TTL-l. That
totals 101 systems up and running out the the group.
About 250 hobbyists were at this meeting. A similar
survey in the October 15, 1975 meeting turned up 38
systems with about 80 hobbyists attending that meet-
ing. This growth is just a sample of the changes taking
place everywhere in computer hobbyist groups.

This issue of the newsletter is really filled .:with
interesting material. Robert Purser presents ide~ to
help get started with word processing-one of my
favorite subjects. Walt Hutchinson provides pointers to
sources of parts for AMI prototype board users. Mark
Garetz has put together a listing program that will be
useful to 6502 users. For 8080 users, John Schulein
has a Trap routine that should make your program
development job much easier. Of courSe, many other
news items are included too.

Don't forget your article can be published too!
How about a description of your system and how to
use it? Send it to me at P.O. Box 626, Mountain View,
Ca. 94042. .

HEY AUTHORS!
By JoelMiller

Laurel Publications is currently planning produc-
tion of a book tenatively titled The Personal Computer
and we are looking for contributors for various chap-
ters. Some of these chapters may include discussions of
various systems available such as thoroughly homebrew
systems, developmental boards and complete systems;
how to get into and have fun with software; peripher-
als and their interfaces; how microcomputers work. We
are looking for talented people with some writing ex-
perience, however help with rewriting is available.
Rough illustrations will be redrawn by professional
draftsman. We are looking for people with diversified
interests and specialties to make a well-rounded and in-
teresting presentation. Royalties to be divided among
participants. For mote information,. call Joel Miller at
(408) 353-3609 or write Laurel Publications, 17235
Laurel Rd., Los Gatos, Ca. 95030.

Homebrew Computer Club Newsletter Vol. 2, [sme 6

WORD PROCESSING
By Robert Purser

Action Audio Electronics

An interesting application for homebrew computers
is Word Processing. A Word Processing unit is basically
a semi-intelligent typewriter. Since Word Processing is
relatively new, the businessmen who are interested in
this field are more adventuresome than most. Many of
them would be willing to fund a project to design a
Word Processing Unit that is cheaper (and more flexi-
ble and expandable) than available commercial units.

A Word Processing Unit is simple in design (much
simpler than an accounting system for example). In
general, every Word Processing Unit has the following:

I/O: A high quality, upper and lower case printer
with an upper and lower case keyboard.

Logic: Control keys and associated control logic.
Memory: A recording media and/or memory.
Before selecting the individual components, remem-

ber two things: (1) a Word Processing Unit is used lon-
ger and harder than any other office machine. There-
fore, it must be durable and reliable. (2) Non-mechani-
cally minded people will be using the Word Processing
Unit, so keep all mechanical operations to a minimum.

You have two ways to go for I/O: a separate key-
board and printer or a typewriter terminal. When using
a separate keyboard and printer, use only a typewriter
style keyboard. For convenience, choose a fully de-
coded keyboard. For a printer, the Adapt-A-Typer is
one alternative. For more information on this unit, see
the April issue of Byte magazine.

Another printer alternative is a daisey wheel or
daisey cup printer which are TTL compatible, high
quality and high speed. Three manufacturers of these
units have offered to provide club members with free
literature on their units.

Qume-drop a postcard to:
James Soderman

Qume
745 Distel Drive

Los Altos, Ca. 94022

Diablo-phone:
Jack Fuller

Diablo
(408) 286-9424

Interdata-drop a postcard to:

1

,
I

Dave Carson
Interdata

11222 Lacienega Blvd.
Suite 666

In~ewood,Ca.90304

Used Selectric or Friden units may be hard to inter-
face and are not recommended. (Editor's note: Even
though the Selectric is difficult to interface, it may be
worth the hassle considering the availability of many
different type fonts including OCR fonts. Also, Tota-
lert Systems, 2001 Karbach, Suite K, Houston, Texas
77018 manufactures a Selectric Interface Controller
designed for the PDP 8/E or 8/1.)

The second alternative is a typewriter terminal.
Daisey wheel or Selectric terminals are slowly becom-
ing available. The interface is serial and relatively sim-
ple. Most units are also available on a rental basis.

For the necessary logic, a microprocessor is ideally
suited to the task. The typist interacts with the control
program via control buttons. The control program
consists of an 1/0 monitor and a series of subroutines
for the different control functions.

The control buttons are no problem. Some key-
boards have extra keys which can be used as control
buttons. Also, you have the option of buying a sepa-
rate control keyboard. In most cases however, the con-
trol buttons are simulated by either of the following
techniques: (1) Have one control button which indi-
cates to the program that the next character to be
typed is to be intepreted as a control charac"ter. (2(Or
have one button which when held down modifies the
codes of the regular buttons to make then control
codes. (Many keyboards have this feature built in.)

The. control program will require at least some
PROM memory. No typist is going to load a program
through the front panel. Put at least a loader on PROM
to load the program via tape. A good idea would be to
put a skeleton system (record, play, play character,
forward, backspace, reset, store and recall) in PROM
with additional control functions (subroutines) to be
loaded from tape.

At first do not try to design your own set of control
functions. Instead, try simulating a commercially avail-
able Word Processing Unit. A list of Word Processing
Units plus a brief description of each is available in the
November, 1975 issue of Administrative Management.
Choose the Word Processing Unit you want and obtain
the User's Reference Manual for it. This has three ad-
vantages: (1) The Reference Manual will serve as a
"systems spec". Once you have this, half your work is
done. (2) When you are finished you do not have to
write your own manual for the typist. (3) Training the
typist is easier if the typist is already familiar with the
commercial unit.

Memory: In addition to the control program's
memory, about 4K of RAM is sufficient for text mem-
ory. If you are supplementing your system with a
video display, part of the video memory can be used as
some of the text memory. A tape cassette or a disk
storage device is needed for storing permanent copies
for future replay or editing.

Other considerations: As you design your Word Pro-
cessing Unit, do not ignore the economics of it. A sim-
ple Word Processing Unit will cost from $3,000 to
$6,000 in hardware. If you are planning to simulate a

commercially available unit, choose one which is at
least three times as expensive as your hardware ($9,000
to $16,000). Roughly, you should figure 1/3 for the
basic hardware, 1/3 for your time and effort and 1/3
for the businessman. No businessman will invest in an
experimental machine unless it saves him at least 1/3
the price of a commercial unit.

On the other hand, do not overlook the obvious.
IBM designs good office products. They now have a
new unit called the Memory Typewriter which costs
only $4,000. It has a totally new, more intelligent logic
design. People like it and are buying it. Even though no
one is going to pay $6,000 for hardware to simulate a
$4,000 machine, it would be very wise to try simula-
ting the IBM machine first before you attempt to build
your ultimate Word Processing Unit.

Robert H. Edmunds is coordinating and stimulating
interest in developing home brew Word Processing Units.
His address is P.O. Box 464, Estudillo Station, San
Leandro, Ca. 94577. He and I would like to hear what
you are doing in this field.

BULLETIN BOARD

IMSAI RAM 4-1. Low profile sockets, 450ns, 1K ex-
pands to 4K, switch able write pretect on board, fully
assembled, new, $99/best offer. WM.J. Schenker, M.D.
2086 Essenay, Walnut Creek, Ca. 94596; 939-6295.

Teletypes. Models 28 through 40, new or rebuilt, RO's,
KSR's and ASR's. All available immediately. National
Typewriter Corp., 207 Newtown Rd., Plainview, N.Y.
11803. Contact Joe Gibbons at (516) 293-0444.
Kentucky Fried Computers, a new retail computer kit
business in Berkeley makes this offer: All IMSAj pro-
ducts (except some peripherals) will be sold at 10% off
to Homebrew Computer Club members. Add 2% if
shipping is desired (excess is refunded). Orders may be
picked up in Berkeley by appointment only. If there is
sufficient volume from Homebrew members, we will
arrange free delivery for distribution at Homebrew
meetings. California residents must add 6% sales tax.
The discount offer expires July 31, 1976. Terms: cash.
Kentucky Fried Computers is operated by Mark Green-
berg and Charles Grant. They plan to open a store later
this year, but for now they are selling on a mail and
telephone order basis. Contact them at Applied Com-
puter Technology, 1038 Merced, Berkeley, Ca. 94707;
telephone (415) 527-6760.

For Sale: IMSAI system~onsists of 1-8080 computer
system, 22-EXPM edge connectors, 2-RAM4-4 4K
RAMs, I-PROM 4-4 4K EPROM on board, I-PGM-1A
self-contained system programmed on PROM board,
I-BASIC-4A paper tape, 1-EXP-22 22 slot mother
board and I-SI02-2 2 channel serial I/O board. Total
retail price is $3,066.58. The system is completely
factory assembled and checked out and will be covered
by IMSAI's 90-day warranty, transferrable to the pur-
chaser. Of course, all the IMSAI documentation is in-
cluded. I am asking $2,000 for the complete system
(the unassembled price of this equipment would be
$1,867.72). This is a savings of $35%. Contact Dr. Les
Oldenbrook, 14 Midvale Drive, Daly City, Ca. 94015,
telephone (415) 756-5593.

2 Homebrew Computer Club Newsletter Vol. 2, Issue 6

ON-L1NE NEWSLETTER

WIll

ON-LINE Newsletter is the only nationwide classi-
fied advertising newsletter devoted entirely to the
computer hobbyist. ON-LINE is a medium through
which hobbyists can buy, swap and sell equipment,
programs and services related to the field of home,
small business and personal-use computers.

You will probably want to subscribe if ... you are
just getting into the hobby of computers and are look-
ing for good sources of low cost new and used every-
thing (computers, 110 equipment, software, etc.)...
you are allready "on the air" with a basic system and
are looking for bargains in peripherals, supplies, soft-
ware, memory, etc. to make a larger system.. .you are
interested in sharing with other enthusiasts the unique
software andlor hardware you developed and also in
making some pocket money for "operating expenses".

ON~INE has fast turnaround time. It includes
ads received just 4 days prior to mailing and it is sent
out every three weeks.

ON~INE offers free ad space to computer hobby-
ists wishing to form clubs and to established organiza-
tions to announce meetings, special activities and other
non-profit events. Also, free ad space is given to clubs
or individuals offering information or software avail-
able at no charge or for a charge calculated to cover
just the cost of distribution.

Each issue contains 6 to 12 pages (3 to 6 sheets,
8% by 11). Subscription rates are $3.75 for 18 issues
(1 year) or $7.00 for 36 issues. Full satisfaction is guar-
anteed-used portion of subscription will be refunded
at any time. Low advertising rates enable individual
sellers and small business to offer their wares. Non-
commercial advertisements cost $1.50 per line. Com-
mercial advertisements are $3.50 per line.

Send subscriptions to D.H. Beetle, Publisher, 24695
Santa Cruz Hwy., Los Gatos, Ca. 95030.

ETC OFFERS A COMPLETE SYSTEM
News Release

Hawthorne, Ca.-Electronic Tool Co. has recently
introduced a complete microcomputer system, based
on the MOSTechnology6502 CPU,for $675. A spokes-
man for Electronic Tool Co. said that the ErC-1000
comes with a 40-key keyboard, a programmable 8-digit
display, 110 interfaces, power supply and more. All
systems are fully assembled, tested and ready to run.

The ETC-1000 is intended for system development,
control, and small-scale data processing applications.
As a development system, it provides full system sup-
port for hardware and software design work. As a con-
trol system, it offers an inexpensive, high-speed com-
puting capability in a studry rack-mountable package.
Memory expansion, 110 capacity, and programming
flexibility make the ETC-1000 a top choice for stand-
alone and communications-oriented data processing.

Software currently available includes a resident
assembler, 110 handlers, diagnostics and other support
tools. The manufacturer says that BASIC and PLM
support are expected to be available during the third
quarter of 1976.

Homebrew Computer Club New:;/etter Vol. 2. Issue 6

Availability of standard configurations is 30-60
days. For more information, contact Debbie Pye, Elec-
tronic Tool Co., Hawthorne, Ca., (213) 644-0113.

AMI PROTOTYPE BOARD: PARTS SOURCES
By Walt Hutchinson

If you are assembling the AMI board (and are as
much a neophyte as I), you may find the following list
helpful in saving you time and gas. But please use it
only as a guide and always phone before you visit
(things change rapidly around here). Also, please
excuse me if I've omitted your favorite parts house. If
so, tell us about it at the next meeting!

LOCAL PARTS SOURCES
FOR THE AMI PROTOTYPE BOARD

Solid State Music-2102A Walsh Ave., Santa Clara,
Ca. telephone (408) 246-2707. Socket kit, IC kit, tran-
sistor kit, diode kit, Baud rate generator, trim pots,
2.4576 crystal, disc capacitors, tantalum capacitors.

James Electronics-P.O. Box 882, Belmont, Ca.,
telephone (415) 592-8097. Sockets, ICs, transistors,
diodes, 1 MHz crystal, etc, but no kits expressly for
the AMI board. Prices comparable to Solid State Music.

Halted Specialties-729 Evelyn, Sunnyvale, Ca.,
telephone (408) 732-1573. Tantalum capacitors, rare
resistors, etc. New and used. "Supermarket" style. Well
worth visiting just to look.

Haltek Electronics-1062 Linda Vista, Sunnyvale,
Ca., telephone (408) 969-0510. "The" Supermarket.
Something of everything. New and used. (Caveat emp-
tor, but will blow your mind.)

Weatherford-3240 Hillview, Palo Alto, Ca., tele-
phone (415) 493-5373. Local AMI CMOS outlet. (Has
trouble keeping these parts in stock, however.)

Hamilton Avnet-575 East Middlefield Road,
Mountain View, Ca., telephone (415) 323-7239.
Motorola outlet. Alternative source for CMOS (except
for the 6834). Prices differ, however. (Also has stock-
ing problems.)

Moltronics-2300 Owen, Santa Clara, Ca., tele-
phone (408) 244-7600.

Robinson-Nugent-Low-force, 24-pin sockets and
other useful things.

Acacia Sales-384 San Aleso, Sunnyvale, Ca., tele-
phone (408) 735-0100. R-N low-force 24-pin sockets
in stock. Can order 8 pF mica capacitors.

Capacitor Sales-253 Polaris, Mountain View, Ca.,
telephone (415) 964-8880. Have 8 pF mica capacitors
in stock. (Please do group buys, however.)

Bogen & Associates-19752 Bixby Dr., Cupertino,
Ca., telephone (415) 257-4461. Textool no-force sock-
ets. (Make sure you get the right part number. Must
file pins.)

U-Do Electronics-1036 Castro, Mountain View,
Ca., telephone (415) 968-8894. Dual in-line PC board
switches. Many other necessary things.

Sterling Electronics-1061 Industrial Road, San
Carlos, Ca., telephone (415) 592-2353. Will provide
the Amphenol edge connectors. Takes awhile.)

Problem Areas: Right angle switches; -50V regu-
lators; cheap (but light and strong) enclosures; inex-
pensive terminals; money.

3

DEBUGGING 8080 SOFTWARE. . .
HOW ABOUT A TRAP ROUTINE?

By JohnSchulein

If you have your 8080 system up and running and
are starting to write some programs, the trap routine
discussed in this article may be just what you need to
assist in debugging your own software or other soft-
ware you have keyed in and/or relocated. This routine
is in PROM in my own system and has been invaluable
in locating bugs in various programs.

This trap routine is a program that is written as a
subroutine and is designed to do the following when it
is called: (1) Immediately save the machine state, (2)
Print out the machine state on a TVT and (3) Wait for
a keyboard input so that the programmer can decide
whether to examine and/or modify memory or to re-
store the machine state and resume execution of the
program that called the trap routine.

A typical way to use this trap routine is to change
one or more instructions in critical areas of the pro-
gram being debugged to the RST 7 instruction (FF in
hex). Note that this implies that your problem pro-
gram is in RAM and that if a multi-byte instruction is
changed, the RST 7 instruction is placed in the first
byte of the multibyte instruction. Several traps can be
set at once since the trap location will be printed out
each time the trap routine is executed. The trap loca-
tion will be printed Qut each time the trap routifie is
executed. The trap routine is activated (called) when-
ever the 8080.CPU encounters an RST 7 instruction.
Thus, if the trap routine does not start at location
0038 hex, then a JMP TRAP instruction must be pre-
sent at location 0038 hex. If your PROM memory starts
at location 0000, then you can fix the trap routine (or
jump instruction and trap rountine) into PROM and
you are ready to go. If your PROM is in high memory ,
then you can fix the trap routine in high memory and
you will have to remember to load the jump to trap
instructions (3 bytes) into locations 0038 through
003A hex each time you power up the system. An
alternate way to get into the trap routine would be to
use a standard three-byte call instruction (here no
jump instruction would be required). I decided to use
the single byte call (RST) mainly for convenience (one
byte to change instead of three) and also because my
PROM is in low memory.

The output of the trap routine is two lines of print-
out on a TVT as shown below:

TRAP AT :xxxx:
Axxxx :Bxxxx:Dxxxx:Hxxxx :Sxxxx

~~~~~FLAGS

The first line shows the memory location of the RST 7
calling instruction that resulted in the trap routine
being called and the second line displays the machine
state (accumulator, flags, the registers B,C,D,E,H & L
and the stack pointer) at the completion of the last
program instruction executed before the trap calling
instruction (RST 7) was encountered.

The trap routine is shown in Figure 1 and the aux-
iliary subroutines used by the trap routine are described
in Figure 2. Listings of these auxilliary subroutines are
not provided since most monitor programs will already
have these routines and they most likely are system-
peculiar since they deal directly with I/O devices. The
stack data generated by the trap routine is shown in
Figure 3 and will help in understanding the operation
of the trap routine. The reader is referred to these
three figures during the following explanation of the
trap program.

PRST
Prints a string of ASCII characters in mem-
ory starting at the location pointed to by
HL. The string is terminated by a zero byte.

PTADR I Prints HL as four hex digits followed by acolon.

PTADRll Prints HL as four hex digits followed by acolon.

CRLF Sends a carriage return and a line feed to
the printer.

RDTTY

Reads an ASCII character from the key-
board. Any character other than ESC re-
turns the processor to the calling program
with the ASCII character in the A and D
registers. An ESC character sends the pro-
cessor to the monitor program.

PRNT Prints the ASCII character in the D register.

Auxilliary Subroutine Descriptions
Figure 2

When the trap routine is called by the RST 7 in-
struction, the program counter is automatically pushed
onto the stack. The next four push instructions in the
trap routine (lines 1 through 4) save the A,B,C,D,E,H
and L registers and the flags in the stack. This machine
information will be used at the very end of the trap
routine to restore that machine state just before the
trap routine return instruction (line 40) is executed.
The fifth push instruction (line 5) is used to provide a
space in the stack for the value of the stack pointer
when the trap routine is called. This value is calcu-
lated by adding OOOChex to the current stack pointer
value at line 6 of the trap routine. The DAD SP instruc-
tion (line 7) does this addition and the desired initial
stack pointer value ends up in HL after the DAD SP
instruction is executed.

The XTHL instruction at line 8 exchanges the most
recent two stack bytes with the contents of HL. Thus
after the execution of line 8, the initial value of the
stack pointer is on the bottom of the stack (the 8080
stack grows downward) and the contents of HL have
been restored to their initial values (the values they
had when the trap routine was called). The next four
push instructions (lines 9 through 12) save the machine
state a second time for the printing operation.

Lines 13 through 14 print the ASCII character
string "TRAP AT" in preparation for the printing of

4 Homebrew Computer Club Newsletter Vol. 2. Issue 6



the memory address that generated the trap. This in-
formation is highly desirable since several traps may
have set into the program being debugged and it is nice
to know which trap was encountered each time the
trap routine is executed. The trap subroutine return
address (pushed onto the stack when the trap subrou-
tine was called) is the key to determining the trap loca-
tion. In order to access this information, lines 15 and
16 cause the HL register pair to point higher up in the
stack to the most significant byte of the return address.
The return address is put into the DE register pair by
the instructions at lines 17, 18 and 19. Note that the
value of the DE register pair is decremented by one

(line 20) in order to reflect precisely the location of
the RST 7 trap generating instruction. This is due to
the fact that the return address pushed onto the stack
by the RST 7 instruction is the next memory address
after the RST 7 instruction. The XCHG instruction at
line 21 exchanges the register pairs DE and HL which
puts the trap location into HL so that the PTADR sub-
routine called at line 22 will print the trap location
(PTADR prints out the contents of HL as four hex
digits surrounded by colons). A CRLF subroutine
called at line 23 drives the TVT to the beginning of the
next line.

Now things get a little tricky but we are almost

TRAP Routine
Figure 1

Homebrew Computer Club New:;letter Vol. 2, /:;:;ue 6 5

Line Number Label Instruction Comments

1 TRAP PUSH A
2 PUSH B Save registers for final return to program being debugged.
3 PUSH D
4 PUSH H
5 PUSH H SP value stac.k position.
6 LXI H,OOOCH Stack pointer correction factor.
7 DAD SP HL+SP-HL
8 XTHL Puts corrected SP onto stack and restores HL.
9 PUSH H
10 PUSH D

Saves Registers for printing.11 PUSH B
12 PUSH A
13 LXI H,Trap Message-
14 CALL PRST Prints "TRAP AT".
15 LXI H,0013H Stack pointer displacement to return address.
16 DAD SP Points HL to return address.
17 MOV D,M MSP of return address-D
18 DCX H
19 MOV E,M LSP of return address- E
20 DCX D Decrement to trap location.
21 XCHG Trap location ends up in HL.
22 CALL PTADR Prints trap location as 4 hex digits.
23 CALL CRLF
24 MVI D,"A"
25 CALL PRREG
26 MVI D,"B"
27 CALL PRREG

Print flags, registers and SP.28 MVI D,"D"
29 CALL PRREG Axxxx:Bxxxx:Dxxxx:Hxxxx:Sxxxx:
30 MVI D,"H"
31 CALL PRREG
32 MVI D,"S"
33 CALL PRREG
34 CALL RDTTY

Wait for keyboard input (ESC gives monitor).35 CALL CRLF
36 POP H
37 POP D Restore machine state.38 POP B
39 POP A
40 RET Return to program being debugged.
41 PRREG CALL PRNT Prints ASCII character in D register.
42 POP H Pop return address into HL.
43 XTHL Get 2 stack bytes and restore return address.
44 CALL PTADR1 Print 4 hex digits.
45 RET



through so don't give up now! The next ten lines of
program (lines 24 through 33) result in the printing
out of the machine state in the form of five groups of
characters on the TVT using the PRREG subroutine
(lines 41 through 45). Each group of characters con-
sists of a single identifier alpha character, four hexidec-
imal digits and a colon. Thus the printout of the ma-
chine state line takes 30 characters and just fits on a 32
character/line TVT.

Each execution of the PRREG subroutine results
in the following operations. First the ASCII character
in the D register is printed out on the TVT by the
PRNT subroutine. Next the return address for the
PRREG subroutine is popped off the stack into the HL
register pair by the POP H instruction at line 42. This
brings to the bottom of the stack one of the 2-byte
values to be printed that was placed on the stack by
the instructions at lines 8 through 12. Now the
PRREG subroutine return address is restored to the
stack (two bytes up from its original position) and the
two-byte value at the bottom of the stack that is to be
printed is put into HL by the XTHL instruction at line
43. That XTHL instruction sure is nice! Finally, the
four hex digit value now in HL is printed out on the
TVT by subroutine PTADR1 (called at line 44)* Each
execution of the PRREG subroutine causes the stack
to be reduced by 2 bytes and after the execution of
the last PRREG call instruction (line 33), the stack has
been reduced to the upper half shown in Figure 3.

NOTE: This figure shows the stack data generated by
the trap routine when the processor is executing the
instruction at line 13.

TRAP Stack Data
Figure 3

After the entire machine state line has been printed
out, the trap routine waits for a keyboard input in the
RDTTY subroutine (called at line 34). This gives the

person debugging a program a chance to digest the trap
information before proceeding. Any character other
than ESC will return the processor to the trap routine
and then to the program being debugged. An ESC will
cause the processor to return to the monitor program
where the operator can examine and modify memory
if necessary. If the character typed was not ESC, a
CRLF is generated and then the machine state is pop-
ped off the stack by the four pop instructions at lines
36 through 39. After restoring the machine state, the
processor will return to the program containing the
trap (the program being debugged) and resume execu-
tion. Note that you can only use this technique if the
program being debugged has the trap routine-calling in-
structions (RST 7) located in program locations that
originally contained NOP's. Most of the time I use the
ESC monitor exit so that I can restore the original in-
struction and move the RST 7 trap-calling instruction
to a new location. Then another execution of the prob-
lem program can be initiated. This process will con-
tinue until the source of a problem is determined and
then the program can be modified to (hopefully) cor-
rect the problem.

This trap routine (or a similar one) should make
debugging much easier as it produces a printout of the
entire machine state at a known point in a program.
Good luck in finding and removing those bugs.

This article may be reprinted only with express written
permission from the Author.

ERRATUM-Volume 2, Issue 5, Page 3, Figure 1 (Byte
Packing Truth Table). Bit in third row of rightmost
column should be a "1".

~-'. am

IMSAI MOVES

- 'M

IMS Associates, Inc. of S~ Leandro, California,
recently moved into new facilities which more than
quadruple the company's manufacturing space. The
company's new address in San Leandro is 14860 Wicks
Blvd., 94577, however the phone number remains the
same - (415) 483-2093. The rapid growth of IMSAI
has been attributed to the demand for the new IMSAI
8080 Microcomputer introduced earlier this year.

6 Homebrew Computer Club Newsletter Vol. 2, Issue 6

Used to get back to the MSP Return addressfor the
program being debugged. LSP callingRST 7 instruction.

A
PUSH A @line 1F

B PUSH B @line 2
Used to restore C

the machine state. D
E PUSH D@line3

H PUSH H @ line 4
L

MSP
Corrected stack pointerLSO

H PUSH H @ line 9
L

Used to print out D
PUSH D @line 10

the machine state. E

B PUSH B @line 11
C

PUSH A @line 12

a: a:
0 c 0

(I) X« I:n « X z
:E .. « 'C'" C... N

o 0 0 0 0 0 =B
o 0 1 0 0 0 =A
o 1 0 1 0 1 = B
o 1 1 1 1 /0 =A
1 0 0 1 0 0 = B
1 0 1 1 1 1 =A
1 1 0 0 0 1 = B
1 1 1 0 0 1 =A



.JSR

JSR

C~IP

BEQ

JSR

JSR

BEQ

JSR

JSR

. LOA

JSR

OIP

8EQ

JSR

CMP

CMP

BEQ

JSR

JSR

JSR

LOA

STA

LOA

STA

JSR

JSR

LOA

STA

LOA

STA

IHC

LOA

CMP

BNE

IHC

LOY

HOP

HOP

JSR

LOA

JSR

LOA

JSR

JSR

JSR

20 728A

LIST COMMAND FOR THE 6502
By Mark Garetz

Car. rt. line feed subr.

Input. char subr.

Check for "L"

If "L" then input next char.

Error subr.

Input char. subr.

Check for "I"

If "I" then input next char.

Error subr.

Input char. SR

Check for "S"

If "S" then input next char.

Error SR

Input char. SR

Check for "T"

If "T" then proceed with program

Error SR

Print space char. SR

Mdr. input SR. Input start Addr.

20 72E9

Load A with start addr. low byte

Store low byte at 04BI

Load A with start addr. high byte

Store high byte at 04B2

Space

Input end addr.

Load A with end addr. low byte

Store low byte at 0483

Load A with end addr. high byte

Store high byte at 04B4

Inc end low byte

Load A with end low byte

Check to see if INC made byte "00"

If not, continue with prog.

If yes, then INC high byte

Clear Y reg. for bytes/line counter

These NOP's are here because I

made a boo-boo

CR LF SR

Load A with start high byte

SR to type byte in hex

Load A with start low byte

Type start low in hex

Space

Space

Homebrew Computer Club Newsletter Vol. 2, ISsue 6

Load A with start low

C9 4C

FO 03

20 ~~

72E920

C9 49

FO 03

20 0485

20 72E9

C9 53

FO

20

03

0485

20 72E9

C9 54

FO 03

20 0405

20 7377

73M20

A5 EE

80 04Bl

A5 EF

80 0482

20 737.7

20 73M

A5 EE

80 0483

A5 EF

80 0484

EE 04113

AD 0483

C9 00

DO 03

EE 0484

AD 00

EA

EA

20 728A

AD ~B2

20 72BI

AD 04Bl

20 7281

20 7377

20 7377

AD 0481

STA

LOA

STA

LOA

JSR

JSR

INC

LOA

CMP

BNE

INC

LOA

CMP

BNE

LOA

CMP

BNE

JMP

INY

CPY

BNE

JMP

J~IP

00,00,00,00

JSR

LOA

JSR

LOA

JSR

LOA

JSR

LOA

JSR

LOA

JSR

JSR

J~IP

80

AD

80

AD

20

20

72Bl

7377

high

Type byte

Space

INC start low byte

Load A with start low byte

Check if INC made byte "00"

If not, skip next instr.

If so, INC start high byte

Load A with start- low byte

Compare with end low byte

If not equal skip next 4 instr.

Load A with start high byte

Compare with end high byte

If not equal skip next instr.

End list, JMP to location to return ctrl to TIM

INC bytes per line counter -Y reg.

Check for 16th byte

If not skip next J~IP

J~IP to "." print next line

Eli 0481

JMP to "." print next byte

AD 04Bl

These locations store start and end addr.

Space, start of Error SR

Load A with "E"

Print "E" (print SR)

Load A with "R"

Print "R"

Load A with "R"

Print "R"

Load A with "0"

Print "0"

Load A with "R"

Print uR"

Type a space



CONTENTS PAGE
I

Random Data, Robert Reiling. . . . . . . . . . . . . . . . . . .1
Hey Authors!, Joel Miller. . . . . . . . . . . . . . . . . . . . . .1
Word Processing, Robert Purser. . . . . . . . . . . . . . . . . .1
Bulletin Board, Ads & Stuff. . . . . . . . . . . . . . . . . . . .2
ON-LINE, New Newsletter. . . . . . . . . . . . . . . . . . . .3
ETC System, News Release. . . . . . . . . '. . . . . . . . . . . .3
AMI Prototype Board, Walt Hutchinson. . . . . . . . . . .3
8080 Trap Routine, John Schulein . . . . . . . . . . . . . . .4
6502 List Command, Mark Garetz 7

HOMEBREW COMPUTER CLUB MEETINGS
Where & When

The Homebrew Computer Club meets every other
Wednesday (July 21st, August 4, August 18th, etc.),
7PM at the Stanford Linear Accelerator Center Audi-
torium. Directions: From Freeway Rt. 280, take the
Sand Hill exit east toward Menlo Park. Turn right at
the S.L.A.C. sign. The Auditorium is directly ahead.
The parking area is to your right.

HOMEBREW COMPUTER CLUB
NEWSLETTER

P.O. Box 626
Mountain View, Ca. 94042

",0.
~\\..\..

sp.~~ AUDITORIUM

1M LIBERt)- ~

~+1'.

f
r .~.

.

.

~

.

<"'" I . ..
A I

-- - c

FIRST CLASS MAIL

0UMI\I KU'::'Kl

6152 CECALA DR.
SAN JOSE, CA 95120

-

8 Homebrew Computer Club Newsletter Vol. 2, Issue 6


