The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

The
Woz Wonderbook

A compendium of notes, diagrams, articles, instructions and code
that describes the Apple][computer and how to program it.

AUTHOR

Steve Wozniak (www.woz.org)

DOCUMENT DATES OF RECORD
September 20, 1977 - November 15, 1977

This page is not part of the original Wonderbook

| Distributed under the Creative Commons License on page 5 Page 0001 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

This page is not part of the original Wonderbook

| Distributed under the Creative Commons License on page 5 Page 0002 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

The Woz Wonderbook

Introduction

A compendium of notes, diagrams, articles, instructions and code that
describes the Apple][computer and how to program it.

What is the Woz Wonderbook?

The Woz Wonderbook was pulled together from Steve Wozniak's file drawers in
the Summer and Fall of 1977 and served as the key reference describing the
Apple 1[for Apple's own employees. The Wonderbook served as a primary source
for the first real Apple][manual, the Red Book, published in January 1978.
Apple][sales were increasing since its introduction at the West Coast
Computer Fair in April 1977 and Woz and a team at Apple used the Wonderbook
to bridge the gap in documentation as Apple and Steve Jobs realized they had
to create a more professional product and manuals. There was only one Woz
Wonderbook in the Apple library. The Woz Wonderbook at the DigiBarn was one
of only a few copies made of this master by Apple employees at the time for
internal use.

Facts about the Woz Wonderbook

Author:

Steve Wozniak (www.woz.org <http://www.woz.org/)

Document dates of record:
September 20, 1977-November 15, 1977

Owner:

DigiBarn Computer Museum (www.digibarn.com),
Curator Bruce Damer (http://www.damer.com/).

DigiBarn's pages on the Wonderbook including this version can be found at:

http://www.digibarn.com/collections/books/woz-wonderbook/

This Wonderbook was discarded by Apple Computer Inc. (http://www.apple.com/)
and recovered by Bill Goldberg who later donated it to the DigiBarn Computer
Museum.

This Wonderbook was scanned and resurrected in October 2004 into PDF format
by David T Craig (shirlgato@cybermesa.com).

This digital rendition of the Woz Wonderbook is available for non-commercial,
educational and research purposes with the requirement to provide attribution
and share-alike under the Creative Commons license provided on page5.

All other uses require the agreement of the DigiBarn Computer Museum (contact
through www.digibarn.com).

This page is not part of the original Wonderbook

| Distributed under the Creative Commons License on page 5 Page 0003 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

The Woz Wonderbook

Property Statement

This Woz Wonderbook is the property of the DigiBarn Computer Museum which is
offering it under the following Creative Commons License found on page 5.

Under the terms of this license you must credit the DigiBarn Computer Museum,
Steve Wozniak and Apple Computer, Inc. if whole or part of this Wonderbook is
used for non commercial / educational or research purposes. All other uses
require the agreement of the DigiBarn Computer Museum (contact through
www.digibarn.com).

We would like to acknowledge Bill Goldberg for providing us this copy of the
Woz Wonderbook.

The author of the Woz Wonderbook is Steve Wozniak.

This page is not part of the original Wonderbook

| Distributed under the Creative Commons License on page 5 Page 0004 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

@creative
commons

C O MM O NS E E D
Creative Commons
Attribution - Non Commercial - Share Alike 1.0
You are free:

* to copy, distribute, display, and perform the work
* to make derivative works

Under the following conditions:
Attribution. You must give the original author credit.
Noncommercial. You may not use this work for commercial purposes.

Share Alike. If you alter, transform, or build upon this work, you may
distribute the resulting work only under a license identical to this

one.

* For any reuse or distribution, you must make clear to others the
license terms of this work.

* Any of these conditions can be waived if you get permission from

the copyright holder.
Your fair use and other rights are in no way affected by the above.

This is a human-readable summary of the Legal Code.

This page is not part of the original Wonderbook

| Distributed under the Creative Commons License on page 5 Page 0005 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

Disclaimer

The Commons Deed is not a license. It is simply a handy reference for
understanding the Legal Code (the full license) — it is a human-
readable expression of some of its key terms. Think of it as the user-
friendly interface to the Legal Code beneath. This Deed itself has no
legal value, and its contents do not appear in the actual license.

Creative Commons is not a law firm and does not provide legal services.
Distributing of, displaying of, or linking to this Commons Deed does
not create an attorney-client relationship.

For the full legal code for this license see:

http://creativecommons.org/licenses/by-nc-sa/2.0/

This page is not part of the original Wonderbook

| Distributed under the Creative Commons License on page 5 Page 0006 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

The Woz Wonderbook

Table of Contents

Auto Repeat for Apple-II Monitor Commands
20 September 1977

Use of the Apple-II Mini-Asssembler
Apple-II Pointers and Mailboxes

Apple-II 2716 EPROM Adaptation ('D@®' and 'D8' Sockets)
18 November 1977

Using Apple-II Color Graphics
Adding Colors to Apple-II Hi-Res
Apple-II Disassembler Article (Apple-II MONITOR ROM)
Apple-II Cassette Article
Apple-II Floating Point Package
Apple-II Sweet-16 -- The 6502 Dream Machine

Apple-II 6502 Code Relocation Program
14 November 1977

Apple-II Renumbering and Appending BASIC Programs
15 November 1977

References
03 November 2004

Bill Goldberg Interview
19 April 2004

Credits

This page is not part of the original Wonderbook

| Distributed under the Creative Commons License on page 5 Page 0007 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

This page is not part of the original Wonderbook

| Distributed under the Creative Commons License on page 5 Page 0008 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

The Woz Wonderbook

DOCUMENT

Auto Repeat
for
Apple-II Monitor Commands

20 September 1977

This page is not part of the original Wonderbook

| Distributed under the Creative Commons License on page 5 Page 0009 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

This page is not part of the original Wonderbook

| Distributed under the Creative Commons License on page 5 Page 0010 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

2/20/77
Woz

AUTO RLPEAT FOR APPLE -II MONITOR COM"ANDS

It is occasionally desirable to automatically repeat a MONITOR conmand
or covmand sequence on the APPLE 1T computer. For example, flaky (inter-
mittently bad) RAM bits in the $800 - $FFF address range ($ stands for hex)
ray be detected by verifying those locations with themselves using the MON-
ITOR verify cownand:

*800<EU0.FFFVY(no blanks) () is car ret)

Eccause this problem is intermittent, multiple verifications may be
necessary tefore the problem is detected. Typing the verify command over and
over is a tedious chore which may not even catch the bug, particularly since the
RAMS are not fully exercised while the user jis typing.

The APPLE - II MONITOR corsnand input buffer begins at location $200 and
is scenned from beginning to end after the user finishes the line by typing
a carriage return. An index to the next executable character of the buffer
resides in location $34 while any function is being executed. By adding
the cemnand '34:0' to the end of a MONITOR command sequence the user causes
scanning to resume at the beginning. Because the '34:0' command leaves
the MONITOR in 'store' more, an 'N' command should begin the lipe. The
following is an example of a coiiand sequence which verifies locations
$800 - SFFF with themselves, automatically repeating.

*N800<800. FFFV 34:0 B3 (B is blank)
(Note that the trailing blank is necessary for this feature to
work properly)

Multiple cominand sequences accepted by the Apple Il MONITOR may also
be automatically repeated. For example, the following command sequence clears
all bits in the address range $400 - $5FF, verifies these lacations with
themselves, sets them all to ones, verifies them again, and repeats:

*R400:0 B N401<400.5FEM 400<400.5FFV 400:FF B N401<400.5FEM
400<400.5FFV 34:0 B3

B is necessary blank

v 1s car return

Ezcause this example uses screen memory locations, it is observable on
the display. The repeating command may be halted by hitting RESET. Since the
cursor is only generated for keybcard entry, it will disappear while the ex-
aimple repeats.

| Distributed under the Creative Commons License on page 5 Page 0011 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

This page is not part of the original Wonderbook

| Distributed under the Creative Commons License on page 5 Page 0012 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

The Woz Wonderbook

DOCUMENT

Use of the

Apple-II Mini-Asssembler

This page is not part of the original Wonderbook

| Distributed under the Creative Commons License on page 5 Page 0013 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

This page is not part of the original Wonderbook

| Distributed under the Creative Commons License on page 5 Page 0014 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

The follewing section covers use of the Apple II mini-

assembler only. It is not a course "in assembly languageé
programming. For a reference on programming the 6592 micro-
processor, refer to the MOS Technology Programming manual.
The following section assumes the user has a working know-
ledge of 6502 programming and mnemonics.

The Apple Il mini-assembler is a programming aid aimed
at reducing the amount of time required to convert a hand-
written program to object code. The mini-assembler is
basically a look-up table for opcodes, Wit it, you can type
mnemonics with their absolute addresses, and the assembler
will convert it to the correct object code and store it in

memory.

Typing "F666G" will put the user in mini-assembler mode.
While in this mode, any line typed in will be interpreted as
an assembly language instruction, assembled, and stored in
binary form unless the first character on the command line
is a "$".

[f it is, the remainder of the line will be interpreted
as a normal monitor command, executed, ,and control returned
to assembler mode. To aget out of the assembler mode, reset must be
pushed.

« If the first character on the line is blank, the assem-
bled instruction will be stored starting at the address im-
mediately following the previously assembled instruction.

[T the first character is nonblank (and not "$"), the line
is assumed to contain an assembly language instruetion pre-
ceded by the instruction address (a hex number followed by

a ":"). In either case, thefinstruction will be retyped
over the line just entered in disassembler format to provide
a visual check of what has been assemble’. The counter that

Page 0015 of 0213)

| Distributed under the Creative Commons License on page 5

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

keeps track of where the next jnstruction will be stored is

the pseudo PC (Program Counter) and it can be changad by many
monitor commands (eg.'L, T, ...). Therefore, it is advisable

to use the explicit instruction address mode after every monitor
command and, of ‘course, when the Tiny assembler is first-

entered.

Errors (unrecognized mnemonic, illegal format, etc.) are.
signalled by a "beep" and a carrot ("~") will be printed be-
neath the last character read from the input line by the mini-
assembler,

The mnemonics and formats accepted by the mini assembler
are the same as those listed by the 6502 Programmers Manual,
with the following exceptions and differences:

1. All imbedded blanks are ignored, except inside
addresses,

2. A1l addresses typed in are assumed to be in hex
(rather than decimal or symbolic). A preceding "$"
(indicating hex rather than decimal or symbolic) is
therefore optiona], except that it should not pre-
cede the instruction address).

3. Instructions that operate on the accumulator have
a blank operand field instead of "A".

4. When entering a branch instruction, following the
branch mnemonic should be the target of the branch.
If the destination address is not known at the time
the instruction is entered, simply enter an address
that is in the neighborhood, and later re-enter the
branch instruction with the correct target address.
NOTE: If a branch target is specified that is out of
range, the mini-assembler will flag the address as

being in error.

| Distributed under the Creative Commons License on page 5

Page 0016 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

5. The operand field of an instruction can only be
follcwed by a comment field, which starts with a semi-
colon (";"). 0bvious1y, the Tiny assembler ignores
the field and in fact will type over it when the line
is typed over in disassembler format. This "feature"
is included only to be compatible with future up-
grades including input sources other than the key-
board.

6. Any page zero references will generate page zero
instryction formats if sucg a mode exists. There
is no way to force a page zero address to be two
bytes, even if the address has leading zeroes,

In general, to specify an addressing type, simply
anter it as it would be listed in the disassembly. For in-
formation on the disassembler, see the monitor section.

| Distributed under the Creative Commons License on page 5 Page 0017 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

This page is not part of the original Wonderbook

| Distributed under the Creative Commons License on page 5 Page 0018 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

The Woz Wonderbook

DOCUMENT

Apple-I1

Pointers and Mailboxes

This page is not part of the original Wonderbook

| Distributed under the Creative Commons License on page 5 Page 0019 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

This page is not part of the original Wonderbook

| Distributed under the Creative Commons License on page 5 Page 0020 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

AL e [U e T T
! N i 2 had [P U RSP N SR -
+ o oL p“fk‘r':‘_-' T3
Lol TOC Teve Ll SIS i o el
-7 / je B
x Ry Y W SR e
4
A
T TN e It
L 20 1<
D ——
o it e 7

S, LY 7 |

| Distributed under the Creative Commons License on page 5 Page 0021 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

This page is not part of the original Wonderbook

| Distributed under the Creative Commons License on page 5 Page 0022 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

The Woz Wonderbook

DOCUMENT

Apple-II 2716 EPROM Adaptation
('DO' and 'D8' Sockets)

18 November 1977

This page is not part of the original Wonderbook

| Distributed under the Creative Commons License on page 5 Page 0023 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

This page is not part of the original Wonderbook

| Distributed under the Creative Commons License on page 5 Page 0024 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

11-18-77
wo2Z

APPLE-TI 2716 EROM ADAPTATION
('DO' and 'D8' sockets)

1. Remove the 'EO' ROM from its socket. On the top side of the board
under the 'E0' socket, cut the ROM pin 18 jumper trace., Then
reinsert the ROM. This cut will isolate pins 18 of ROMS 'DO'
and 'D8' from pins 18 of the other ROMS. Reinsert the 'EQO' ROM

when done.

'"EO SOCKET'

(Pin 1)

Cut this trace

2. On the underside of the APPLE-II board, cut the traces connecting

pin 20 to 21 of ROMs 'DO' and 'D8' only.

3. Oa the underside, cut the trace going to pin 18 of ROM 'D8'
near the chip. Scrape solder resist off of approximateiy % inch
of the remaining trace not still connected to pin 18. You may

wish to tin it with solder since it will later be soldered to.

4. (Underside) Connect pin 18 of ROM 'D8' to pin 12 of ROM 'EO'

(ground)

5. (underside) Connect pin 18 of ROM 'EO' to the trace which
previously went to pin 18 of ROM 'D8' (and which should be

pretinned if step 3 was foliowed).

| Distributed under the Creative Commons License on page 5 Page 0025 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

nage 2

6. (underside) Connect pin 21 of ROM 'D8' to pin 21 of ROM 'DO'.

Then connect both of these to pin 24 of either ROM (Vcg).

Note that the INH control function (pin 32 on the APPLE-II

I/0 BUS connectors) will not disable the 2716 EROMs in the
'DO’" and 'D8' ROM slots since pin 21 is a power supply pin

and not a chip select input on the EROMs.

| Distributed under the Creative Commons License on page 5

Page 0026 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

The Woz Wonderbook

DOCUMENT

Using Apple-II Color Graphics

This page is not part of the original Wonderbook

| Distributed under the Creative Commons License on page 5 Page 0027 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

This page is not part of the original Wonderbook

| Distributed under the Creative Commons License on page 5 Page 0028 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

USING APPLE-II COLOR GRAPHICS

The APPLE-II color graphics hardware will display a 40H
by 48V.grid, each position,of which may be any one of 16 colors.
The actual screen data is stored in 1K bytes of system memory,
normallg locations $400 to $7FF. (A dual page mode allows the
user toialternatively display locations $800 to $BFF). Color
displays are gencrated by executing programs whiph modify the
§
"screen memory'. For examgle, storing zerces throughout loca-
tions $400 to $7FF will yield an all-black display while storing

%33 bytes throughout will yield an all-violet display. A number

of subroutines are provided in ROM to facilitate useful operations.

The x-coordinates range from 0 (leftmost) to 39 (rightmost)
and the y-coordinates from O (topmost) to 47 (bottommost), If
the user is in the mixed graphics/text mode with 4 lines of text
at the bottom of the screen, then the greatest allowable y-

coordinate is 39,

The screen memory is arranged such that each displayed
horizontal line occupies 40 consecutive locations, Additionally,
even/oda line pairs share the same byte groups. For example,
both lines 0 and 1 will have their leftmost point stored in
the same byte, at location $400; and their rightmost point
stored in the byte at location $427. The least significant
4 bits correspond to the even line and the most significant
4 bits to the odd line. The relationship between y-coordinates

and memory addresses is illustrated on the following page.

| Distributed under the Creative Commons License on page 5 Page 0029 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

COLOR GRAPHICS SCREEN MEMORY MAP

Y-c

oordinate

C;_

1
|
[

Oabcde fJ

BASE (leftmost) address

Data byte

XXXXYYYY

{0 00001c d! eababO000o0
GBASH GBASL
Secondary
LINE BASE address(hex) BASE address
$0,1 $400 $800
$2,3 $480 3880
$4,5 $500 $900
$6,7 $580 $980
$8,9 $600 $A00
3A,B $680 $A80
$C,D $700 $B0O
$E,F $780 $B80
$10,11 $428 $828
$12,13 $4A8 $8A8
$14,15 $528 $928
$16,17 $5A8 $9A8
$18,19 $628 $A28
$1A,1B $6A8 $AA8
$1C,1D $728 $B28
$1E, 1F $7A8 SBAS
$20,21 $450 $850
$22,23 $4D0 $8DO
$24,25 $550 $950
$26,27 $5D0 $9D0 |
$28,29 $650 $A50
$2A,2B $6DO $ADO
$2C, 2D $750 $B50
$2E,2F $7D0 $BDO

odd even
line line
data data

| Distributed under the Creative Commons License on page 5

Page 0030 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

The APPLE-II color graphics subroutines provided in ROM
use a few page zero locations for variables and workspace. You
should’avoid using these locations for your own program variables.
It is a good rule not to use page zero locations $20 to $4F
for any programs since they are used by the monitor and you may
wish to use the monitor (for example, to debug a program) without
clobbedring your own variables. If you write a program in assembly
language that you wish to call from BASIC with a CALL command,

then avoid using page zero locations $20 to $FF for your variables.

Color Graphics
Page Zero Variable Allocation

GBASL $26

GBASH 327

H2 82C
V2 $2D
MASK $2F

COLOR $30

GBASL and GBASH are used by the color graphics subroutines
as a pointer to the first (leftmost) byte of the current plot
line. The (GBASL),Y addressing mode of the 6502 is used to
access any byte of that line. COLOR is a mask byte specifying
the color for even lines in the 4 least significant bits (0 to 15)
and for odd lines in the 4 most significant bits. These will
generally be the same, and always SO if the user sets the COLOR
byte via the SETCOLOR subroutine provided. Of the above variables

cnly H2, V2, and MASK can be clobbered by the monitor,

| Distributed under the Creative Commons License on page 5 Page 0031 of 0213
S

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

iriting a color graphics program in 6502 assembly language
generally involves the following procédures. You should be

familiar with subroutine usage on the 6502,

1.

Set the video mode and scrolling window (refer to

the section on APPLE-II text features)

Clear the screen with a call to the CLRSCR (48-line
clear) or CLRTOP (40-line clear) subroutines. If you
are using the mixed text/graphics feature then call
CLRTOP.

Set the color using the SETCOLOR subroutine,.

Call the PLOT, HLINE, and VLINE subroutines to plot
points and draw lines. The color setting is not
affected by these subroutines,

Advanced programmers may wish to study the provided
subroutines and addressing schemes. When you supply
%x- and y-coordinate data to these subroutines they
generate BASE address, horizontal index, and even/odd
mask information. You can write more efficient programs

if you supply this information directly.

| Distributed under the Creative Commons License on page 5 Page 0032 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

wn

ETCOL subroutine (address SFSG4)

Purpose: To specify one of 16 colors for standard resolution
plotting.

Entry: The least significant 4 A-Rég bits contain a colo? code
(O to $F). The 4 most significant bits are ignored.

Exit: The variable COLOR (location $30) and the A-Reg will both
contain the selected color in both half bytes, for
example color 3 will result in $33. The carry is cleared.

Example: (select color 6)

LDA #$6
JSR SETCOL ($F864)

note: When sitting the color to a constant the following sequence
is preferable. :

LDA #3$66

STA COLOR ($30)

PLOT subroutine (address $FS800)

Purpose: To plot a square in standard resolution mode using the
most recently specified color (see SETCOL). Plotting
always occurs in the primary standard resolution page
(memory locations $400 to $7FF).

Entry: The x-coordinate (0 to 39) is in the Y-Reg and the y-
coordinate (0 to 47) is in the A-Reg.

Exit: The A-Reg is clobbered but the Y-Reg is not. The carry is
cleared. A halfbyte mask (8F or SF0) is generated and
saved in the variable location MASK (location $2E),

Calls: GBASCALC

Example: (Plot a square at coordinate ($A,$2C))

LDA =382C Y-coordinate
LDY #3A X-coordinate

JSR PLOT (F800)

Page 0033 of 0213)

| Distributed under the Creative Commons License on page 5

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

PLOT1 subroutine (address $FSOE)

Purpose: To plot squares in standard resolution mode with no
Y-coordinate change from last call to PLOT. Faster
than PLOT. Uses most recently specified COLOR (see
SETCOL) :

Entry: X-coordinate in Y-Reg (0 to 39)
Exit: A-Reg clobbered. Y-Reg and carry unchanged.

Example: (Plotting two squares -~ one at (3,7) and one at (9,7))

LDY!#$3 X-coordinate

LDA #87 Y-coordinate

JSR PLOT Plot (3,7)

LDY #3$9 New X-coordinate

JSR PLOT1 Call PLOT1 for fast plot.

HLINE subroutine (address $F819)

Purpose: To draw horizontal lines in standard resolution
mode. Most recently specified COLOR (see SETCOL)

is used.

Entry: The Y-coordinate (0O to 47) is in the A-Reg. The left-
most X-coordinate (0 to 39) is in the Y-Reg and the
rightmost X-coordinate (0 to 39) is in the variable
H2 (location $2C). The rightmost x-ccordinate may never
be smaller than the leftmost.

Calls: PLOT, PLOT1

Exit: The Y-Reg will contain the rightmost X-coordinate (same
as H2 which is unchanged). The A-Reg is clobbered.
The carry is set.

Example: Drawing a horizontal line from 3(left X-coord) to
$1A (right X-coord) at 9 (Y-coord)

LDY #$3 Left

LDA #S1A Right

STA H2 Save it

LDA #39 Y-coordinate
JSR HLINE Plot line

| Distributed under the Creative Commons License on page 5 Page 0034 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

SCRN subroutine (address §rg371)

Purpose: To scnse the color (0 to $F) at a specified screen
position.

Entry: The Y-coordinate is in the A-Reg and the X-coordinate
is in the Y-Reg.

Exit: The A-Reg contains contents of screen memory at specified
position. This will be a value from 0 to 15). The Y-Reg
is unchanged and the 'N' flag is cleared (for unconditional
branches upon return).

1
Calls: GBASCALC

Example: To sense the color at position (5,7)

LDY #8$5 X-coordinate
LDA #$7 Y-coordinate
JSR SCRN Color to A-Reg.

GBASCALC subroutine (address $F847)

purpose: To calculate a base address within the primary
standard resolution screen memory page corresponding
to a specified Y-coordinate. Once this base address
is formed in GBASL and GBASH (locations $26 and 827)
the PLOT routines can access the memory location
corresponding to any screen position by means of
(GBASL),Y addressing.

Entry: (Y-coordinate)/2 (0 to 8$17) is in the A-Reg. Note that
even/odd Y-coordinate pairs share the same base address)

Exit: The A-Reg is clobbered and the carry 1is cleared. GBASL
and GBASH contain the address of the byte corresponding
to the leftmost screen position of the specified Y-coord.

Example: To access the byte whose Y-coordinate is $1A and whose
X-coordinate is 7.

LDA ~§1A Y-coordinate

LSR Divide by 2

JSR GBASCALC Form base address.
LDY 787 X~-coordinate

LDA (GBASL),Y Access byte

Note: For an even/odd Y-coord pair, the even-coord data is
contained in the least significant 4 bits of the accessed
byte and the odd-coord data in the most significant 4.

| Distributed under the Creative Commons License on page 5 Page 0035 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

This page is not part of the original Wonderbook

| Distributed under the Creative Commons License on page 5 Page 0036 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

The Woz Wonderbook

DOCUMENT

Adding Colors
to
Apple-II Hi-Res

This page is not part of the original Wonderbook

| Distributed under the Creative Commons License on page 5 Page 0037 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

This page is not part of the original Wonderbook

| Distributed under the Creative Commons License on page 5 Page 0038 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

ADDING COLORS TO APPLE-II1 HI-RES
(nullifies warrantee)

1. Rcmove the APPLE-II PC board from its enclosure

(2) Remove the ten (10) screws securing the plastic top piece
to the metal bottom plate. Six (6) of these are flat-head
screws around the perimeter of the bottom plate aﬁd four (4)
are round-head screws located at the front 1lip of the computer.
All are removed with a phillips head screwdriver. Do not

remove the screws securing the power supply or nylon posts.

(b) Lift the plastic top piece from the bottom plate while
taking care not to damage the ribbon cable connecting the
keyboard to the PC board. This cable will have to be

disconnected from one or the other.
(c) Disconnect the power supply from the PC board.

(d) Remove the =8 nut and lockwasher securing the center of the

PC board. These will not be found on the earlier APPLE-II

computers.

(e) Carefully disengauge each of 6 nylon posts from the PC board.

(7 on ecarlier versions).

(f) Lift the PC board from the bottom plate.

| Distributed under the Creative Commons License on page 5 Page 0039 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

page 2

2. Above the board wiring method

(a) Lift the following IC pins from thelir sockets.
A8-1
A8-6
. A48-13
A9-1
A9-2
A9-9

(b) Mount a 74LS74 (dual C-D flip-flop) and a 74LS02 (quad NOR

gate) in the APPLE-I1I1 breadboard area (A1l to Al4 region).

(c) Wire the following circuit (* indicates that wiring is to

a pin which is out of its socket).

| Distributed under the Creative Commons License on page 5 Page 0040 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

’ —
el , , \ - - LI A L.
k N i
-
) ,
- < .- o= piter 4

A
/0T
/A

. I >

; :
/

‘
. ' <. - . -~ - pang - -/:', A 4 _r { u’
/\/E o y’ L Sl D7 the ad Lol =1 ! re r) an - * 7L '/

IS ’4 [, F N TI&’ / 'y ..,;_ & frea } .) v e 1’5{ areca (A -5 /,/ ,'

; .
. . ' ‘. - 4+ T ~i O [~
= B U J.':' Lo ng Ciraw: T (o ""’:;' o028 T‘CLJ e j
~
. . , ! \’
. , P ; o 2 ol I [y ERva e &r.

{

t

~ N
f‘
—
\
o
3
I;
(&)

N]
[

I
s

A
0
0

i
i
1 T% £
g\ [a}
]
€
1
N !
U Ol B A)
Y i
o
I
[
Lo

N , -
’/"_' <‘_‘,y;_~_ o o) -

1
[\
l:
TR
1
Ly
A
iy
L —'—‘f\‘
it l;l

Distributed under the Creative Commons License on page 5

Page 0041 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

- T 0 - }' :a"“,t'.‘ N
LN
: < / . I [T .J.
. - 1 7/
, 3) / A -
Cin YA e .. e e s /*:’:;-:>
/'c//!/ \l ! /,
4 i
. -
1 . T~
I} J i /: I~ ! T’)
P 12 &
- L 7 - - B . / C 17 0—--.'-

4
-~ A
/ ,- a"
' f HES
e !
/
e !
_.//‘— -~
4 ’ -
At
/47/ ! ™,
L4 \ g
S - J /"
. ~ - < /
- ™
\, T "'/ e T
\..‘__,, -7 v
’ D K "‘1“
- - :

Distributed under the Creative Commons License on page 5

Page 0042 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

The Woz Wonderbook

DOCUMENT

Apple-1I1
Disassembler Article

(Apple-II MONITOR ROM)

This page is not part of the original Wonderbook

| Distributed under the Creative Commons License on page 5 Page 0043 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

This page is not part of the original Wonderbook

| Distributed under the Creative Commons License on page 5 Page 0044 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

DI SASSEMBLEHR ARTICLE

(pertains to APPLE-II MONITOR ROM)

| Distributed under the Creative Commons License on page 5 Page 0045 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

Hutiimon 914y
1

BERUERY .:Q Pun wo ! ™ v o T tOAW LJ., wu ,.w...* \J.kf;& wy u%ﬁ._ _,,,.o
ttqw A TS UYNNY T Ty ey nmf_mwt,:u_:c A2 VNN OOV B N QM
YD v G Attt) SSY A9 Q JOZT«U ERN H\VO/\/-_ %x.;!{_ _«CI_—: lr.;/k

TPoxXopur
YD ,T oy
-

ruL\._N.\:_al

 PoAabu]l

A adrpuT

: A asay
carviios ay

s Ka P2 AP L

VONX QP e

Lo fa paxapur tobed vaavy
v Aa paxopur wbhod ouoy

JLvipowwT

.\ﬁ:ﬁ:,_Z" ' fﬂ:.i._wv mu_ﬂ«:.mmr.:\

Juﬁau._,m..,
ona7 o 0hug
L2 U w Iy CpadwT fwnvauT

$S APV

—e—e

] .,» J ,\L

SRR IR Buars o) Lf: «vg dUI ul a.G_.yL
_.,__vm:.,. Vi dtun S J;.J\i\.“ ydo VHD AWML 2oy g
P { fuarty sy 2 Lonves 4

]

VaIssosip MIND 1)

Aoy (1) Lo oM wu;ﬂkuuw...nvr

.\V‘sa,; g 42

Vot D 1SON s PUD (5] A 26)
, . , L !) AN

yeawv e o «,,Lu...:.t,:\ Shoin Piavel Zaow utym sang

TR L R Rt R R - R AL AR

R AR

N .\QLU’*

LS BRSSO

twranhos a0 s Hurs Anpdsur o vasn o

et Yy 0

vay

' . ’s A2V
AYL IR B v\) .u,&,.

40 S vudu g ;_L.*u:_,:,t ¢ ».M.v

abvd Huo

B RTEIRTIPY AV RTI BN R

NECTy)
(X 4Z1ty)
(hEZ1 1)
NEpE Cly
X ‘hHT
ATy
X ‘g
e
e s
VAR
A\A T_E.UV

.flla.v :.I.‘.\. ,HVIHM B

Ss4pPY «_\Q Jruw »ﬁt_.\?« | IE

n.._xs

L]
PV Xall .\N\..,A,,L,C Tf.a..u.wtéxu..._ we oo sut o

ol ouw SPy] “,._n:jc ANO 4
mCC;,.c\.Cw D12 U?.CV\ ERC RIS

Adn)OO0
A\ , «..: q

..»...v:___‘s,.,.,::.m BREYE]
spin 6uwibhngap pun
e

SUON IV AL S U

obuyInd atgw s s

MATQWAS LY ST

sty ruontdiasca(y

SSIANLaN ¢

ARV

Page 0046 of 0213)

| Distributed under the Creative Commons License on page 5

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

LAV sosn Y st Sy sty gy viq
; C ! '
X oy ..;J ._ZL:JV YV AV Dt D PO Dy .Gﬂ_u_ n:t AL_,.vtLu X .vtz‘) ‘;..,_.;
YA ' o ! P S R R)
) Savwra oy AT w40 Dod D oy a9 IDVInYY b S ﬂ‘sn:_ o T YA A&
TLNOMYVY MDD S5 X AV fy wasi) .A,,._::_.—
o, 1 L &\4 v« o 'y _1_;1 C. bI) v::r \A\._‘ vwc.,_.f,_ yln‘ww WX,..U_J .Tu LDJ.: YLy L;. f N «U.L __,:O n WJ@ W”Q A.C

P] ey . i ' s IVId 'V o Al ’ }
REEEALSIVALIS NN WEH v\ rtary f&l, [% .GSC

N

O VA R N T A S P B R 14 ,.ﬂ_“m.._\c ol aml SV X N‘o

IR AR AVAY B JEATRV]

PR .
2o

AR AT o
N ‘

Tt s 2R

Vot d s usY L TD)
. -)

LAONVHD SITA X SAVald Sy saoly syt ¢ sind(mo N gdyd (6B

v dasxa

A XV LNy d 3w awes

; TXALNYY (4)

280 P4 S1 Y X 1Y siueiuad

CLAOOHYH D t
rol s xon o) vaup fl/ 1w stuaies sy oy Av.a,_t Xa uml o Sinding IXV LN (&)

) S

spepres aul spadino XN (P

,. i
28N
forpaodroaros spBp xoy 4 Cuamios aboisnn o

TN X Swal? Ly TNy syunie € pun “qsvp v

\J:C Hoa 2 Afﬂ,;,‘«.jo T Oodud (™
LoouYye oo pew fa 0 iadd CXVIANYL CZaYd CUNTduyg fOodYy
Va2V (5 1 dOXYd) SralS! (0o

tCrCyOy

DDLU Tttt)2 x O i

a;,,vaQ:._ _:\

7

_..L:._y QA LSy .TUL 1:5 Jur“ A

- | : I AT / N RS
Dyt i.v.,‘f,::-»..__ Lmai..u » w:f:-v_% wo:c Yajtrdassuwsi(nn_«uQ-,.,ﬂvZHnﬁu

Versyy

potads

5t I

LAV DOd PHY dSCELSNT secn

Podatiy 2av st sahod 19ssoo01d Yy (1raio
v

uﬁbL;UC: L«I‘ Ui ! uad O_w ~u»UfUT.vS S1n Wog puv

i~

K doo y\L\,

DRI vt Y p v YAttt
i ;

Howvwrs - ¢

L) DD MM U CARIRA RS

Vv o9

AUl oty

RS L e SR LY T R B B S R TR Y 1) EACRN AL briumbs g suoriov
l - - - N
Az Cnda a3 Pue Ty vt s i Po ey gy fogdwioxs oy

i

LI P

| [ZEER LN NI TAYHWVYI DA S

\ s hud oul Aq woitidods sceapun Sy}

(- _ . _ y _)
C:.r.:A_,...lC :To.,.,ufx_.m,mr: _:..m,:nu:\y(gu A ﬂkd&zw,wu “v:: w.n.._,D:.vnmﬁn._O HAQSUO Adu

“INioasn 34D St iUg

SN2 1ans ,a:_>>o:,:_ auy cahvyA

[
T

Page 0047 of 0213)

| Distributed under the Creative Commons License on page 5

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

o wingsa < poen L NDOD DA
Tl e 174
VRS s G s N Yy T pasn - q. L
i L P I7irq e
R i : . \ \uy:;‘?.«.
TOWIINIW “lrh - “
. ! i
(4 — W ’
S I AN AdSd) SN opoen J _\,4 Z_\). ! A M REARETH
T H L ON T A
[LV Ny Db
) :,_H._,:,. twrn o, ¢ 260d b) Jt2, U\QL I vt x“.+:_,TL (AL .:3::.5

IR I LT 4 abhpd o 129 P20) 80 o A AL CIE IS G

R T R D A AR X) \:,Zizf Lsnw o 2 6pd Pue Ny wangag

g 2 s by e g sobd are wed LN o

AU TR0 g esm At ap AL CMIWI NN PYY T IN

€ vy . N

ZHMVHDY VYU VHY CCAGHIIA ¢ 3Gow DT v pojuonan aq
N 4

VaYEm YTV DTy) " Abod o mU\Azh ‘s > 6vd wo 31 apas |y

' pur ¥ \.% ~ 1 - C ¢ %) - . o= P -,
b opur .5 soby setdnsso Tm.:n\\?ﬂ il i *15.“.40 pw SR RUES SIWRLsAS UgJY - WON
by L D5y weu) pepesl aq 0p papuajvi aup
/:Qi.tf_;- L:.om:C u‘:‘ﬁ:\v [-T2V L_: Lop .ﬁ.u._zkjﬂ mumaﬁ. U.ruu.ud.u

Dl A pXam oy u\.._m. [wivbo G > mc,,i.z CPRqwAssusip
2 :33 nTQ,;uSLﬁatx \\N .nf\.L«w\w (-3 VddV :Ow A“QUVU. &h:u \uL\AT
VIERT .ﬁbsxd 4op o Lm.,:_u HDOd puv ﬁbmxa aapa0 Mol) T4 ul

2.2 w3 v s\ \ L Y Y - :
V :; 5y w ..,:‘.u\s Mo quu %0 MA.M\._uTU UC:;G_fw LJ.«. +5n_ “rw__L

“sadvwy A)pArood
| - J._n_kr.\ o huv;L_fM

e e A

HOLINOW dWY Fr 1 u,‘}‘i!-muuv
T9WSd ¥SP § 4 #z @Pdb

.K_J::Z:Z;u VUV m wwibosd m:_iﬁ_d, 2yl @YIBoId ® SO Buiuuwy

Page 0048 of 0213)

| Distributed under the Creative Commons License on page 5

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

(2 - = AP3> f s = |As5) A1 409 ayi A4
kuw,(...?lu sto(Le) pMemadoul Dy o Jd22x2 ZLAY D4 sy Auws

THLIONIT 4o avyd w1 pamm 31y 4ov4 T‘Lux% LAvId SV owvg
THOd M PRpyo) o shkemip S1XY Cgog= W PYP Gy = A RAMS
i £QWog S(uoipInapsu w*xa Z v of m:._wucommb_\.ouw | = HAONIT puv
‘S§E€ % =HOJ “2ds =702d ! “apduwxs Hoq o wi afdg aapao o)
V B A «- (HLOWNIT 23(quiana oa37 26vd Jo sjuajued) +« |« (HDJT10d)

LELAVId ()

120av2d ()

:Lavod (D

Page 0049 of 0213)

| Distributed under the Creative Commons License on page 5

Page 0050 of 0213)

,‘.,,\::U\A

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

C.o;.ﬂuo._

e bumH

wub 3.1_ I I 7] u..;v

asg b
bhvc.:

mc,wuwvmxn. (*=Y m;:.:.druzo

v

"L EVs
m.v.*:.uv._ wu o U §>.~

RY) C:mvl.w A\Q%%Q,‘UZL LNQQU

LDQ' _H

i

o S P T Y Y
0 \\uu..ﬂ\, ..2:.,2\ | \x\b NE ! i
(o5 Tvrmo R R R
(S SPA) e L/ T ERAMEC
(B D v Va7 I R N (vl Som DL oo
RO RS w:_\ﬁa:.; el o bupyo S Apo m:.*nw\ﬁ..tmo P U 1IN0 Ry
(hy sem) iDL Th
4,\»@ AL\Sw .\Ml,v HVT?
c s G,.\.CL;,, DB ANY _._U.V Ay A DUV r\N\
, Cenav ()
:..__ﬂtu\:,.—w?ft ::,.165 \A: alﬁ_,:\, Tb_ﬁ::ub.adw.;q ®:,_«TLULT« ¥ L,,xjy 4m:_cp ,\ww
_ - : A suoriong : i 5 ; A A
oo P TR ..:L:L.;::».Lo*,s_«.l:lﬂju §2 Pty SN APPD AARY S OF ()
(v svom) wA 1HS5h
Chy svm) YRR’
(AL sv) air ligh
(5SS Svm) TS I A5h
(25 svm) 24 2 Ak
(Zh svm) Z I dk
(1L som™) IR 7%
(&F spm) a2 ik
(s som) 1 I 9kb

“5abuvyo

L,I: l_v*.m.

%

2] \ﬂ_

U‘; 1. Q\ \JL.

~
e

Sy U .u,_v*‘:du,.u»;uo_l

| Distributed under the Creative Commons License on page 5

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

(o147 £ -2

(AL S R /A SR b S e o Sl T Ciw GNV ,
.a,:.Clb:t\.cV ﬁo_w\un S534Pppv 40} Pavg 1VINYBOA RS ,.\W.\ w\,\ w;f.\;«,
3|9V jowidoy t\..IL ofur ¥ipur X‘Z3d0oW vQq 5 \}\w m: ﬁ\.,...w
5] e

vli

M ‘g o) Xapu deLow.f..Cm (S B s M\OJ LNSL39 .) *\4“ ‘n.
_ .%mvuoukc W.;d)f |\ Aoy Qwﬂ vp..:(t._vngm/ DS Q0 . Uy 3 M \\uu‘/\ \\\n
! "$3po>do PloAvl do5 o e LWH4139 3Ng TM WQ 2
i * 1q o, y '
! XIPpUW 19—k ey ysvly ds# QNV 3d0oW LY 4 bz [
| a4 -
_ "ASW IIM uwajz Liuv> 41 MMJ = «u\ R
| 7 7
~ . B i m m A . . C\\\ .Ww.\\..
! viid 1o - Yepul ooy HST , Vi s
7 v 4 ST asn (35 Kuws 4T 300oWlY S2g b ad gz
I ‘2|94 dpow ssa4ppo ojul X3pug X 3Q0oW wan L, o m_m ra..
lpl c.b,l:
mo|3q ..Tw@f .Em,._g\fpu\ 404 A1a0> o+:._ 851 MM\J N3IAZT - . ﬂ\w\\ . \»M
pespye Buixapu ppo g8s» yyo o 28 | e
pue 2pow s324PPY o) spia g vl L3# QNV LT 2z,
i ' . . S aA
Prieavt uoomasuy (Fof | pFP | . HH3 ©3gszs cl dd &JH
. CTs#* diND . . =N
TPPAML MOIDTMALSUL e X XXX ¥Y3 sog | . ,mw Mm EN
. oD
)) 4s24 'q d4S1 v g0
| N3IAIT 22@ . , . L
L.w.v;r ppe/usal . . 4SO d WW m\mM
AV L . | 20
.- . gV AKX
Lmou do 129 (X‘12d) vg1 AV a1
"HDd 7 10d Jurag - . Dd¥d’ ¥sp dSALSNT) , T -1
mAZ 2qesseip es13 tdoop ‘san U Zogisq ang gis : .wm MM w:&
pSUeIIV i sul 1Ssa4 2uogq : INNOD .,UMO 9, .OU_ ,u&rm
| » HOd ALS | Y
! IG.-;*.U,BL*.WC._ APY\UE o) K qJUQ Ukw»dmu&D) JUQ (FW/]) .W:M *N..% .m\w\wcm
_ . ; : g z
.) c _ £dvdd ysr - ;43 o :
HOHIMALSEY Bus Avidsip + 31quassesig dSALSNT ¥SL ZIgWsd w m% Mm \\\\w,v
ANNOD wis A G -
.\»\:r;mvwmdw:u CQ.“.fuﬁ,mru,c.. Bz 4oy luro> Elgwn (DA&.\S I8NSQ , W\\‘ q_m;,w\ wwﬂ
< b & &2

1
!

Page 0051 of 0213)

| Distributed under the Creative Commons License on page 5

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

| WIANWH T VLS EF 55 -
M “h uo U ASUWINW van b meuﬂ .an M\my
. . : 1 wLsS < o
| ayftz v paed) aapee> © Rl AR O b 35 bE S
: I VN
| ol 89 TLS
W TXgpul Dluow I U FEYY-EFI v d 4 &\M
, T 1gd0Yd D29 Fua Z4 b
W hex AdD t 22 =24
| T <V D93
3
L,:._..m Siuowauw AQ) Jumod 19)2v4vY4D a%m“ WM@ b e
82 LIS
ANT
.wJU._u* .LU.«.U.G;ng:N_ v Ul I b /90
: HION3 AdD g
. | Au,nﬂ.xa € 9} \) Moipvalsul vy z78ud HSL 1940 ud s 93 B2 £9.9
_ [s% XQ1zs VoY cIs
31X8Y¥d HSC 44. 2a wpo I
Af(12d) VAN d 0Yd <z Ww,. wtmw
7 2
*X2pul 3 qB) ulidIuw 2AvYS . YHd) :
‘ J " [IXQNNW 3NG 4 Zz4 @d | “\MM
_ , A3d. EXANNW & m\ﬂw
. ' y) P e I
XX XXX BBD - FIBXXXXX S ANT vy waa !
XXXPBN BB —~BFIAAKXX ¥ TXANNW 3NE 88 558
XXX P BP = BIALAXXX 'E A3d sz b P
UKW L) ZE =" IFANAXNXX T \ @ZT¢x VYO v 7 og
XXX I BIBE - PIPIXXXL " _ sl TXANNW vr . ios
o YS\liss : ,

. 8 Db Jh8
. 3 Ul Xapul waoy SXANNW 23D04d :
PITR oA T e ¥S1 IXANNW 44 w::w

| SXONNW D39 e - q Jd kS

) T ¥8s# XdD vs 23 7.7

\ Cs#+ AQT £ gy 8+8

‘uiw 5o |y o) 3po3 do VAL 8b. mw%

.A..u . . Y 2ADS XVvi VvV N\‘M

4534 F1BIXXXI aog 4 NIOW 48¢4# ANV 48 bC ons

- , - ‘2 ped> do : VAL §b Py
o HLO9N2 VLS /#8 I+ S8 [tr

Page 0052 of 0213)

| Distributed under the Creative Commons License on page 5

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

's'q -*.de_:LnC 9 2Muap uIyM :;;Qrvx
(4 +<_.m+so 4Mop Coupa s1 ZAVHD
Weoup ARYO j1) s4vYD Z a0 | t::usO

ravy> m:.__o:omuu_,\.ou Juiad quop ‘g gt
) ..*._A +J3\:\.o.w. +§..LL 4X2u 1593

.ﬁ%\;,.n? U%X% .t.du..n*m:m,,_h
J40w) s5RUPPpY 1Aq-z 40) .ﬁf:so

.Aﬁ:uioud_mﬁ.ﬁ 4eu fiabavy quiud) |owads
apow “:._D.U‘JJQG 2MIV|34 I\pudH

(4w 3444 1) F= H1ON3IT 3! fwad oy
\PA ssa.pPo .rc.r:_. wayy E=X 5T

'5)'9 fowaoy .f:._\.m 9 403 juwmoD
R AR T +$&+$O

TIUGMIUW 3o 4B)2VAVYD v mdimp

4SS 4. PPV

(A42v> siD3 [ED)

TY AT ApTARYe g siig S 4giis

4 H
b -

lddvud

LOOYVYHD
+H8dvdd
X “l—-THYHD
1NOYVYHD
X 1-1HVHD
 hYdvyHd
1VvingOod
T4Y(dVHd

A1LAGYd
Hadv3y
A(104d)
83 ¢
1LV NEOS
cYyavid
HLI9ON3
cydvyd
€ $#
Dpw
UN1gdd
\ INWYd

LAOYVHO
L 48
TNWYJ

WINWI
W3INWy
Gt
D $#

S
ANG g
X3qQ
4ysr
v3aig
vail . b
us e
LVAVREE:E: b
209
aSv
aANg
A3d
s
Sod
YaT
dWOIVS.
van
odd
AQ1
aNg
Xd2
xdan

us S
INB sis
X 3a
gs2

+ddvyd

€4avydd

cydvidd

18AV Hd

-2dv

3aNg -
A3Q
a0y
1oy
ISy
Ad" 233

van

“ZNWYd

INWYdJ

EEY

23

o3

432

&4

STORA

I
7
VD
7t
D=l
dag
Iz
ad

P

¢

S&

DE
L
Ig
b2

Sv
D -

LA4
&a
Z3

v

V.34
23
VO

g

L2
2a
58
vz
oz

4%
bV

705
/DR
o S
24d.7
VS
\\. M\.m.
f7& 3
| {4 A
A2
ay.s
8
v i/8
Ly
S8
Ty
VS
h\\vm
GhLs
db8
658

S 6b3

5468
258
I638
458
288
f/xs
558

Yo
¢
<&

258
bSS
z288
238
ENEY

Page 0053 of 0213)

| Distributed under the Creative Commons License on page 5

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

.A..,Umv i o*uc,. \\.LdU
Voo [+ (1997 40) HLHN3T + 1Dd

"Hod m.c:.:.u:.m;uuwu Aq +63u puayx3

. ..ﬁ._v:d\j ._m\..xat.c ,cmwh ._mn..-o {Sel

caffqag =T ‘a4kez = ‘449 01-p
"B = juMod Juwn doon

AW v mdymo

.”.:l: .rSA:.jO

_ "712d 3 HO4 4vdpmo
‘uanisd4 d6bviiavd’ mdpmg

RV .fuk Puv

Yauviq jo sseuppw |26uv) ymdmo

CLEX oy 14

o

.}n< °L I* + +:.U£Uusfn_huo + HO4 %24

_junod’ Huwig

sy
12d

+0AdV 2d
H3d
H19 N3N
Tdydd

JNOYVHD
PV s#

€ s
1NOYHVHD
AVs#
XVLNYd
aD0d

HOd
1LNOYVHD
g8 s#

1

31AQ4Hd

SLY {S1y
ANT
004
o4V - +# L4V od
A3d
idd
X Vi
Ad7 cLavod
23S vs TLCAVOd
val ravad
SiY
aNg
X3q
Hse . E1g YHd
van . T18Yd

Xan UNIS Y
dse raz

vas -

s

Xan

van

4s

van Jddd
dW L Aos

- XL X1 NYd

41 A8YHd
XA LNUd

£rdvod

HSL -« XViINYd
VAL XALNYd
ANT

3Nd

ANI

XWVL .
Ysreos YAV 3Y

-

F)

44

g

v

43
ay
20
trty
St
43
as
>aq

odq

24

\\w
B2
Db
g9
L8
)
Vv
a4
3c

Sy

9

2a°

Vo

bV

zVv
sz
LY
zz

oy

SV
Tz
bV

ok

V8
FT

&b

820

ga.

83
Vv
y/ra

ar
48
(748
¢ 448
lidS
S48

Chag

)
145
S35
238
035

g3,
L FI8

238
38
138

448

245
VA

803

5ds
cds
245
4208
204
d08
oS
£§28

A

9248
€28

Page 0054 of 0213)

)/

| Distributed under the Creative Commons License on page 5

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

I3Y abs g4d A /56
AfOd-2 58s g94a sg 256
(s8Y) Vs g4d v Skt
A‘sgvy 984 944 2.5 24k
X‘sav Thy g84qa Zb d
. X*9d-Z Ibs g84da rh 2/,
A(9d-2) Qhs 940 dr Firs
(X “9d-2) bLS$ g4a LS Y.
DoV s+ g4a sB bhb
TJdWT oI s g 3d 27 Skb
sav [4:X3 944 Z8 s
9d-7Z I1§s 94a K] il
WIWT 1T g4da 1 Z Shb
Y43 23 s g4d 300N I frhr b
sy 1 RN XX LA 1 bYs BLs fgie TOF g4q. bV x40 €f 29 Dbt
) bds ‘drs SF+ ‘Bads g4qa; b DE §2 Sa Db
CE+ ‘hht ZZ7s Bl g4q = bt ZZ B Kb
by ‘Hre 8Fs ‘Bas d4d b2 B 82 DI HEb
u.tw_.:!. 448 = €E€s “Whs TTH ‘Dis 944 R O -] A
AAT-H~Y 4331 = 2 Vs ‘bbb D84+ “Jd4 g4d 7 oY I A o g
, E€s ‘bbbt ZTs “Uis *ETe! < FE o ZZ 1. sdb
BBEs hhs “umq ‘Bas+ g4a ID 4y 28 Bda Y&
. - | €€+ ‘Hhs TZs ‘DI g4da e kb 2T 05 A2 15
WL APXXXXXX L Gos ‘ghe ‘Dds ‘Pds. - 9AQ - 27 26 ps J0 b
. Bgs ‘Tht ‘OFs ‘Ohs 940 sdd vk BI DE S/4
bZs ‘Bus ‘95 ‘Bas q4qQ L PL 88 A il
| €€% “GShys ‘THs ‘Dhy 94q e St ozJ Ik D10
| b@¢ ‘Ohs ‘8gs ‘@0 944a LD 2k sp 24 D00
\ €€y ‘Sts TZs ‘PgE$- g4dg CEZ S s WOF A
| 685 ‘2hs ‘805 ‘@0g a4a . PAPCI S5/ S () /7.0 55
rm&ﬁ 'Sk "Tas ‘Duse g4da IJ0OW w2 S 22 A D20
et e o e

AVNOS § S11INS

o3

Page 0055 of 0213)

| Distributed under the Creative Commons License on page 5

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

80%
303
2D
243
Vs
35¢
tbs
§8s

Iy s
€Ss
27 ¥
hZ%
LV s
E7Ts
Vs

Vs

‘ot
‘Vis
‘89o%¢
‘Ywvs
‘hds
‘he s

fhtr b
‘Z9s

‘“Cig
‘Obs
‘3vgs
‘Vis
‘€Gs

‘LbZs -

‘vs#

‘hOs
‘Vig
‘hizs
‘Do s

fhLs

‘DD
‘bLSe
‘8Qs

‘h8$
‘Gl g

‘Ive.
‘dos .
ShZe
cghs

‘dbs
“Olf

WA

«

4
"N

g4a)
a44a (p)-
g4q)
g4q (D
a4,
4als
Mua (©)
g4d YWINW

840 1 FAAAXXX (3)
84d PULAAAXXX (P
g4a 11X X X1 (D
g4a BATARXXX (@

- g4a) -

940 (" S ZXXXXX ()
840
g40) - TW3NW

g94a ZYYHD g

a4ad IYVHD Hv 8V €V DV LV OV

Wy h¥ 84 2

337/,
)
254
3394
294
Vb
Wb

~Féb

b6
F5b
244
FLb
J¢4
295
23/,
356

Page 0056 of 0213)

| Distributed under the Creative Commons License on page 5

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

The Woz Wonderbook

DOCUMENT

Apple-I1I

Cassette Article

This page is not part of the original Wonderbook

| Distributed under the Creative Commons License on page 5 Page 0057 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

This page is not part of the original Wonderbook

| Distributed under the Creative Commons License on page 5 Page 0058 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

CASSETTE ARTICLE

| Distributed under the Creative Commons License on page 5 Page 0059 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

T te)

I caria 11E l:(.‘(?i"'(_:’l’ ' 'l:'fw-d.fy

Vo _14."»\74'&;’\
[g ﬂ.:' e E’Jf' éu.-/;“f;'\r prC 5SS 5'7'(«":./5]?. ‘m-.'r-p/«erm‘ tn

. :A{{ i, - J[‘:)’ T 1'7;;‘/’15‘ . MC‘»']/- L:;fl.] d"(;f_f Iblf}"}/ ﬁ(?l‘)’

v T :(-) /
{" COrsaen (L o es " cass &ﬁ'c’ {_:ar'/”‘ ﬂ—/_ It 5/6:7' (‘a_{’+.
Hepoin s P creded a bardvar ¢ s of‘/»~—qn’£ pac kaj e

{.:1/ /i//o(.(:_*/ Y//fff’/ﬂf ‘i-‘«f ”::2//./// 470 d’"{‘,‘f;a{"

JC:VC/C/"‘ fj

. 2 gxndl EFoo ;/ijJ,;,,/_ L7 s

+ oo K SN oflli Er € - CZ2

O verrallle P ‘ﬁ)(s T; Ani ’n crp EensrveE .
-

| Distributed under the Creative Commons License on page 5

Page 0060 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

-
Ty
e
i
Wi

A [ile 1. s 9 [GENIE - eN ”), o CcC N‘\f« !ETB Frogray 7e 4‘}1’\

V“"\H\ber rma/ L e
l”f.t-‘"‘.:n/me,n:;»:?J
(‘f SA f}‘j o€ b

sisocioted adfa . Although any
;e(cw:('f:g{ on & sr',ngle WLaPe, one
e Afacilidade lacoting it. Cbvicacly T cheuld
tig.on al dhe very Lé“ﬁl'r.ru'wﬁ tef The cosrelte !l

2
A il El
TSR '“";';T e T T T) T T
{ 28 7 / | ReLarD RCCORD Rewra{
AareE o — - -

Ewceh v e Cet c{ . [fl (i & {;\/8 Cé"i-/"’ ns ent <o ’]7/:} “owds
ilock 07(&_{'47/;.2 . Thuws I{ a /l/tj: Qs f&j Ins a'?‘
cddress & Fgrez (Chex) and Fs 6/4714 e /o caZed
A leglaning ol cddrers 1oz Che<) “hea a

o STirE g

. . i L Y4
yece, d file wmeay te vsed” =i er r'fcm/ sy

-
<

—

£, 7 Ti e 7 e
Cait A [AV ThE .q/)

et a iie s e C."j’f“d’e’L-/. 076 o ll

&yc'f o h P o c(
f 5(/{5/ o a ‘colol r‘]‘arT -

r
£ a C(/n iy Le

Lierse,
be
/ / / = Yy . 7. ce.
4 ¢ p s, d Er oy Tl T;;E v E ccy A € u.ﬁ/ Ng d:)}rf/«n Lt e
r i e : o eder datt o The
oy C 2) T records, Vel /?c'ﬂ'd@/ //c’:.’é’a‘«ﬁf T At i <
H
. ¢ -)
cordd fa PR Ve recodr icadlés J}’ffa/ . A s
e g o /. v . - "_
S 4 o e T 1’* g{fz/‘/lft 2, &/ A1 cal € s /;74(' /'7/‘"/ /"1
o . 7 A
-, , ’ E re cord ey a7 "y d /'/ ;'.;:":,;' £ /7’5 £ ﬁf
. 7 0,

'L/" L A

Page 0061 of 0213)

| Distributed under the Creative Commons License on page 5

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

Al o, A

AN
\

e NT E R T
/ <t YL Are R ~ PATA K-’«.,,,J
i\r?«i coR o o S D

]

Heape R

1’}16 ;nf:(.l(/l(_:)’ (_l:'/‘vI/._r-/;r 07[A ¢5 16(0‘»&/ 7(0 Zo Jé(owo/
: VS e Ve 7a Z Fav ﬂe r c‘i(av c/é’l’ 'fé reac h r,)f fc{

PRFY N
e I

and Tie \I ¢ (({ Cirewts ’ +a lo e K on. The READ F(ZE(‘GED

' . . - - Vo ! ' . . S B '
:‘ij".)) (\H\ oo S Suoch {}‘ﬂj The ieced (<N big (k1 w-;j may Caﬂf""lh J U\o\k‘

Forsd Cecerd Header : Apprex /O secends
. 1= ;//,U, Tap e /eade,,
otier Rece, S Heade,r ! & 1o Zo seconds,
depevding on USer needs
such as wheder The
e corder ol be ﬂlz/z/;e‘f
pricr Te The re cord ,

P

] f’f‘if';:'f' r ’b;!j" Llov-g) (I{ r\o‘f) L sec P ¢)

i

77.' e O V‘.Tdv‘—z- ﬁ-(“ C{a\rc{ ' a L.(«j"‘r‘(/vc/ﬁ

! re I I O [

Page 0062 of 0213)

| Distributed under the Creative Commons License on page 5

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

T it
wa..:.._k _,:‘,, ',S

(R

v {L é {1 £y e recarded 'r‘*"‘ﬂ"‘]"l o

7(; . \{‘7\ e

/d v €S \f ag{(;-i r%t' £5. The | o\;'f" on € vy '{:’nv« THh e

/1..} h t’.rf o JHIF":JI- E uch L), _(Lct e recard ("4{

I"GJ’_/_“'I;:jm fﬁ\cuw"f—ézf {%',-, ‘f", /c‘ax?‘-.r(jh fﬁ‘cqu‘f “Lff' fast.

The PLENNS "l"‘ﬁ & “””(J. s ﬁc,l_ i C\‘j—(i "g , S 4§ L)’Y’(’J f’t- I T€ ¢ ‘_‘_‘J.
Ty A Ty e - ey e
(. JJ ll LAJ: "
FrTh L7 TE Brre | er7E Erre i
S SN R I
Y 2
/
eI n r‘ 1 - “*;' haletd - A e A ’:
S s
B B

K A i.\)y TI‘C. :\,,~\ b € Cl llc("-e 17 ‘E» //0 wo ‘i’Z [’AJ"}'
«‘Jd.‘hl Ly\(“g_ a».c{ Ny rc‘(m'c((’af (n the Srn € & -1
7/
£ el I~ ¢ 7 e (L ErY e 070 e "}, Jcal

. £ /! /S . A .
dclesie - or 7 ol daa L, Ter a7 e v E corve

CAp e & pAA evre o= 1 ec i blol
by TA L EYTET & T if_'_ﬁ__,_‘c_‘__,‘_

s - o - ol ce) o

oo~ F S oy oo |

Page 0063 of 0213)

Distributed under the Creative Commons License on page 5

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

7 /‘\ .:/. D l’,v/ /ﬁ\ R_t‘;

(%2
Vil € ¢ le K)
o AN gm0 m =] T O
[RTSS M C
R R T [T Ik
<« DES < =
< loc.w
s =
sz :
736
/‘\’r'ri_y be Cwnr‘n;ft'&l)
t{:ll‘»n APPLE- J‘]s’T’Z'A*J
+Sy [MF
T st . J—o——-] L5
Vis Dot - 3'(C __‘____,__,_.; — N\ L/Hl
.) 3 . - 1AC
Do e MO — 3 [:0— <
) =
e #7177 ey
—ANA
(- &M
) teo K
£er > 100K
VusTeriss -1 1
/ ‘.}“ -

Nofe s (+) it ﬁxv.f-h ng -‘r\fvvj. PGYT may be LAJCJ
N P B £FT97.
Q—’) ffn7 aif(aﬂ{f'J Gd‘d,l'c'ff rﬁ‘dée (j}t\i‘cL-{or(/'

may be u.led’ ")‘/a(ﬂ of The Lard

. ’ . " I d
T4 e iny (‘f’ cr s desirecd fr addrers

W

)

JE(DC‘;,',(»’ The \;h\.k!fd L(\/{ o’)c‘ 71.\" 7‘/7‘/

A

has LE l(JEf{"

| Distributed under the Creative Commons License on page 5 Page 0064 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

L sTiras ar € voeluded fer rquc‘.‘ﬂ,v\e_r vohick tFﬂkJ
~!=)}

4 c. - 1]
od u‘,‘—ic' réeco AS and L:f;" DA wsl e = 1

“h rn n‘y\j ‘\S
i< ,r*f’m',ﬂ,. & J N S..‘{"’ ve QL e |‘h_fcj [N P'tg v <;1\cu }c{ b [d“(.;a L ' e c{

Ty ese dcelinées.

Vi \,\ o 3 a 1‘»‘.‘-? (.S SN ares /"F’I;")‘. c ‘_-(a < 'FQII/G . £

(M Lzer amitiolizes He Y-REG Te a value

i\n C';f‘C a__“‘»yﬁ .rl.u\w'»l;a(:’r‘ C;{ <o U\“"‘,hs 7’0 "("a.’occu,-t

To

ﬂ,c|_ Thl's Va/ue u,,"}

s

Var)/ qccoh’d(f"‘ﬁ
7o the i—mﬁh)enj‘)rln cince the Frfor ‘T‘apeou.“f‘
‘f'cvggle. Carry Vs cleared Te w. Te o 7
ar d set += ovite a W)
[z Cobryecdtine WREIT s called. IT w il
Time ouT (ba:eci e Y-RE G cau\,\‘f) and
7993 e H. e Tcxiac ot l'we , Then e oy
vt Tre CAPRT c\nd' A rec L\U‘CL\C\iW‘ﬁ € ol ,

T X - REG dececme.ffﬁc{" and‘ The YT-REG

. L. -
Ci~ared . Zcero and Nej f"/gj_(wailll F redid
L3 if;’v,l(- 0‘{.’ .J\Vifo‘é,,*\c‘,]‘f',‘,,\j the X-RE &

RN i< wie “Fu\ 1 6 s . b)“" Cowvn % .

| Distributed under the Creative Commons License on page 5

Page 0065 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

bl g

Y"REG’)

i"'d lICﬂ‘r!‘ I‘ng Y ‘Y. Uhbed L Cy C{
} . . (
‘}(‘»rﬁsn Tc'jjffi whe)y e

Sensed. This value “

j & \-I he P V\#—}'\

!

\fdkf.’y\ s

7'059 }e -

RPBIT csebrcetine ir

L~11["3

L- 6o ‘}"Ang Tor a

f:ﬂnaf, hile

cnce Evf»// I PIN N <

T?ﬁj/e, a

conp Aarison

v
.

seTs

1’}\6 Ca:'a‘/

74

meEe an £

Taﬁgle

! 1 € A £ "f'(ﬁj/ﬁ

€ 11‘7»' /

Fhis wie g &

J'E:rf.wf.\‘/:-tm' onc€ EVCIry

/[
T ew

A /{

C;C/@

7).6 _{:‘\y‘é((a"v,',

Z (hovT

d.

r &

I/ e

X

i IC'L“O\ (:LJ

acg e ! II':‘L\Q(‘{

|‘n;":~n.ln-c"z c{

calle d'.
7(95)é’_

decr €me.

L [' ‘C L|

< [/C)

R e

‘\{:‘HO‘/- £

e s

1o

v r\f'-»\ ¢

o]

o
((.'!.V\.’;_(K /\r‘\Cf
1) .
1c/r’5)g i EQ S Cdgf
«” V&\r/ a((avc(w\g
.) A .
rncCe o apgein
It
ot

The

V‘-'l'}(‘;)oo]o

“the \‘;'(,\Pl.w

'\‘/'!‘rﬂ \f,’ RE‘G—

Afier scnring The

the v-res

[N o

I

came 'c’ar}}«

CLim e ‘fﬂ‘j‘& ’,
ealls ROBIT

Y-RE& ¢

e

12

2

-l[(),v"

— <

S E

E
Cru._,ow ﬁjj lﬁf)_

I'e 417‘6 ;‘.((1(ca?—’f £

ar

j (/m«g,

A-RKe€s i r uweed,

.

[N ('/1 f'j C.,,"(.)

fa, LASTIN

| Distributed under the Creative Commons License on page 5

Page 0066 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc

[. - v T e
r IO P S . /,c

_T4.;~{-i.ijl.g\‘ b'f{g/

v - [1.17 l“:itx((,t r‘j < El“f‘
| .

C_iil',(/\/l\r.j e_;x‘fl'cT 1‘7(\71\ ‘C’,:y T‘L\I l\[\ e |‘ n Cj)

(2) catl RDBYTE. A Lyfe is vead and

le{F n The A-RE 6. X V¢ eleared .

ritirs & Reeerd

(') Lser ‘l"‘.-_{’,A.{th’fe'! ‘7118 Fqﬁe ,Z’ facl‘n-"»er_\'

(AL, AtH) and C(A20, N2H) Fe Tthe
S‘f'(Lr-, ‘}\j &lnc(C’V\C[l'mﬁ ﬂo{O(Véfff.(07C a

Llock of data o be wridten. These

asdyesr es V»wu7" be

‘(‘C'l’ru,

/~P\ I‘/}zm&(arc(bl.h ar’/

s

(z) Call WRITE

=

(O) jo — re€ (ona('\t‘ac{é‘.r s wr‘ﬁ,../aﬂ ‘

(},/3 5/ 2 C LI\/~ w-ﬁ-‘/‘ffw\ .
() Dala Liock woalTen. (AL, BVHD

f’o i nTCr' f; ;\n Cresn ér*j»écj L«n‘){/‘/ l+

Is 3 reater Than (AzL, AZH D

. ai‘g “w e c/‘
/11/) th(f+€l”f = .:3—-7 ﬁ v—’:z:«‘—ar—e——- '_ &

T

LI f::"'"'r:f-fz— I"—:r '-;;T'::.JT S e a TN z

td/ Che ¢t foum N ‘f ten .

CC') fubu-(l‘ EL (L

Distributed under the Creative Commons License on page 5

Page 0067 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

LN s e ,rlp._c] %) e ¢ aced M

(P Twitialiee (AL, AIM) and CAz(,A2H)
o the s‘fmﬁ'“ﬂ P c,w(,‘,,,ﬂ d({d’yc’f‘fc:
fer The Lleck of data to Lbe read.

(z) Call REA D

(a) Loske for- Tuggle an "/?1;36 o hi'ne

(b)) wads 3 secands for Tape To reach
cpeed .

(c) Leok For Tapen Teggle.

(d) Scar header half-3t by half-bi7
waiting for syne biT

Read data Llock , advancing panfcr

fan
m

CAIL { AtH D unli| jrea“fer Than
CAze, AzH)D

(f) Pead pa cleckrsum byte . IF mirmatel
Thew priat ‘e rr”

(a) Sow,a B el

Nole Tial &/l reg JcTers ond pag e &z

Jocations LASTIN and CHKSUM are wsed

| Distributed under the Creative Commons License on page 5 Page 0068 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

ST ride. /6/ o€ P r l-(r.t)sa'hu’é velue
(e - ¢ “t)‘)' AN fo , P }qarc{waré i<
w cwkla} ; :

v'/)

) 1
gl e e
gingl®e
W it oo f/\ii a0 e
\ J ‘J’ -

(1) T Yl e e A ‘L}ock ,‘F memory o te

L""t‘-iTC v
t
Ca.!f@#d =T F T~ bo »ﬂ“. Yoes

LLII\I‘A ‘?B If?re #UC

(z) €enter The

hand . Youw may

Ly
f":ﬂi’rz na s fROM ey E‘/(G'U?'
AL and A K)
2

/?) T {. ‘)L)a ({ 2 /a Ctlh/h/‘o o 3 c an(/ 2) +b

The [~Lit :“/‘ar’h)\g addresr Yor The data
L/OCK *» be wr‘,'ﬁc‘m. 77‘\6 loww - ovd e r

)] o- /{ 07[: ﬁ\ € af{’ﬂ{'/le ﬁzc*;f?‘_ be ;'\ 71 i s 77\(’.

t'/:jL‘O»o{E) ha(jC AN AtH .

/)ennane.«}// an

locem s . fps)

(%) T, taliece Azl and Az M (36 o
+e Tle 16 -L.1 c‘,;J,Lj « &ddizs s Yoo ThA e
dl»f.‘/? l/cc:/é.
) Svee The fallow o preg rames In meimary
TwRrITE TSR W RI 7e& 2z
NI i ro N L& ST F

&) Fan e e T vime a/(d7/e_/), a 7[7(:’4/ 7/}// /’)/\j
,—-za;.c/ﬁ S7Lc1r‘+ The e (orc;/e}’,

s 66(1(9 w74

77‘1 & Foev i C o ove

, W7 e un Tle REcor s

. 4_|'a(- ’ '

e e 1000, CorviecTed To Tre /,.‘ff*/(c:re

& < N ’ 77 bowd oA e T2ooe Tidg,

- G- 4 YN i/ :

o, R Ty o [N o 1ESt S1D b /é
. rr s P e he-So. A s S 1O ey rzr

Page 0069 of 0213)

| Distributed under the Creative Commons License on page 5

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

TS e fo‘l oo centaie o ney a"‘"‘./e valwe

(e - 1 ;‘t)‘)' WS fo , reur Luar‘c{wan'@ sy
werKing .)
} /, - cw’/
iR T
: . A g
L r'-.'fa\}.g— a T-%l‘)-ti

() Teddolize a block of jmemory t be

L~ ¢ﬂTc o ¢
casralte +wrEFe ot es
LL'I\J‘A 13 ff?n‘_’ ‘ﬂ\ac

L)/
"(; ra £ . ‘ei/ihqn6n+/ or fﬂﬂl"’f o r E‘KO ,
(AL and AlH)

[c‘:l'{'?\a " g BC anS 2P RS

N

z) Enter The
hand . Yow may

(3) ITnitaliee
The (£-tit sTarfhg addresr Tor The data
block o e wirifhe. The fow - ovd er
half of the addresr et be i AL, e
high-ardey half M A(H.

Fritialize Azl and Az H ST s)
«addicsrr Yoo TAe

(%)
to The /6Lt ciding
datz Ll k.

(£) sioe The Afallowins preg ras

[Aa) f*‘@"ﬂd)?’

TE TSR WRI7& 2z
I rFo N s< s

U:"/" F‘ O ‘}‘ e © LT LT ARy e 5/(.\47/€ /), X 7/715?/ 7‘}//1 /hV\j
/_, £7La /*7L T e re corde - .

T R I

?;Ac‘ P oev by Covvie 1 e T o
- . - N 7) -
L7 oy e ! 7V e LE ccre b /Licc/@ w o Th
. .J-G(F«_.‘ , , . .
o re s e Con.ecied Te /e e, érf'.
T T e ysecd [Te o /‘rk,
i, oo E, T R A L AT Aifgn /C
,o - s -, - ;o /. /s SN /N ro .. /s /€'r

Page 0070 of 0213)

| Distributed under the Creative Commons License on page 5

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

. ;;4 iy =2 - e (=77 5 e Lt‘ .".l\‘- P »/ T‘/jﬁ
)

)L etey The casrelte jewline s 2eto e v

(it ol elveady Thiere).

{=z) I fh‘avl('a-e AL /“l‘(» A et th;/ /4?#{
as ‘\{1'?’ L)‘;i/o »IL?(JJ €/
(3) e F‘ ~.,"/\ 5)[‘1 {.,’/GV‘ ‘)"/0 fﬁj;"‘t e ‘\(A Yo s ﬂr)’.
T e« A D JIE READ z@

T P o M 4 C Y ~r~
(é/) 1’2 (A _/“fk.; < A‘ l)~ ~I—/ M e 6({ ‘m \fo //r a ﬁf)‘ W/’ !)ﬂj
7/"\6 rein Comr*"af'75/,a f7l‘('/7‘_ 77[6 re (CV./C”
’n 7 /4/ mede The Hl““d’e shovld Le rewous
ép/’i}'r Yo rea (‘[/‘—j . The "’0/“ & ref)(")‘_ﬁ ‘f[é”" /d/

L‘f S TN L s :t/ -"l»‘-(»’" ‘7»7\6 ﬁ'l‘}/e JhaCk Con Mﬁ(+c’d/

- -
I} l]lt i, ft",;ﬁ’(v:’
'\,E) (O AL E. et Ch YV E con ;{, 711.& T " Coerror

b ooy ! AR b ar*/-f.’,a/—

T The e 5w bdled«drﬂn' P oa ek e AaTx iead!
1< yan t‘u&'/‘ 7/c‘ v Tlam The ‘%7/3 [piirn Le,-

- dala l} les sn The reend, TAY el

cee u‘o . I e ‘*/77 s pead 6icre .té/v Fe <

ao A e TiE recard, The Jregrasa may

L"*”j ”""Gﬁ'ij a Jf/ﬂ“eM e T

| Distributed under the Creative Commons License on page 5 Page 0071 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

Nevakle Aloceation

/7'_-./(- & & wey bipace cheold Le acr, a ncfa(e -
7]\:"? "Fc Nom s"ﬁg W()J’JQO\LICE :

All
AlH
Azl
A2 H
LASTIN
CHKSUM
1
The only resTr cliom 05 That AL wwsT Cmmeedind Ly

;nb(_f‘f {1)’vwc_’o{l a?Le /// /’1’6(cd‘g Fi2
varia L/C'J‘ d! ffc;*e;« 7/4;

rrc'c'c‘cjc AIH arnd A2 L
&1/\;: »~J'S€ /’Cb{ u:a/ asfs (jn 777(_”'/6

‘f—/.dn —f‘/‘;é "p/':vt‘dle(j //._r7L/ I}‘ﬂ .

Uit cypled ribrenbie

Flr Cie

";,/,‘,\7"4‘-\7'- c1/”ld BZ*:LL 'dm;»f \/(Ae
Ny /"/‘nu‘,'g/e & 644/?&5.7&6// ¢MT .rug”au/&\e’

Co T T c a2rre mléy
AFPLE ~

%

’

e e :
e 4o ’{pi’\ //’u« / s /"._’”'// C.:.’l/

YN ieay fm/ﬁff/ffafe
boasT mff le Ay 7/;'4/’,/6/ f/v 72/}'
e

"\’\j /rcx m‘é/(‘/ “wses 7Z€—
r,.f}y J"x_";)\ 7‘_ F/:-E*F T/Y.yy 77,} fu/l”dvt%;, e,
/}/ﬂ\'fk/’ [RV SEN »]71 e /?j X— & 0/ T - ff

subrowPre. The bie

| Distributed under the Creative Commons License on page 5

Page 0072 of 0213

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

- s * -
o d Hoe e {or /TQ//' - FC o, {7 Cr
g eed HReading (1205 - Pocod Toper

T- crite a.d vead rmulti-ve cord ‘f?(/:g_f “}7\ e Iy
yanes T ,m/'/’// 2 /‘;"(j*/’q yn ek selm wup The ‘et
and ol pattere (AL At and Az, Az#,

x /e 7}?:?{/?/9 o, R ITE oy ,17[) he y 7‘7(@ A 16/(3«7‘:
Tle ! é/;“fi/f JE e, jt{j// _fé(/r‘?m/s}\(_" call Ar 4//l

Bilhar vceadsr "FTF fe e o nd e,
7T /&Wm«}raZ Ve 7/3 /)"':’,-m‘// a mal am ounT
5‘7[') 7 e Cilce T ’—[/\/ /e?éwff.n /e (.a}//_{" fikce Tle

1[‘\':‘_—)‘ J"dlf c,j/: ﬂe Ac‘q&/ﬂ/ /jf‘ _f}vvam=/'

| Distributed under the Creative Commons License on page 5

Page 0073 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

pelTAATELIT Y

1 pace TesTed e (Te face al Appc€ sver
i e s o7 L,“/";; i oi? Ffailere. L have vsed 77 e
c‘@aff;f 7‘&#«:‘; T could ﬁ}:;/ and e c/AfﬂvJE/f pecerdens,
The TesT 7 TFeins vere repres e TiTve o fets ADiin A?ﬁ .
Uical were Som & o e (.(Jn.r,‘o/e S P

: ot . _ i
F. ' f’/’ /C_fJ /c’dk ¢Z7L = 7////’7/ el / ;,,/', u_lL ’/c u+'ol-~ T

At T s

B e el i

It canm Z)e SEE M -ﬂﬁf ccie Cye L7 ’-"_j ie 07é Tz\&
: ;e -7 7L s h,/(N 7(
.77 / w17 are #71//{4/7‘%5’%‘/‘{’”’%/%% very a/y: re x vmale
A“C ~/-(_ ,.), [- 74./ v ¢y (_:Uff o {\7[" S('j' J 7L d;lr;f-?zf.,ffu A‘af/ P
T TR J'//\O ral, Covny’ led /TR ////.f?zé;i R LI '7’7‘1‘5/" er
ncf);w) e e l‘mc./t«tlélgl ;y\ The ((K+e/(-1[:4(e_ 2E T -Cr'(/.rz:ng

. ,) - ; R ~
Je 7/"5 cTer. Dee Tt The w o e e o1 The "€ cey d/wj Tz riv ¢«+

/;,. € ol c’/'C/C_’ /’t‘—i» A'aﬁ L, 'f) There can be ne
. ‘ ' |
o< be gf{f@T an 77 e f)ana/ lfd‘ry’)’Q’ALQ/. T/ e
;e
€ 7C?/§ o v o a bc cw.",,;‘.?f 7 s e vy The Feiz - eredin;
LN ,‘?{»\) ~ =
LT o Fe o
' A _g r
- A"ll e '_& \, ; "W
Lol i (g T \\ T T e —
v .
- b
:‘ o \
i ~ A T

| Distributed under the Creative Commons License on page 5

Page 0074 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

cjﬁ J.i_7 (\no\ f-'ncin«(,((“,_j
o data 41

t‘ o e AfA: (= 5_1 s e ".T:‘ _;’\ \z"}/ s
& Dc - fse 1) ,’oc./f,JL ,‘,\ Lo €& yECOT ders >

l‘f'_r;'f,.»./lezf cver o Gl c/(./t’, Aevey over 4

,,{4}713-.(%&{ haﬂt«E)va‘ QL:!I»(E

)th Ty (e . (Fro A = [~ onr

P |
Faverite l'c(of:(@_r ;Lff'pud; a fguare «wque adf

P’(),
’E’/'dé//“’ UVJH\

a [(7L4*‘/5}e oL e (6(/0\:«) /(f\fh —ety ;‘:g

!

~ UL
%w

L/
v te B ‘ __bf_l_

FX q\& 2 x »&

"ﬁ’}l Vs In \{fxl 4" ce

R €4 (['L“nj a ‘J)’L!’}\}'y a\IC ECreEs or a J‘fh')—\j a‘f.

Fre g J:v"t‘i(“‘n—f_)’ ne y,\d‘j‘,y 07)’-“}/8!*\, A ,’V\K\J.C“./ })faL/err\—s

gsCf Ch’}" L«f when The c{a+a 4 0)3(&64 l‘r\f mix €S ox.'A ‘e h
Jhon ~/ e

Cetzifan g [‘/:C‘L/‘.l
fode 1 Te i read and wnTe gmplfers

[ar TF

/ ~L . s -
teecorders Ju/ ,147‘ j;cd cnes . 77‘11'

wiTho Jhe vccoder. V('r"h\'a/// all rvecorderr have

N ~ ¢ . [, .
* rd“f?[aC"j?’ })“”//d!'r' 2 h 3 < HE 77/'(4/

Page 0075 of 0213)

Distributed under the Creative Commons License on page 5

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

. A a4 B e, - - . Y N - S,
NI fr Ty ,-.7:;,;1/ rrl 7 .-“/ < T SLE 77/51 S VTice
P .
. - L.
:""’/C_: frd /; i ;"“ "’f, € ‘ S “.’7“ e L4 ’."/7 & "7‘_ pa f(’ //é . '] "“ e

b
!

5 A ‘n p7/: 7]\& re (-cv,'(/é‘ I ,\; _/4717\/‘7[4 67%)7 In 7/1:\: I"a-ﬁjc
Wl rdT e selslie plese ATT Lefiecn e Tmo Tomes
HIEC[. '7/2/2,//'/’12',4 ”7/‘5/'//;?2' 77. It (e a (,/ é’/// “ry 7‘5) anvf; A %.e;’/'

{n e recaoder ::.‘/f/d/% He Tuwe fndan ental Toners

| Distributed under the Creative Commons License on page 5

Page 0076 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

.- ‘E
-¢c TArt=gem
v ¢l a1
Y A S VU a3
CE o ' (yehtl ® :

|
L)
2803 ST 0D frwewe x-KEE
Hd FE Ln #50F %
£5 4b DA 240, % Calc lengm
S LB CEL R, n(CE
53 CF STh $IF, R
£S Bt
Fir7 BE
@mAEF
SR P XY
Az B2 (et Adr 'ﬂ:/
- e Frogrem ge
cnose s ity
ST A ver
Fo 05
L2
& PR FL
F3 15 2€
R
I
5 FROFL
g

[N
R
A4
il
R,

ASLYDN (2V 1K) IDPT WM N,

£5 F3

2l FC

f Ak

2B EC FE
_ FaobE LA
& 352 f:,”: $2E ferecksumd
R =T Lo e
% IR e WYX oy
[5X LE‘JI' ('\t leu Thew KEAD

)V)

TS Sl S0 Aoy
Fr ;’:‘91'0;«:./ FElc

L han 2oaE
T ChrIvm ey

\

£ CLJ?,'.‘;JH/ o traalize

ke 3' 'p (r-’?””)w’f{j—
W {320,000

8, 3,;\5-{ ([/ft r?c\.ur/(y)
A"

X TFAD (cuhet] c.@k ‘)
) 3 L3 (ostp BD=)

Py Y] p gt CenF

- } AT

X

n

o

by

A

A\

| Distributed under the Creative Commons License on page 5 Page 0077 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

This page is not part of the original Wonderbook

| Distributed under the Creative Commons License on page 5 Page 0078 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

The Woz Wonderbook

DOCUMENT

Apple-I1I

Floating Point Package

This page is not part of the original Wonderbook

| Distributed under the Creative Commons License on page 5 Page 0079 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

This page is not part of the original Wonderbook

| Distributed under the Creative Commons License on page 5 Page 0080 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

FLOATING POINT PACKAGE

The mantissa-exponent, or 'floating point‘; numerical
representation is widely used by computers to express values
with a wide dynamic range. With floating point representation;
the number 7.5 X 1022 requires no more memory to store than
1the number 75 does. We have allowed for binary floating point
varithmetic on the APPLE-II computer by providing a useful
subroutine package in ROM, which performs the common arithmetic
functions. Maximum precision is retained by these routines and
overflow conditions such as 'divide by zero' are trapped for
the user. The 4-byte floating point number representation 1is
compatible with future APPLE products such as floating point
BASIC.

A small amount of memory in page zero 1is dedicated to the
floating point workspace, including the two floating-point
accumulators, FP1 and FP2. After placing operands in these
accumulators, the user calls subroutines in the ROM which
perform the desired arithmetic operations, leaving results in
FP1. Should an overflow condition occur, a jump to location

$3F5 in RAM is executed, allowing a user routine to take appro-

priate action.

FLOATING POINT REPRESENTATION

T T]

L - L

— s — v

Exponent Signed Mantissa

| Distributed under the Creative Commons License on page 5

Page 0081 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

1. Mantissa

The floating point mantissa is stored in two's complement
representation with the sign at the most significant bit (MSB)
position of the high-order mantiésa byte. The mantiésa provides
24 bits of precision, including sign, and can represent 24-bit
integers precisely. Extneding precision is simply a matter of
adding bytes at the low-order end of the mantissa.

Except for magnitudes less than =128 (which lose precision)
mantissas are normalized by the floating point routines to retain
maximum precision. That is, the numbers are adjusted so that the

upper two high-order mantissa bits are unequal.

High-order Mantissa Byte

| 01.XXXXXX ;Positive mantissa.
" 10.XXXXXX |Negative mantissa.
" 00. XXXXXX |
T T T Unnormalized mantissa,
- 11.XXXXXX ;| exponent = -128,

2. Exponent.
The exponent is a binary scaling factor (power of two)

which is applied to the mantissa. Ranging from -128 to +127,

the exponent is stored in standard two's complement representation

except for the sign bit which is complemented, This representa-

tion allows direct comparison of exponents since they are stored

in increasing numberical sequence. The most negative exponent,

corresponding to the smallest magnitude, -128, is stored as $00

($ mcans hexidecimal) and the most positive, +127, is stored as

$FF (all ones).

| Distributed under the Creative Commons License on page 5

Page 0082 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

Exponent Stiored As

+1 10000001 ($81)
+2 10000010 ($82)
+3 10000011 ($83)

-1 01111111 ($7F)
-2 01111110 ($7E)
-3 01111101 ($7D)

. 1 -150
The smallest mmagnitude whith can be represented is +2 5 .

ol o Jlo 11

‘high low
EXP MANTISSA

The largest positive magnitude which can be represented

128

is +2 1.

R
$7F | $7F | $FF | SFF

———

EXP MANTISSA

| Distributed under the Creative Commons License on page 5 Page 0083 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

FLOATING POINT REPRESENTATION EXAMPLES

Decimal Hex Hex
Number Exponent Mantissa

+ 3 81 60 00 00 (1.12 X 21)
v 4 82 40 00 00 (1,0, X 22;
+ 5 82 50 00 0O (1.012 X 22)
+ 7 82 70 00 00 (1.112 X 23)
+12 83 60 00 00 (1.102 X 2 %
+15 83 78 00 00 (1.1112 x 2 i
+17 84 44 00 00 (1.00012 x42)
+20 84 50 00 00 (1.012 X 2 %
+60 85 78 00 00 (1.1112 x 27)
- 3 81 A0 00 QO
- 4 81 80 00 00
-5 82 BO 00 00
-7 82 90 00 00
-12 83 A0 00 00
-15 83 88 00 00
-17 84 BC 00 00
-20 84 BO 00 0O
-60 85 88 00 O0C

| Distributed under the Creative Commons License on page 5 Page 0084 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

FCOMPL _

Purpose:;

Entry:

Uses:

Exit:

FLOATING POINT SUBROUTINE DESCRIPTIONS

subroutine (address $F4A4)

FCOMPL is used to negate floating point numbers.
A normalized or unnormalized value is in FP1 (floating point
accumulator 1).
NORM, RTLOG.
T?e value in FP1 is negated and then normalized to retain

precision. The 3-byte FP1l extension, E, may also be altered

but FP2 and SIGN are not disturbed. The 6502 A-REG is

altered and the X-REG is cleared. The Y-REG is not disturbed.

Caution:

Example:

Attempting to negate —2128 will result in an overflow

since +2128 is not representable, and a jump to location
$3F5 will be executed, with the following contents in

FP1.

o] w0 o)

Prior to calling FCOMPL, FP1l contains +1%,
, fo— e SRR
FPL: (83 %78 1 O 0 o (+19)
X1 M1

After calling FCOMPL as a subroutine, FP1l contains -15.

FP1: se3 | g8 - o0 0 | (-18)

| Distributed under the Creative Commons License on page 5 Page 0085 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

FADD subroutine (addrecss $F46E)

Purpose: To add two nuwbers in floating point form.

Entry. The two addends are in FP1 and FP2 respectively. For
maximum precision, both should be normalized.

Uses: SWPALGN, ADD, NORM, RTLOG.

Exit: The normalized sum is left in FP1. FP2 contains the addend
of greatest magnitude. E is altered but SIGN is notw
The A-REG is altered and the X-REG is cleared. The

Y-REG is not disturbed. The sum mantissa is truncated to 24 bits

Caution: Overflow may result if the sum is less than —2128

128—1. If so, a jump to location

or greater than +2
$3F5 is executed leaving 0 in X1, and twice the proper
sum in the mantissa M1, The sign bit is left in the

carry, 0 for positive, 1 for negative,

FP1: 0 | (%.YYY...é
R B O L
X1 M1
, 128
(For carry=0, true sum = +X.YYY... x 2 2)

Example: Prior to calling FADD, FP1 contains +12 and FP2 contains

-5,
FP1: | $83 ' $60 | 0 S0 (+12)

X1 M1 -
FP2: s82 sBO 0 0o ! (-5

X2 Mz T

After calling FADD, FP1 contains +7 (FP2 contains +12).

l $70 o . o0 (+ 75
B f— i S . ——- - . -
¥1 M1

FP1: ' 882

Page 0086 of 0213)

| Distributed under the Creative Commons License on page 5

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

FSUB_subroutine (address $F168)

Purpose: To subtract two floating point numbers.

Entry: The minwuend is in FP1 and the subtrahend is in ¥P2., Both

should be normalized to retain maximum precision prior
to calling FSUB.

Uses: TICOMPL, ALGNSWP, FADD, ADD, NORM, RTLOG.

Exit: The normalized difference islin FP1 with the manti§sa trun-
cated to 24 bits. TI'P2 holds either the minuend or the negate
subtrahend, whichever is of greater magnitude. E is altered
but SIGN and SCR are not. The A-REG is altered and the
X-REG is cleared. The Y-REG is not disturbed.

Cautions: An exit to location $3F5 is taken if the result is

less than —2128 or greater than +2128~

2128.

1, or if the

subtrahend is -

Example: Prior to calling FSUB, FP1l contains +7 (minuend) and
FP2 contains -5 (subtrahend).

: 7 i aunems S

FPl: 882 © | $70 { | O = 0 (+7)
Xt oM

FP2: , $82 $BO0 . 0 | 0 —} (-5)
LT L b e e

After calling FSUB, FP1 contains +12 and FP2 contains +7,

~a - R

FP1: $83 | $G0 | l

X1 M1

-
o
i
S
t
&
o
i
—

(+12)

| Distributed under the Creative Commons License on page 5 Page 0087 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

FuMUL subroutine

(address $F48C)

Purpose: To multiply floating point numbers.

Entry: The multiplicand and multiplier must reside in FP1l and
FP2 réspectively. Bothe sh;uld be normalized prior to
calling FMUL to retain maximum precision.

Uses: MD1, }MD2, RTLOG1, ADD, MDEND.

Exit: The signed normalized floatigg point product is left in
FP1. Ml is truncated to confain the 24 most significant
mantissa bits (including sign). The absolute value of the
multiplier mantissa (M2) is left in FP2. E, SIGN and SCR
are altered. The A- and X-REGs are altered and the Y-REG
contains $FF upon exit.

Cautions: An exit to location $3F5 is taken if the product is less

than —2128 or greater than +2128—

1.
Notes: FMUL will run faster if the absolute value of the multi-
plier mantissa contains fewer 'l's than the absolute value

of the multiplicand mantissa.

Example: Prior to calling FMUL, FPl contains +12 and FP2 contains

-5.
i R
FP1: 883 | | %60 | © L 0 (1)
X1 M1 -
. c - - T R ;“ I
FP2: i $82 | | $BO i 0O - o0 ! (- 5)
X2 M2 T T

After calling FMUL, FP1l contains -60 and FP2 contains +5.

S

FP1: 585 . $88 o 1| (-60)
x1~ M1 .

FP2: ss2 550 ' | 0 | 0 (+ 5)
X2 M2

Page 0088 of 0213)

| Distributed under the Creative Commons License on page 5

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

FDIV subroutine (address $F4B2)

Purpose: To perform division of floating point numbers.
Entry: The normalized dividend is in FP2 and the normalized
divisor is in FP1. |
Exit: The signed normalized floating point quotient is left in
FPl. The mantissa (M1) is truncated to 24 bits. The 3-bit
M1 extension (E) contains the absolute value of the divisor
mantiss;. MD2, SIGN, and SCR are altered. The A- and
X-REGs are altered and the Y-REG is cleared.
Uses: MD1, MD2, MDEND.
Cautions: An exit to location S3F5 is taken if the quotient is
less than —2128 or greater than +2128—1.
Notes: MD2 contains the remainder mantissa (equivalent to the
MOD function). The remainder exponent is the same as
the quotient exponent, or 1 less if the dividend mantissa
magnitude is less than the divisor mantissa magnitude.

Example: Prior to calling FDIV, FP1 contains -60 (dividend)

and FP2 contains +12 (divisor).

P L m e
FP1: | $85 Lsss o L 0o (-60)
[| ¢ — ——— —————d

X1 M1
T - | T 7 ’ :
FP2: P883 | 360 f 0 j [0 | (+12)
Voo o I . ﬁ,,,ﬁ_J
X1 M1

After calling FMUL, FPl contains -5 and M2 contains (.

e sz [s] [0 [0 1 s

X1 M1

Page 0089 of 0213)

| Distributed under the Creative Commons License on page 5

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

FLOAT -subroutine (address $F451)

Purpose: To convert integers to floating point representation.

Entry: A signed (two's complement) 2-byte integer is stored in
M1 (high-order byte) and M1+1 (low-order byte). M1+2
must be cleared by the user prior to entry.

Uses: NORM1.

Exit: The normalized floating point equivalent is left in FP1,

E, ¥P2, SIGN, and SCR are not disturbed. The A-REG contains

a copy of the high-order mantissa byte upon exit but the
X~ and Y-REGs are not disturbed. The carry is cleared.

Notes: To float a 1l-byte integer, place it in M1+1 and clear M1

as well as M1+2 prior to calling FLOAT.

FLOAT takes approximately 3 msec. longer to convert
zero to floating point form than other arguments. The
user may check for zero prior to calling FLOAT and increase

throughput.

x
* LOW-ORDER INTEGER BYTE IN A-REG

* HIGH-ORDER BYTE IN Y-REG
*

85 FA XFLOAT STA M1+1

84 F9 STY M1 INIT MANT1.

A0 00 LDY #30

84 FB STY M1+2

05 D9 ORA M1 CHK BOTH BYTES

DO 03 BNE TOFLOAT FOR ZERO.

85 F8 STA X1 IF SO, CLR X1

60 RTS AND RETURN.

4C 51 F4 TOFLOAT JMP FLOAT ELSE FLOAT INTEGER.

| Distributed under the Creative Commons License on page 5 Page 0090 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

Example: Float +274 ($0112 hex)

Calling sequence

A0 01 LDY #8301 HIGH-ORDER INTEGER BYTE
A9 12 LDA %12 LOW-ORDER INTEGER BYTE
84 T9 STY M1

85 FA STA M1+1

A9 00 LDA #$00

85 F8 STA M1+2

20 51 F4 JSR FLOAT

Upon returning from FLOAT, FP1 contains the floating

point representation of +274.

—_ . -

FP1: . $88
L . .
X1 M1

| $44 | | 380

(+274)

| Distributed under the Creative Commons License on page 5

Page 0091 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

FIX subroutine (address SF640)

Purpose: To extract the integer portion of a floating pOint

number with truncation (ENTIER function).

Entry: A floating point value is in FP1. It need not be normalized.

Uses: RTAR.

Exit: The two-byte signed two's complement representation of the
integer portion is left in M1 (high—ordir byte) and M1l+1
(low-order byte).l The floating point vélues +24,63 and
-61.2 are converted to the integers +24 and -61 respectively.
FP1 and E are altered but FP2, E, SIGN and SCR are not.

The A- and X-REGs are altered but the Y-REG is not.

Example: The floating point value +274 is in FP1 prior to calling

FIX.

e o]] (3] (0] cmo

X1 M1

After calling FIX, M1 (high-order byte) and M1+1
(low-order byte) contain the integer representation

of +274 ($0112).

FP1: >8E ! L_$01_J l §IQ“J —‘5“ﬁ
M1

Note: FP1l contains an unnormalized representation of

+274 upon exit.

| Distributed under the Creative Commons License on page 5

Page 0092 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

AUXILLIARY SUBROUTINES.

NORM 'subroutine (address $F463)

Purpose: To normalize the value in FP1, thus insuring maximum

precision.

Entry: A normalized or unnormalized value is in FP1.

Exit: The value in FP1 isinormalized. A zero mantissa will
exit with X1=0 (2—128/exponent). If the exponent on exit
is -128 (X1=0) then the mantissa (M1) is not necessarily
normalized (with the two high-order mantissa bits unequal).
E, FP2, SIGN, and SCR are not disturbed. The A-REG is
disturbed but the X- and Y-REGs are not. The carry is set.

FP1 contains +12 in unnormalized form (as .OOllé X 26).

FP1 f”ééé_‘ y éocﬂw ;‘ 0o | (—_Bgi] (+12)

X1 M1

Example:

Upon exit from NORM, FP1l contains +12 in normalized

form (as 1.12 X 23).
Fp1 Ts83 0 s60 | o | iwbj (+12)
| $83 0 %60 5 9 TP
X1 M1

NORM1 subroutine (address 3F455)

Purpose: To normalize a floating point value in FP1 when it

is known the exponent is not -128 (X1=0) upon entry.

Entry: An unnormalized number is in FP1. The exponent byvte

cshould not be 0 for normal use.

“vit: The n orraliced value is in FP1, E, FP2, SIGN, and SCR

~

are pot disturbed. The A-REG is altered but the X- and

Y-RECs are not.

Distributed under the Creative Commons License on page 5 Page 0093 of 0213
S

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

ADD subroutine (address $F425)

Purpose: To add the two mantissas (M1 and M2) as 3-byte integers),

Enptry: Two mantissas are in M1 (through M1+2) and M2 (through
M2+2). They should be aligned, that is with identical
exponents, for use in the FADD and FSUB subroutines.

Exit: The 24-bit integer sum is in M1 (high-order byte in M1,
low-order byte in M1+2). TFP2, X1, E, SIGN, and SCR are
nct disturbed. The A-REG contains the high-order byte of
the sum, the X-REG contains $FF, and the Y-REG is not
altered. The carry is the '25th' sum bit,

Ixample: FP1 contains +5 and FP2 contains +7 prior to calling

ADD.
i s] w0l [0 1[0 s
Xln - o Mi - S T
2 ss2z] [s0] [o 1[0 | o

Upon exit, M1 contains the overflow value for +12.
Note that the sign bit is incorrect., This is taken

care of with a call to the right shift routine,

T TN Ty Tttt
}($co;ro;lo; (+12)

| Distributed under the Creative Commons License on page 5

Page 0094 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

ABSWAP subroutine (address $F437)

Purpose: To take the absolute value of FP1 and then swap FP1
with FP2. Note that two sequential calls to ABSWAP
will take the absolute values of both FP1 and FP2
in preparation for a multiply or divide.

Entry: FP1 and FP2 contain floating point values.

Exit: The absolute value of the original FP1 contengs are in
FP2 and thé original FP2 contents are in FP1l. The least
significant bit of SIGN is complemented if a negation
takes place (if the origiral ¥P1 contents are negative),
by means of an increment. SCH and E are used. The A-REG
contains a copy of X2, the X-liEG is cleared, and the Y-REG

is not altered.

RETAR subroutine (address $F47D)

Purpose: To shift M1 right one bit position while incrementing
X1 to compensate for scale. This is roughly the opposii-
of the NORM subroutine.
Entry: A normalized or unnormalized floating point value iz in
FP1.
Exit: The 6-byte field MANT1 and E is shifted right one bit
arithmetically and X1 is incremented by 1 to retain wnroner
scale. The sign bit of MANT1 (MSB of M1) is unchangec.

P2

‘o

SIGN, and SCR are not disturbed. The A-REG contzains
the least significant byte of E (E+2), the X-REG is clear=4.

and the Y-REG is not disturbed.

Page 0095 of 0213

| Distributed under the Creative Commons License on page 5

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

RTAR subroutine (continued)

Caution: If X1 increments to O (overflows) then an exit to
location $3F5 is taken, the 'A-REG contains the high-order
MANT1 byte, M1, and X1 is cleared. FP2, SIGN, SCR,
and the X- and Y-REG's are not disturbed.

Uses: RTLOG

Example: Prior to calling RTAR, FP1l gontains the normalized

value -7.

FP1 [AéSB [$SAO 0 0 (-7
X1 M1

After calling RTAR, FP1 contains the unnormalized

value -7 (note that precision is lost off the low-order

end of M1).

FP1 384 $D9_J[0 { 0 (-7)
X1 M1

Note: M1 sign bit is unchanged.

| Distributed under the Creative Commons License on page 5 Page 0096 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

RTLOG subroutine (address.$F480)

Purpose: To shift the 6-byte field MANT1 and E one bit to the
right (toward the least significant bit). The 6502
carry bit is shigted into the high-order M1 bit.

This is useful in correcting binary sum overflows.

Entry: A normalized or unnormalized floating point value is in

FP1. The carry must be cleared or set by the user
since it is shifted into the sign bit of M1,

Exit: Same as RTAR except that the sign bit of M1 is not pre-

served (it is set to the vlaue of the carry bit on entry).

Caution: Same as RTAR.

Example: Prior to calling RTLOG, FP1 conatins the normalized

value -12 and the carry is clear.

FP1: $83 a0 | | o 0 (-12)
X1 M1

After calling RTLOG, M1 is shifted one bit to the right

and the sign bit is clear. X1 is incremented by 1.

FP1: $84 $50 0 [__O (+20)
X1 M1

Note: The bit shifted off the end of MANT1 is rotated
into the high order bit of the 3-byte extension
E. The 3-byte E field is also shifted one bit

to the right.

Page 0097 of 0213)

| Distributed under the Creative Commons License on page 5

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

RTLOG1 subroutine (address $F484)

Prupose: To shift MANT1 and E right one bit without adjusting
X1. This is used by teh multiply loop. The carry
is shifted into the sign bit of MANT1,
Entry: M1l and E contain a 6-byte unsigned field. E is the
3-byte low-order extension of MANT1,
Exit: Same as RgLOG except that X1 is not altered and an overflow

exit cannot occur.

MD2 subroutine (address $F4E2)

Purpose: To clear the 3-byte MANT1 field for FMUL and FDIV,
check for initial result exponent overflow (and
underflow), and initialize the X-REG to $17 for loop
counting.

Entry: The X-REG is cleared by teh user since it is placed in

the 3 bytes of MANT1l. The A-REG contains the result

of an exponent addition (FMUL) or subtraction (FDIV).
The carry and sign status bits should be set according
to this addition or subtraction for overflow and under-
flow determination.

Exit: The 3 bytes of M1l are cleared (or all set to the contents

of the X-REG on entry) and the Y-REG is loaded with $17,.
The sign bit of the A-REG is complemented and a copy of
the A-aEG is stored in X1. FP2, SIGN, SCR, and the X-REG
are not disturbed.

Uses: NORM.

Caution: Exponent overflow results in an exit to location $3F5,

Exponent underflow results in an early return from the

| Distributed under the Creative Commons License on page 5 Page 0098 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

D2 subroutine (continued)

calling subroutine (FDIV or FMUL) with a floating point

zero in FP1l, Because MD2 pops & return address off'

the stack, it may only be called by another subroutine.

| Distributed under the Creative Commons License on page 5

Page 0099 of 0213)

~
The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.
FLZATING FOINT RCLTINGS
1:49 P M, 1O/3/71777 : FAGE"
1 LR R R R RS T T
2 # #*
3 # AFPLE-II FLIIATING #
4 * FOINT ROUCINES #*
5 #* ' #*
1S ¥ COFYRIGHT 1977 BY #
7 * AFFLE COMELUIER INC. #
3 #* *
? # ALL RIGH13S REZSERVED #
10 * *
11 * 5. WIINIAK #*
12 #* #*
13 36 oF 36 3 3 30 36 30 % I 5L 3 I H K HHH I
14 TITLE “"FLOATING FIOINT ROUTINES" /
15 SIGN EFZ 3F3 '
14 Xz EPZ $F4
17 M2 EFZ sFS ,
13 X1 EFZ =F3 '
1% M1 EFZ 3F?
20 E EFZ SsFC .
21 VLo EQS BIFS t
22 ZRI3 SF4ZS
Fa4zS: 13 23 ADD cLe CLEAR CARRY. ¢
F426: A 02 24 LDX #s2 INLDCX FOR 3--EYTE ADRD.
423 ES F? 5 ADD1 LOA M1, X
=4:A: 75 FS 26 . ADC Mz, X ADD A EYTE 1JF MAN1Z TO MANfIT
=421 25 K7 27 =TA ML, X ¢
e D e CA a3 DEX INUDEX TO NeXT MORE SIGNIF. EY
TATE: 10 +7 29 EFL ADD1 LOOF UNTIL DONE. .
11 40 30 RTS RETLIRN ¢
-432: 04 F3 31 MUl ATl SIGN CLEAR L3ZB OFF SIGN, .
-424: 20 37 F4 32 JISU ARSWAP AES VAL OF M1, THEN ZWAFP WITH
=437 24 F¥ 33 ABRSWAF EBIT ™M1 MANI1 NEGATIVE? !
43 10 0S5 - 24 EFL ARSWAF1 NO, SWAP WITH MANITZ AND RETLURN
T4LB: 20 A4 F4 325 JER FCOMPL YES, COMFLEMENY IT.)
4:3E: E& F2 36 INC ZIGN INCR SIGN, COMALEMENTING L3B.
S440: 3G 37 AEZWARL ZEC SET CARRY FOR RETURN TO MUL/DI
T441: AZ Q4 3 SWNAF LOX #%4 INDEX FOR 4-BYTE SWAP. -
‘443 94 FR e SWAF 3TY E-1,X '
445 =7 40 LOA X1-1,X SWAP A BYIE OF EXF/MANTL WITH
“447: E4 173 41 ‘ LY XZ-~-1,X EXF/7MANTZ AND LEAVE A COFY 0OF
T44%: w4 F7 az STY Xi1-1,X MANT1 IN E (3 EYIES). E+3 Jso
441 I C 43 =27TA XE2-1,X
440 A 44 : DEX ADVANICE INDEX TO MNeXT BYTE.
440 DO F3 a5 ENE ZWAF1 LOCFP UNTIL DHONE. L
-450: &0 a4k RTS RETURN '
451 A7 ZE a7 FLOAT LOA H#33E INIT EXF1 TO 14, -
3453: 25 F3 43 =T X1 THEN NORMALIZE TO FLOAT. L
T4S: S OF? 4w NIORM1 LA M1 HIGH-ORDOER MANT1 BYTE
T35 oy 20 S0 ZME #3120 IWFFER TWO BITS UNERUAL?R .
457 20 oC 5 EMI RT=1 YES, RETURN WITH MANI1 NORMAL.
45 &6 FS S2 DEC X1 DECREMENT EXF1.
RE0: 06 FB =3 ASL Mi+2 .
ISR 6 FA >4 FOL M1+l SHIST MANT1 (3 BY(E3) LEF1.
| Distributed under the Creative Commons License on page 5 Page 0100 of 0213)

,
The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.
FLOATING FOING AOIUTINES)
4% F. M., W0/3/1%77 FAGE: 2
A1 6 F7 S ROL ™1t
W30 RS FE St NITRM LoA X1 EXFP1 ZERITI?
0o EE o7 ENE NDRMIE N, CONCINUE NORMALIZING
bes 40 bt RT=1 RTS RT3 RETIIRN.
PAR 20 A4 F4 S¥ Fails SR FCOMPL CHMPL MANTL, CLEARS CARRT UHNLE =S
tab 0o 7B F4 40 TWHFALICN JER S ALGNEWE RIGHT, SHIFT MANT1 OR SWAT WIh.i
VLE: ~S Fé4 &1 FALD LA X2
y70. LS FB A2 cmPr X1 COMFARE EXP1 WITH EXPZ. .
V72 oo F7 63 ENE SWFALGN 1F #, SWAP ADDENLDS O ALIGN MA.WT
74 20 29 F4 L4 JSR ADD ADD ALIGNED MANIIZSAS
377 50 & a5 ADDEND T BEVLC NCRM N3 COVERFLOW, NORMALIZE RESULT
V7 70 05 L EVS RTLOG Ov: SHIFT M1 RIGHI, CARRY INvo
V7B PQ L4 67 ALIGHNEWK BCC AP SWAP IF CARRY CLEAR, o,
L3 # EL2E SHIFT RIGHY ARITH '
Y70 AS F¥ L9 RTAR LoA Mt SIGN F MANTL IN1O CARRY FOR
P7F OA 70 ASL A RIGHT ARITH ZHIFT.
W0 E4 F3 71 RTLOG INC X1 INCR X1 TO ADJUST FOR RIGHT =HI
LR FO 73 Z EER OVFL EXP1 OUT OF RANGE.
124 A2 FA 73 RTLIGE LOX #3FA INLEX FOR &:BYTE RIGHM SHIFT.
134 76 FF 74 RIOR1 ROR E+3, X
23 ES3 75 INX NEXT BYTE OF SHIFT.
LR 0o B 75 ENL ROR1 LGP UNTIL DIORE
3=B: 50 77 RTS RETURN
3= 70 2% F4 72 F ML SSROMD1 ABS VAL 0OF MANT1, MANIZ
3SF: -5 F3 73 ADC X1 ADD EXP1 TO EXP2 FOR PRODUCT EX
3v1: 20 E2 F4 30 JER MOE CHECK FROD. EXP AND FREP. FOR P
474 13 21 cLic ’ CLEAR CARRY FOR FIRST BIT.
TS 0 24 F4 22 MLl JSR O ORTLOGT M1 ANU E RIGHT (FROD AND MPLIER
R 70 03X =3 o MULZE IF CARRY CLEAR, 3SKIF PARTIAL PF
49A: 0 25 F4 24 JSRADD ADD MULTIPLICAND TO PRODUCT.
4%D: =3 =S MuULZ DEY NEXT MUL ITERATION
4E: 10 S 26 EFL MLl LOoP UNTIL DONE
480: 45 3 =7 MUEND LR SIGN TEST SIGN LSB. »
4AZ: 70 EF i NIZRMX BCC NIORM IF EVEN, NORMALIZE PRID, EL3E CL
4A4: 23 =% FiziomPL ZEC SE| CARRY FOR SUBTRACT.
AS: A2 O3 30 LDX #3323 INLEX FOR 3-EYTE SUBTRACT.
4A7: A% Q0 71 ZOMELL LA #30 CLEAR A
477 FS F3 72 SEC X1, X SUBTRACT BYTE OF EXFL.
4AB *% F3 3 =TA X1, X RESTIORE IT.
4A0: iZA 74 DEX NEXT MORE SIGNIFICAN! EYIE
JAE: 0o F7 5 ENE oMLl LOOF UNTIL DONE
JEO: FO CS 76 BER ADDEND NORMALIZE (OR SHIFT RT IF n (V]
4B2: 20 32 F4 77 FOIV JEIR MDY TAKE AES VAL OF MANTIL, MANTZ.
4ES: go Fi2 3 SRC X1 SUBTRACT EXFL FROM EXF2
4E7: 20 EZ F4 79 JOR MO2 ‘ SAVE A3 QJOTIENT EXF
4EA: 8 100 DIVi SEC SET CARRY FOR SUBTRALCT.
4BRG: ¥ 02 101 LDX #32 INUEX FOR 3-BYIE SUBTRACTION.
‘ABU: BS FS 102 DIVvz2 LoDA Mz X
‘4BF I 103 SEC ENX SUBTRACT A EBYFE OF E FROM MANY.
4T 43 104 FHA SAVE ON STACK
47 CA 105 LEX NEXT MORE SIGNIFICANT BYIE
el 10 F2 106 pFL DIVZ LODF NI IL DIONE,
S AZ FD 107 LOX #%FD INUEX FOR 2-EYTE CONULITIGNAL ™M
-7 L3 1q3 DIV3 FLA FULL BYTE OF DIFFERENCE 0OFF ..

| Distributed under the Creative Commons License on page 5 Page 0101 of 0213
S

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

1: 4%

P

F&
FalA:
F4ais:

e F
Fap1:
FAaDz:
FAlS:
Fan7
F4D7:
FA4nE:
T&0O0:
F4aDE:
F4EOQ:
F4acz:
F4aE4:
F4EL:
=403
“4EA:
S44-f
400D
4L
40
GF 2
4174
TAF L
“41°7:
T4F?:

“A490:
TH47:
-4£44:
ThEAL:

43
TH4A:

D\l
p
P

o
'S
|

ONERNOAG

.
o

DUSER IR R B IR |

D

koo ol ol oo o

A i

or
> O oo

K&

50

WD
Ot

o
O WG

#SINTCESSHLIL ASSEMELY:

107271577

0z
i
Pz
FE
Fa
1y
F7
Fbs
FS
1o

DA
EE
Fe
Fa
Fo
oD
4

- T 0o
NOOR

2
)

109
110
111
112
113
114
115
116
117
113
11?
120
121
122
123
124
135

126

A b s e A et e et b e e b e

B R O VX O B U VU R P B U P VR I (RO RO X

OVWUNGCUPWRN-OVON

H
'S
(=

1N

- s
Hp b
HWw

145
144
147
143
147

S0
131
192
153

154

SULATINGG iz

oiva

MLz

MU3

DVICHK

OVEL

FIX1
FIX

FIXRTS
LIrGFL

EiC
ZTA
INX

T

e
ROL
ROL
ROL
Azl
ROL
RO
[E e
DEY
ENL
LEQR
£#TX
STX
ETX
| e
EMI
LA
FLA
ECC
EDOR
=TA
Loy
RTS
CPL
JMP
IRG
JIR
LA
EPL
iZMP
ENE
EIT
EFL
LOA
EER
INC
ENE
INC
RTS
LOA
=TA
STA
RTS

oIve4
MZ+3, X

ODIiv3
M1+2Z
Mi+1
M1
MI+Z
2+1
Mz
JVFEL

DIvi
MUOEND
Mi+2
Mi1+1
M1
CIVICTHE
MU3

NIZRMX
#$:30
X1
#s$17

MD3
VLo
EFLZD
RTAR
X1
LINLDF L
#52E
FIX1
M1
FIXRTS
Mi+Z
FIXRTS
Mi+1
FIXRTZ
M1

#30
M1
Ml+1

ERRORS

RTINS

FAGE: 3
IF M2<E THEN DON'T RESTORE M2

NeXT LESS SIGNIFICANT EBYTE
LR UNPIL DONE

ROLL SUOTICNT LEFT, CARRY INIL

SHIFI DIVIDEND LEFT

DVFL I3 DDE TO WNNORMED DIVIES
NEXT DIVIDE ITERATION,

LOOF UNITIL [ioME 23 ITERATIONS
NORM. SUOTIENT AND CORRECT 3SIC

CLezAR MANTL (3 EBYTES) FOR MUl

IF CALLC. SET CARRY, CHECK FOR .
IF NEG THEN NI UNUERFLOW.
FOF ONE RETIURN LEVEL.

CLEAR X1 ANU REITLIRN.
COMPLEMENT SIGN BIT OF EXFONEN
STORE IT.

COUNT 24 MUL/23 DIV ITERATIONE
RETLIRN. v

IF FPISITIVE EXP THEN NI VKL,

RTS

| Distributed under the Creative Commons License on page 5

Page 0102 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

ABTWAP
ARCWARL
&0DD
ALD1
AppLno
ALIGNIWP
zioMPL
uivy
oIvz
uiv3
Diva

t

FADD
ITCIOMPL
FOIV
FIX 4
FIX1
FIXRTS
FLUAT
L
FoUB

M1

Mz
MO1
MDZ
MD3
MUERD
MUL.1
M 2
NORM
NORMY
NIDRMX
VCHK
OVFL
[WAVAE 1 ¢
R
RTAR
RTLOG
RILIOGT
1Sy
SICN
ZWAFP
WAL
SWFALGN
LINUFL
X1

X

CROUGS-REF ERNCE:

F4a37
b &40
425
17423
<477
I"47B
I-4A7
F4EA
F4rED
1"427
Fac
QOFIZCZ)
| 44AE
F4A4
I"4E2
17540
I-43D
FeSh
Fas51
F4aC
Far3
QOF9(Z)

OOFS(Z)
F432
F4E2
I"4FQ
F4A0
F475
F42D
Far3
F4ss
FAA2
I"6F7
F4F7
03FS
F4zs
1470
F420
17634
Fans7
OCF3(2)
1441
443
F4nk
I&57
Q0F=(2Z)

OCF4

0032
oz4
004L4
QOzZ¥
00746
C04LO
0035
0121
0104
0112
0107
0039

003ES

0142
0144

00zZS
0123
00Z6
0073
000
0127
0122
0026
0033
004LS
o0s7
0130
0126
0072
0136
0076
0133
00t4
o032
001
00z1
0067
0045
0063
0140
0040
0132
0041

FLCATING POINGT ROUIINES

coz4

0074

0059

0146

0027
0124
0102
00¥7
0077

0135

0033

0117?

0036

0042
0139
0043

0103

0143

0033 004% 003832 0054 0055 0042 0113 0114 0113
0125 0143 0145 0147 0147 0152 0153
0110 01146 0117 O1183

Q0=

)
~N

0042 0032 QOGS4 0062 0071 007% 0092 00%3 0073

0061

| Distributed under the Creative Commons License on page 5 Page 0103 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

This page is not part of the original Wonderbook

| Distributed under the Creative Commons License on page 5 Page 0104 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

The Woz Wonderbook

DOCUMENT

Apple-1I1I

Sweet-16 -- The 6502 Dream Machine

This page is not part of the original Wonderbook

| Distributed under the Creative Commons License on page 5 Page 0105 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

This page is not part of the original Wonderbook

| Distributed under the Creative Commons License on page 5 Page 0106 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

SWEET16 - THE 6502 DREAM MACHINE

While writing APPLE BASIC for a 6502 microprocessor I
repeatedly encountered a variant of MURPHY'S LAW. Eriefly
stated, any routine operating on 16-bit data will require at
least twice the code that it should. Programs making extensive
use of 16-bit pointers (such as compilers, editors, and assemblers)
are included in this category. 1In my case, even thé addition
of a few double-byte instructions to the 6502 would have only
slightly alleviated the problem. What I really needed was a
6502/RCA 1800 hybrid - a powerful 8-bit data handler complemented
by an easy to use processor with an abundance of 16-bit registers
and excellent pointer capability. My solution was tg implement
a non-existent (meta) 16-bit processor in software, interpreter

style, which I call SWEETI16,.

SWEET16 is based around sixteen 16-bit registers (R0-R15),
actually 32 memory locations. RO doubles as the SWEET1l6 accu-
mulator (ACC), R15 as the program counter (PC), and R14 as the
status register. R13 holds compare instruction results and R12
is the subroutine return stack pointer if SWEET16 subroutines
are used. All other SWEET16 registers are at the user's unre-

stricted disposal.

SWEET16 instructions fall into register and non-register
categories. The register ops specify one of the sixteen reg-

isters to be used as either a data element or a pointer to

| Distributed under the Creative Commons License on page 5 Page 0107 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

data in memory depending on the specific instruction. For example,
INR R5 uses RS as data and ST @R7 uses R7 as a pointer to data

in memory. K Except for the SET ,instruction, registe},ops take

1 byte of code each. The non-register ops are primarily 6502
style branches with the second byte specifying a +127 byte dis-
placement relative to the address of the following instruction.
Providing that the prior register op result meets a §pécified
branch condition, the displaceﬁent is added to SWEETiG‘s PC,

effecting a branch.

SWEET16 is intended as a 6502 enhancement package, not a
stand-alone processor. A 6502 program switches to SWEET16 mode
with a subroutine call and subsequent code is interpreted as
SWEET16 instructions. The non-register op RTN returns the user
program to 6502 mode after restoring the internal register
contents (A, X, Y, P, and S). The following example illustrates

how to use SWEET186.

300 B9 00 02 LDA IN,Y Get a char.

303 C9 CD CMP '"M" "M" for move?

305 DO 09 BNE NOMOVE No, skip move.

307 20 89 Fe JSR SWwis Yes, call SWEETI14,
304 41 MLOOP LD @R1 R1 holds source address.
30B 52 ST @R2 R2 holds dest. address.
30C F3 DCR R3 Decrement length.

30D 07 FB BNZ MLOOP Loop until done.

30F 00 _ RTN Return to 6502 mode.
310 C9 C5 NOMOVE CMP "E" "E" char?

312 DO 13 BEQ EXIT Yes, exit.

314 C8 INY No, continue

NOTE: Registers A, X, Y, P, and S are
not disturbed by SWEET16,

| Distributed under the Creative Commons License on page 5 Page 0108 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

INSTRUCTION DESCRIPTIONS

The SWEET16 opcode list is short and uncomplicated.
Excepting relative branch displacements, hand assembly is
trivial. All register opcodes are formed by combining two
hex digits, one for the opcode and one to specify a régister.
For example, opcodes 15 and 45 both specify register RS while
codes 23, 27 and 29 are all ST ops. Most register ops are
assigned in complementary pairs to facilitate remembering
them. Thus LD and ST are opcodes 2n and 3n respectively, while

LD @ and ST @ are codes 4n and 5n.

Opcodes 0 to C (hex) are assigned to the thirteen

non-register ops. Except for RTN (opcode 0), BK (0A), and

RS (B), the non-register ops are 6502 style relative branchés.
The second byte of a branch instruction contains a +127 byte
displacement value (in two's complement form) relative to the
address of the instruction immediately following the branch.
If a specified branch condition is met by the prior register
op result, the displacement is added to the PC effecting a
branch. Except for BR (Branch always) and BS (Branch to Sub-
routine), the branch opcodes are assigned in complementary
pairs, rendering them easily remembered for hand coding. For
example, Branch if Plus and Branch if Minus are opcodes 4 and

5 while Branch if Zero and Branch if NonZero are opcodes 6 and 7.

| Distributed under the Creative Commons License on page 5 Page 0109 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

(paudtsseuf])
(paudtrsseun)
(pauldrsseu()
(autjnoaqng o031 youeaqd)
(suTrtanoaqng woxy uaniay)
(qeoxqg)

(T snuty 30N FT youeriq)
(T sSnuIp IT youeaq)
(oxezuoN JT youeaq)
(oxe7z IT youeaq)

(snuty JT youeaq)

(sn1d JT youeaq)

(Axxe)d IT youwrag)
(Axxe) oN IT youerag)

(sfemT1e youraqg)

o g
sy
p:taf

®S TWNG

'S TWG

®o ZNg

8o 7d

o Wg

ve dd

®va 0g

®9 ONM
eo yd
AR

(apow g0g9 031 uxniay)

sdpo x91sT183I-uoN

40
q0
ao
20
d0
Vo
60
80
L0
90
G0
48]
€0
4y
10

00

(3uswaxoaq)
(juswaxouy)

(axedwo))

(308xtput atqnop dod)
(ang)

(ppy)

(3o09atputr dod 810318)
(399axtputr dod)
(399aTPUT 3TQNOP ©1018)
(3092aTpUT BTqnOp pPBOTI)
(308aTpUT 83018)
(399211pPUT pROT)
(81018)

(peoT)

(198) JuBISUOD

¢

uyq ¥oda
udg UNI
uyg Hdo
ug® ddod
uy gns
uy aqyv
ug@ dis
ug® dod
ugo dis
ude dald
Uy LS
L¥: (0] at
uy LS
uy at
uy LIS

sdp 1o1st380y

AYVINNAS Jd0DdO 9TLIIMS

ug

uy

ud

ud

ag

uy

ug

ug

uz

ug

ug

uy

Page 0110 of 0213)

| Distributed under the Creative Commons License on page 5

The Woz Wo -- igi
nderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc

FNERESY

|1n 0w

L. i
consta

SET Rn,Constant

The ACC is stored into Rn and

according to the data transfe
and the ACC contents are not
Example

25 LD RS

36 ST R6

REGISTER OPS

The 2-byte constant js loaded into Rn (n = 0 to F, hex)

and branch conditions set accordingly. The carry is

cleared.

Example

15 34 AO SET R5, A034 R5 now contains A034
LD Rn .[”5;-‘ (Load)

The ACC (RO) is loaded from Rn and branch conditions

set according to the data transferred. The carry is

cleared and the contents of Rn are not disturbed.

Example

15 34 AO SET R5, A034

24 LD RS ACC now contains A034
ST Rn [ﬂgg—ﬁ (Store)

(Set)

nt

branch conditions set

rred. The carry is cleared

disturbed.

Copy the contents
of R5 to R6.

| Distributed under the Creative Commons License on page 5

Page 0111 of 0213)

The W - igi
0z Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc

LD @Rn | 4n

mented by 1.

the 2-byte ACC contents.

Example

15 34 AO SET RS,
16 22 90 SET R6,
45 LD @RS
56 ST @R6

tents which will always be po

The low-order ACC byte is loaded from the momory location
whose address resides in Rn an

cleared. Branch conditions reflect the final ACC con-

The carry is cleared. After the transfer, Rn is incre-

Example
15 34 AO SET R5,A034
45 LD @RS

ST @Rn i 5n i

The low-order ACC byte is stored into the memory location

whose address resides in Rn.

The carry 1is cleared., After

the transfer, Rn is incremented by 1.

A034
9022

d the high-order ACC byte is

sitive and never minus 1.

Branch conditions reflect

(Load indirect)

ACC is loaded from
memory location A034
and R5 is incremented
to A035.

(Store indirect)

Load pointers R5 and R6
with A034 and 9022.

Move a byte from location
A034 to location 9022,
Both pointers are
incremented.

| Distributed under the Creative Commons License on page 5

Page 0112 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc

LDD @Rn | AGn (Load double-byte indirect)
The low order ACC byte is 1oaded from the memory location
whose address resides in Rn and Rn is then incremented
by 1. The high order ACC byte is loaded from the mémory
location whose address resides in the (incremented) Rn

and Rn is again incremented by 1. Branch conditions

reflect the final ACC contents. The carry is cleared.

Example

15 34 AO SET R5, A034

65 LDD @RS The low-order ACC byte
is loaded from location
A034, the high-order byte
from location AO035. R5 is
incremented to AO36.

STD @Rn i 7n (Store double-byte indirect)

|
The low-order ACC byte is stored into the memory location

whose address resides in Rn and Rn is then incremented
by 1. The high-order ACC byte is stored into the memory
location whose address resides in (the incremented) Rn
and Rn is again incremented by 1. Branch conditions
reflect the ACC contents which are not disturbed. The

carry is cleared.

Example

15 34 AO SET R5, A034 Load pointers R5 and R6

16 22 90 SET R6, 9022 with A034 and 9022. Move
65 LDD @RS double byte from locations
76 STD @R6 A034 and A035 to locations

9022 and 9023. Both point-

ers are incremented by 2.

| Distributed under the Creative Commons License on page 5

Page 0113 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

POP GRn ' 8n . (Pop indirect)

!

[——

The low order ACC byte is loaded from the memory location
whose address resides in Rn after Rnlis decremegted by 1
and the high order ACC byte is cleared. Branch conditions
reflect the final 2-byte ACC contents which will always be
poéitive and never minus 1. The carry is cleared. Because
Rn is decremented prior to loading the ACC, single byte
stacks may be implemented with the ST @Rn and PéP @Rn

ops (Rn is the stack pointer).

Example

15 34 AQ SET RS, A034 1Init stack pointer.
10 04 00 SET RO, 4 Load 4 into ACC.
35 ST @RS Push 4 onto stack.
10 05 00 ‘ SET RO, 5 Load 5 into ACC,
35 ST @RS Push 5 onto stack,
10 06 00 SET RO, 6 Load 6 into'ACC.
35 ST @R5 Push 6 onto stack.
85 POP @R5 Pop 6 off stack into ACC,
85 POP @R5 Pop 5 off stack.

85 POP @R5 Pop 4 off stack,

| Distributed under the Creative Commons License on page 5 Page 0114 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

[]

STP @Rn ' on (STORE POP indirect)

L

The low order ACC byte is stored into the memory location
whose address resides in Bn after Rn is decremented by 1.
Then the high-order ACC b&te is stored into the memory
location whose address resides in Rn after Rn is again
decremented by 1. Branch conditions will reflect the
2-byte ACC contents which are not modified. STP @Rn

and FOP @Rn are used toge%her to move data blod&s
beginning at the greatest address and working down.
Additionally, single-byte stacks may be implemented

with the STP @Rn and LDA @Rn ops.

Example

14 34 AO SET R4, A034 1Init pointers.

15 22 90 SET R5, 9022

84 POP @R4 Move byte from A033
95 STP @R5 to 9021.

84 POP @R4 Move byte from A032
95 STP @R5 to 9020,

| Distributed under the Creative Commons License on page 5 Page 0115 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

e e

ADD Rn | An

The contents of Rn are added to the contents of the ACC
(RO) and the low-order 16 bits of the sum restored in
ACC. The 17th sum bit becomes the carry and other branch

conditions reflect the final ACC contents.

Example

10 34 76 SET RO, 7634
11 27 42 SET R1, 4227
Al ADD R1

A0 ADD RO

(Add)

Init RO (ACC)
and R1.

Add R1 (sum = B85B,
carry clear)

Double ACC (R0O) to 70B6
with carry set.

| Distributed under the Creative Commons License on page 5

Page 0116 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

SUB Rn © Bn (Subtract)

The contents of Rn are subtracted from the ACC contents

by performing a two's complement addition:
ACC ACC + Rn + 1

The lfw order 16 bits of the subtraction are restored
in the ACC. The 17th sum bit becomes the carry and other
branch conditions reflect the final ACC contents. If
the 16-bit unsigned ACC contents are gfeater than or

equal to the 16-bit unsigned Rn contents then the

carry is set, otherwise it is cleared. Rn is not disturbed.

Example
10 34 76 SET RO, 7634 1Init RO (ACC)
11 27 42 SET R1, 4227 and R1.
Al SUB R1 Subtract Rl (diff =
340D with carry set)
AO SUB RO Clears ACC (RO)

| Distributed under the Creative Commons License on page 5

Page 0117 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

POPD @Rn

loaded from the memory location whose address now resides

in Rn.

ACC byte is loaded from the corresponding memory location,
Branch conditions reflect the final ACC contents. The

carry is cleared. Because Rn is decremented prior to

i cn |
L2
Rn is decremented by 1 and the high-order ACC byte is

Then Rn is again decremented by 1 and the low-order

loading each of the ACC halves,

may be implemented with the STD @Rn and POPD @Rn ops

(Rn is the stack pointer).

Example

15 34 AO
10 12 AA
75
10 34 BB
75
10 56 CC
C5
C5
C5

SET RS,
SET RO,
STD @RS

SET RO,
STD @R5

SET RO,
POPD @R3
POPD @R5
POPD @RS

A034
AA12

BB34

CC56

(POP Double-byte indirect)

double-byte stacks

Init stack pointer.
Load AAl12 into ACC,.
Push AAl12 onto stack.
Load BB34 into ACC.
Push BB34 onto stack,
Load CC56 into ACC.
Pop CC56 off stack,
Pop BB34 off stack.
Pop AA12 off stack.

| Distributed under the Creative Commons License on page 5

Page 0118 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

CPR Rn . Dn |

(Compare)

The ACC (RO) contents are compared to Rn by performing
the 16-~-bit bina}y subtraction ACC—ﬁn and storing the low
order 16 difference bits in R13 for subsequent’ branch
tests. If the 16-bit unsigned ACC contents are greater
than or equal to the 16-bit unsigned Rn contents then
the carry is set, otherwise it is cleared. No other

registers, including ACC and Rn, are disturbed.

Example

15 34 AO SET RS, A034 Pointer to memory.

16 BF AO SET R6, AOBF Limit address.

10 00 00 LOOP SET RO, O Zero data.

75 STD @R5 Clear 2 locs, incr R5 by 2.
25 LD R5 Compare pointer RS

D6 CPR R6 to limit R6.

02 F8 BNC LOOP Loap if carry clear,

| Distributed under the Creative Commons License on page 5 Page 0119 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

. :
INR Rn n En | (Increment)

The contents of Rn are incremented by 1. The carry is
cleared and other branch conditions reflect the incre-

mented value.

Example

15 34 AOQ SET R5, A034 Init R5 (pointer)

10 00 00 SET RO, O Zero to RO.

55 ST @R5 Ciears loc A034 and incrs

R5 to A035.

ES5 INR RS Incr R5 to A036

55 ST @RS Clears loc A036 (not A035)
DCR Rn [Fn (Decrement)

JS——

The contents of Rn are decremented by 1. The carry is
cleared and other branch conditions reflect the decre-
mented value.

Example (Clear 9 bytes beginning at loc A034)

15 34 A0 SET R5, A034 1Init pointer,

14 09 00 SET R4, 9 Init count.

10 00 00 SET RO, O Zero ACC,

55 LOOP ST @RS Clear a mem byte.
F4 DCR R4 Decr., count,

07 FC BNZ LOOP Loop until zero.

| Distributed under the Creative Commons License on page 5 Page 0120 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

NON-REGISTER INSTRUCTIONS

i

RTN Er 00 (Return to 6502 mode)
Control is retgrned to the 6502 and program execution
continues at the location immediately following the RTN
instruction. The 6502 registers and status condiﬁions

are restored to their original contents (prior entering

SWEET16 mode)

BR ea l“m~9£] [E::::] (Branch Always)
An effective address (ea) is calculated by adding the
signed displacement byte (d) to the PC. The PC contains
the address of the instruction immediately following
the BR, or the address of the BR op plus 2. The
displacement is a signed twos complement value from
_128 to +127. Branch conditions are not changed. Note
that effective address calculation is identical to that
for 6502 relative branches. The hex add and subtract

features of the APPLE-II monitor may be used to calculate

displacements.
d = 380 ea = PC + 2 - 128
d = $81 ea = PC + 2 - 127
d = $FF ea = PC + 2 - 1
d = $00 ea = PC + 2 + 0
d = 801 ea = PC + 2 + 1
d = $7E ea = PC + 2 + 126
d = $7F ea = PC + 2 + 127
Example
$300: 01 50 BR $352

| Distributed under the Creative Commons License on page 5

Page 0121 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

BNC ea

BC ea

BP ea

BM ea

Example (Clear mem from loc. A034 to AO3F)

l 02 [d . (Branch if No Carry)
O .
A branch to the effective address is taken only if the
carry is clear, otherwise execution resumes as normal

with the next instruction. Branch conditions are not

changed.

{ 051 (d % (Branch if Carry set)

A branch is effected only if the carry is set. Branch

conditions are not changed.

F o4 la (Branch if Plus)

A branch is effected only if the prior 'result' (or most
recently transferred data) was positive. Branch con-

ditions are not changed.

15 34 AC SET R5, A034 1Init pointer.
14 3F AO SET R4, AO03F 1Init limit,.
10 00 00 LOOP SET RO, O
55 ST @R5 Clear mem byte, incr RS.
24 LD R4 Compare limit to
D5 CPR RS pointer.
04 F8 BP LOOP Loop until done.
05 | a : (Branch if Minus)

A branch is effected only if the prior 'result' was

minus (negative, MSB = 1). Branch conditions are not

changed.

| Distributed under the Creative Commons License on page 5 Page 0122 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

N |
BZ ea i 06| :d : (Branch if Zero)

A branch is effected only if the prior 'result' was zero.

Branch conditions are not changed.

BNZ ea l Oi] ,d (Branch if NonZero)
A branch is effected only if the prior 'result' was

non-zero. Branch conditions are not changed.

- —
BM1 ea (— 08, (; _1 (Branch if Minus 1)
A branch is effected only if the prior 'result' was
minus 1 ($FFFF hex). Branch conditions are not changed.

BNM1 ea 09 :d i (Branch if Not Minus 1)

A branch is effected only if the prior 'result' was not

minus 1 ($FFFF hex). Branch conditions are not changed.

BRK I “6X—? (Break)

A 6502 BRK (break) instruction is executed. SWEET18
may be reentered nondestructively at SW16D after correcting

the stack pointer to its value prior executing the BRK.

| Distributed under the Creative Commons License on page 5 Page 0123 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

RS

BS ea

2.

Example
300: 15
303: 14
306: 16
309: o0C
320: 45
321: 56
322: 24
323: D4
324: 04
326: OB

(Calling a
AO34-A03B to

34 AO
3B AO
00 30
15

FA

r— Oéj!ﬁél‘kBranch to SWEET16 Subroutine)

0B

execution (in SWEET16 mode).

subroutine return stack pointer,

stack whose pointer is R12,

MOVE

'memory move'

(Return from SWEET16 Subroutine)
RS terminates execution of a SWEET16 subroutine and

returns to the SWEET16 ,calling program which, resumes

Branch conditions are not changed.

A branch to the effective address (PC + 2 + d) is taken
and execution is resumed in SWEET16 mode. The current

PC is pushed onto a 'SWEET16 subroutine return address'

The carry is cleared and branch conditions set to

indicate the current ACC contents.

3000-3007)

SET R5, A034
SET R4, AO3B
SET R6, 3000

BS MOVE
LD @R5
ST @R6
LD R4
CPR R5
BP MOVE
RS

R12, which is the SWEET16

is decremented twice.

and R12 is incremented by

subroutine to move

Init pointer 1.

Init limit 1.

Init pointer 2.

Call move subroutine.

Move one
byte.

Test if done,

Return.

| Distributed under the Creative Commons License on page 5

Page 0124 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

THEORY OF OPERATION

SWEET16 execution mode begins with a subroutine call to
SW16. The user must insure that the 6502 is in hex mode upon
entry. All 6502 registers are saved at this time, to be re-
stored when a SWEET16 RTN instruction returns control to the
6502. If!you can tolerate inde;inite 6502 register contents
upon exit, approximately 30 usec may be saved by entering at
SW16 + 3. Because this might cause an inadvertant switch from
hex to decimal mode, it is advisable to enter at SW16 the first
time through.

After saving the 6502 registers, SWEET16 initializes
its PC (R15) with the subroutine return address off the 6502
stack. SWEET16's PC points to the location preceding the next
instruction to be executed. Following the subroutine call
are 1-, 2-, and 3-byte SWEET16 instructions, stored in ascending
memory locations like 6502 instructions. The main loop at SW16B
repeatedly calls the 'execute instruction'’ routine at SW16C
which examines one opcode for type and branches to the appro-
priate subroutine to execute it.

Subroutine SW16C increments the PC (R15) and fetches the
next opcode which is either a register op of the form OP REG
with OP between 1 and 15 or a non-register op of the form 0 OP
with OP between O and 13. Assuming a register op, the register
specification is doubled to account for the 2-byte SWEET16
registers and placed ig the X-Reg for indexing. Then the
instruction type is determined. Register ops place the doubled

register specification in the high order byte of R14 indicating

| Distributed under the Creative Commons License on page 5 Page 0125 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

the 'prior result register' to subsequent branch instructions.
Non-register ops treat the register specification (right-hand
half-byte) as their opcode, increment the SWEET18 PC to point .
at the displacement byte of branch instructions, load the A-Reg
with the 'prior result register' index for branch condition

testing, and clear the Y-Reg.

WHEN IS AN RTS REALLY A JSR?
Each instruction type has a corresponding subroutine.
The subroutine entry points are stored in a table which is
directly indexed into by the opcode. By assigning all the
entries to a common page only a single byte of address need
be stored per routine. The 6502 indirect jump might have been

used as follows to transfer control to the appropriate subroutine.

LDA #ADRH High-order address byte.
STA IND+1

LDA OPTBL,X Low-order byte.

STA IND

JMP (IND)

To save code the subroutine entry address (minusIl)
is pushed onto the stack, high-order byte first. A 6502 RTS
(ReTurn from Subroutine) is used to pop the address off the
stack and into the 6502 PC (after incrementing by 1). The
net result is that the desired subroutine is reached by executing

a subroutine return instruction!

| Distributed under the Creative Commons License on page 5

Page 0126 of 0213)

The Woz Wonderbook -- igi
1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple C
, omputer Inc.

OPCODE SUBROUTINES

The register OP routines make use of the 6502 'zero
page indexed by X' and 'indexed by X indirect/ addressing
modes to access the specified registers and indirect data.

The 'result' of most register OpPS is left in the specified
register and can be sensed by subsequent branch instructions
since the register specification ig saved in the high-order

byte of R14. This specification is changed toO jndicate RO

(ACC) for ADD and SUB instructions and R13 for the CPR (compare)
instruction.

Normally the high-order R14 byte holds the 'prior
result register’ index times 2 to account for the 2-byte
SWEET16 registers and thus the LSB is zero. 1f ADD, SUB, or
CPR instructions generate carries, then this index is incre-
mented, setting the LSB.

The SET instruction increments the PC twice, picking up
" data bytes 1in the specified register. In accordance with 6502
convention, the low-order data byte precedes the high-order
byte.

Most SWEET16 nonregister ops are relative branches.

The corresponding subroutines determine whether or not the
'prior result’' meets the specified branch condition and if so
update the SWEET16 PC Dby adding the displacement value (-128

to +127 bytes).

| Distributed under the Creative Commons License on page 5

Page 0127 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

The RTN op restores the 6502 register contents, pops the
subroutine return stack and jumps indirect through the SWEET16
PC. This transfers control to the 6502!at the instruction im-
mediately following the RTN instruction.

The BK op actually executes a 6502 break instruction (BRK),
transferring control to the interrupt handler.

Any number of subroutine levels may be implemented within
SWEET16 code via the BS (Branch to Subréutine) and RS (Retur;
from Subroutine) instructions. The user must initialize and
otherwise not disturb R12 if the SWEET16 subroutine capability
is used since it is utilized as the automatic subroutine return

stack pointer.

MEMORY ALLOCATION

The only storage that must be allocated for SWEET16 variables
are 32 consecutive locations in page zero for the SWEET16 regis-
ters, four locations to save the 6502 register contents, and
a few levels of the 6502 subroutine return address stack. If
you don't need to preserve the 6502 register contents, delete
the SAVE and RESTORE subroutines and the corresponding subroutine
calls. This will free the four page zero locations ASAV, XSAV,

YSAV, and PSAV.

USER MODIFICATIONS
You may wish to add some of your own instructions to this
implementation of SWEET16. If you use the unassigned opcodes
SOE and $0F, remember that SWEET16 treats these as 2-byte instruc-
tions. You may wish to handle the break instruction as a SWEET16

call. saving two bytes of code each time you transfer into SWEET16

| Distributed under the Creative Commons License on page 5 Page 0128 of 0213
S

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

- a
mode Or you may wish to use the SWEET16 BK (Break) op as

: ' ' . absolute
‘CHAROUT' call in the interrupt nandler. You can perform

. - . .

| Distributed under the Creative Commons License on page 5

Page 0129 of 0213)

The Woz W -- igi
onderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc

7
45 F M.
SAST 20
~A3C]
=40 =5
| A2F I
r 0O: =25
I"AFL: 0
FAEYS 41
FAEE: Eé&
FAYA Do
FiFe:)
FLE: A7
t £AQ: 4!
F&AL: [aY0)
FAAS: B1
FLEAS: 7
FALART CA
FrAS: AA
FLAZ 4A
FAAA: S
FEAL: FO
FLAC: =
FAEO: 4A
6B 4A
FEEZ: 4A
FrRES A3
FeE4: E?
Fek7: o
F&BS &0
VAR EA
LBDR: Do
|- &ED EbL

10/3/1%7/

1E
OB
1D

1E
0
1F

F& 3

NI I VI

g W

[Ll
Wy~ O

—
[u

16
17
13
1%
z0

*J
[

T

O (NI
w

o

—

[
ol

0y N

3 F NP

JETVERVN |
Q= O

OO
)b

i
H

_UJQIWIJ
NG

B
- O

47
43
44
45
46
a7

A T
= 3

. 43

=0
=1
S
53
=

WA= Trae Div

e g S
cnrnz R

%%%#**%ﬁ%%%*}%*%**%%*

ok ok d Rk ok X E R X

arFLE-11
MATHINE

COF¥RTTNET
AFFLE COMPIUIER I

-
B

1%

ALL RIGHTS RESERVED

WOZHNIAK

***%*&%**%%%*%%*

TITLE
ROL
RO
R14H
R1SL
R1SH
S14&FAS
TAVE
RESTORE

TWl1A

SW1AE

SW1&C

SW16D

TOER

;SNLETI@

ErZ
EFZ
EFrZ
ErZ
EFZ
gl
el
Eail
RS
SR
PLA
ZTA
FLA
STA
JIER
JME
INC
ENE
INC
DA
FHA
LDY
LoA
ANL
TAX
LR
ECR
CER
3TX
LR
LER
LIR
TAY
LOA
FHA
RTS
I
ENE

ING

-
=
INTERFR

77

o ok % k% A R KK * X

B s
INIERFPRE TER"
%0

$1

1D

s1E

31F

3F7
sFFA4A
$FFZF
SFAEY
ZAVE

R1SL

R1SH
TW1AL
SW1EB
R1SL
SW14D
R15H
BT1LFPAD

#80
(R1SL). Y
HEF

A

A
(R1sSL), Y
TIOER
R14H

A

A

A

OFTEL-2, Y
R1SL

T2ERZ
R1SH

FARGE: 1

FRESERVE 4502 REG CONTENTS

INIT SWeET14 FC

FROM RETLUN

ADDRESS
INTERFRET ANU EXECIUTE
AN SWEET1A INSTR.

INCR SWEET16 FC FOR FEICH

PUSH O STAZK FOR RTS

FEICH INSTR

MASK REG SFECIFICATION
DOLBLE FOR 2-BYIE REG’3
TO X-REG FOR INLUEXING

NIDW HAVE OFCODE

IF ZERD THEN NN -REG OF

INUICATE FRIGR RESULT REG”

OFCRODE®Z TO LEBE S

T0 Y-REG FOR INDEXING
LOW-0OROER ADR BYTE
ONG D STACK

GoTO REG-0OP RO TINE

INCR FC

| Distributed under the Creative Commons License on page 5

Page 0130 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

FECH:
FACT:
Fals:
FaLY:
FaCZ:
FALCF:
FaDL:
FaUs:
b ~C4:
FrDb:
FeRE:
FeDz:
F&AUA:
Felc:
FALE:
FALEQ:
Falk2:
FAL3:
Fela:
FAaizs:
FaES:
FrET7:
FAES:
FEO?:
FLEA:
F&EB:
FLEC:
FaCD:
F&aCE:
FAEF:
F&FO:
F&aFL:
FbF2:
FLFZ:
Fe&i-4:
FAFS:

FAlTs

Far7
Fal e
FaFS:
FAFA
Fere:

Faie
F&FD

I"&TE:

Fal-tm

700
Fs/01:
F702:

702

3

N.l
GO
413
~D
3A
40

LC

L5

GO TS O MO
DR O> O

Dy

m=9o s

N
<

N Moo
Moy O W@ L (

— 0

E7

IWERTLAG

1037157/
E4 F6H 55 TIOER2 LDA
6 FHA
10 57 LD&
bt LER
S RTS
60 RTNZ FLA
A1 FLA
ZF FF A2 GER
1E 00 43 2
1€ -4 SEFZ LDA
01 a5 ZTA
tls CEY
1E -7 LA
00 L3 ZTA
5 TYA
70 SEC
1E 71 AN
1E 72 =TA
02 3 BC
1F 74 INIC
75 SETZ RTS
76 RTEL DFE
77 ERTEL DFE
72 OFB
7% LFE
= OFE
=1 OFE
=22 OFE
a3 DFE
=4 DFL
25 DFL
26 LOFB
27 DFE
23 DFE
39 DFE
E48) LOFB
1 LFB
oz OFBR
3 CFE
74 LFE
v LFE
Fé LFB
37 LFE
T OFE
2 LFE
100 CFE
101 OFB
10z CFE
103 OFE
1¢4 CFE
1095 LFE
106 DFE
107 OFE
ZA 102 SET EFL

INiEcRFRETER
ERTEL., X

R14H
A

RESTIORE
(R15L)
(R15L), Y
ROH, X

(R1SL). Y
ROL, X

nm

F‘HDdH
Qo= in
ITwrr

A

5T-1
ENC-1
LOAT-1
EC-1
STAT-1
EFP—-1
LODAT-1
EM-1
ZTLAT-1
BEZ-1
FOP-1
ENZ-1
STPAT-1
EM1-1
ADD—1
ErML -1
-1
EK-1
FFD-1
s—1
CFR-1
BES-1
INR-1
NiJL-1
DCR-1
NidL -1
NidL—-1
N -1
ZETZ

FAGE: 2
LOW-ORDER ADR EYTE
NNTD STACK FOR NON-REG 0P
TRFRICR RESSLLT REG” INLEX
FREFARE CARRY FUOR BC, ENEC.
GOTD NON-RES OF RO ING
FOF RETJRN ADGCRESS

&S02 REG CONTENTS
502 CODE VIA FC
3F CONST

RESTOR
RETISIN TO
HIGH~-JROER BYTE

LOW-0ORDER BY = OF CIONSTANI
Y~-REG CONTAINS 1

ADD X TO PC

(1X)
Q)
(2ZX)
(1)
(3X)
2)
(4X)
(3)
(SX)
(4)
(6X)
(3)
(7X)
(56)
(3X)
(7)
(¥X)
(3)
(AX)
('7)
(EX)
(R)
{CX)
(B)
(DX)
(Z)
(EX)
(D)
(FX)
(E)
(LINUSED)
(F)

ALWAYS TAKEN

| Distributed under the Creative Commons License on page 5

Page 0131 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

1. 45

=/7095:

=707

F20%:
1m/70B:
1:/700:
F/0OE:
710
F712:
714
F/1b:
F717:
F71%:
F/1B:
b /10
F71F:
F7221:
F723:
F725:
=726
Fr2e:
Fr/zA:
Fr/2c:
F7xl-:
F 730
b722:
E/s24:
F/37:
F73%:

"/ 3A:

72D

F7ZF:
Frs741:
F/43:
F745:
F747:
243
Fr74B:
F740:
F74f:
Frss2
F7os:
Frss7:
F7o7:

N
(A

.,

L

Mo D W e W

AT T 1T T
NN N N N N
Oy 0 O OO s e N
i

NN N

PM . 107271577

EZ 00

(R1s}
01
01

00
00
01
01

IO Gem

00
00
0o
=24 1D
F& 00
Do 0z
FAt 01

O PO EOMNCHOEG N

DD 0D

Al 0O
25 00
A0 00
4 01
FO ED
AD 0O
FO 06
20 AL
Al 00

20 24
Al 00
S 01
c 1F
0 17
S 01
=1 00
4C 1F
20 &6
AS Q0
=1 00
41z 43
2S00
no oz
04 01
D& 06

F7

F7

F7
F/

F7
Fr

L e o S R T T R i S i S Y

10%
110
111
112
113
114
113
114
117
113

‘v

X

—
—

O

TR PRV RN VYR VY RVY R VR VYR VU SR SR SR I VI S I (U R O S

o FY I
OQUWOUNGCUDURNMOOWONGCUH WR -

[y

[y

141
142
143
144
145
144
147
1432
14%

.
LR
o

—

il e
e o onnn anin i g

RYROORNTI RS BV SRV

— s
oo
- O

142

LD

STAT
TATZ

Wy

STAT3
INK

Irkz2
LDAT

FIOF

FIOFD

FrFZ

LODAT

STUAT

STFAT

DR

DCRZ

S

4
DS,

LA
i1
=TA
LDA

TTA.

RTS
LOA
ZTA
LA
OO §

RTS
LA
5TA
Loy
STY
INGC
EHE
I
RTS
LoA
=TA
Loy
3TY
EER
Loy
CER
JIER
LA
TAY
LA
STA
STY
LDy
=2TY
RTS
JER

I'vierhe TR

ROL, X
#-1
ROL
ROH, X
RCH

ROL
ROL, X
ROH
ROH, X

ROL
(ROL, X)
#30
R14H
RrROL, X
INRZ
~OH, X

(ROL, X)
ROL

#30
ROH
ZTAT3
#30
FLF2
OCR
(ROL, X)

DR
(ROL, X)
ROL.
ROH
#30
R14H

LCAT
{ROL, X)
ROH

INRKR
STAT
ROH
(ROL, XD
INR

DCR
RrROL
(ROL, X)
PPz
RoOL, X
DCRZ
RCH, X
ROL, X

#30

FAGE: 3

MIVE RX TO RO

MJVE RO T RX

STORE BYTE INUIRECT
INDIEATE RO 15 REZULT REG

INCR RX

L2AD INDIRECT (RX)
TO RO

ZERD HIGH-JRDER RO EBYIE
ALWAYS TAKEN

HIZH COROER EYFE = O
ALIWAYS TAKEN

DECR RX

FOF HIGH=-ORDER BYfe @RX
SAVE IN Y-REG

DECR RX

LW -DROER EBYTE

TGO RO

INDICATE RO AS LAST
REZULT REG

LW BYTE TJ RO, INCR RX
HIGH-ORDER BY(E TO RO

INCR RX

STORE INUIRECT LQW-ORDCR
BYIE ANL INZR RX. THEN
STORE HIGH-ORODER EYTE
INCR RX ANL REMHIN

DECR RX

STORE RC LW EBYIE eRX
INUICATE RO AS LAST RSLT RE

CECR RX

RESULT T7 wo

| Distributed under the Creative Commons License on page 5

Page 0132 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

1 435 P

F771:
Frr2:
Fr/74:
F/74A:
| 77%:
F/7E:
77D
/30
F731:
F733:
F s
F736&:
F730:
F72A:
720
F7o
F7220:
F232:
F72%4:
1=736:
F739:
F/79B:
F7PE:
F77F:
F7A1:
FAZ:
F7A5:
F/Ab:
FrAz:
F7RA:
F/AE:
F7AD:
-74F:
F780:
F/R2:
F7B3:
F7E4-
F7EB5:
F/B7:
FrRR:
F7EN:
F7EG:
Fr/eC:
FV7EE:
F/C0:
Fr0e1:
17z
FIC3
F7CS
F7C7:
A
F /A
F7CB:
F/oc:

KU U R))

M M D O D X

O e @O 0w

DN DN Do

M
o

> U

-

DU YR

[VOV
SO mrn

-0
QA
AA

=
10
-0
A
AA
GBS
20
-0
O/
AA
G5
1%
FO
A0
0A
AA

2

hipu}

10/3/1977/

(a]e)]
Q0
o0
01
01
o1

co
10

00
00
00
01
o1
00
c?
1E
1%
1F
1%
0E
1E
01

1E
1E

1F
1F

EC

00
01
03

00

00

(e]y}

F7

F7

143
1£4
1645
146
167
143
147
170
171
172
173
174
175
176
177
173
179
1320
131
122
123
124
125
13246
127
133
1379
120
171
192
193
174
125
176
1¥7
193
197
Z00
201
20z
203
204
205
206
207
203
207
210
211
212
213
214
213

216

SWeEeTILE

ZFR SEC
LCA
ZSEC
ZTA
LOA
SEC
STA
TYA
ADC
ZTA
RT3
LDA
AL
ZTA
LCA
AL
Loy
EE
B3 LDA
JER

LDA

JER

ER CLC
BICS
LDA
EFL
DEY
ADC
=TA
TYA
ADC
=TA
ENZZ RTS
BIZ B3
RTS

GF Al
TaxX

LA

EFPL

RT=

EM Azl
TAX

LDA

EMI

RTZ

EZ AL
TAX

LDA

DRA

EER

RTS

ENZ a3
TAX

LDA

SLI2

ALDD

i ZAFARZIER

ROL
ROL, X
ROL, Y
RCH
RQH, X
RCH, Y

#%0
R14H

ROL
RCL, X
ROL
ROH
RCH, X
#30
SIE2
R135L
STATZ
RI1SH
STAT2
ENIZZ
(R13L), Y
ER2

R1SL
R1SL

R15H
R1ZH

ER

A

ROH, X
ER1

ROH, X
ER1

ROL,
ROQH, X
ER1

>

ROL, X

FAGE 4

NOTE Y-REG = 13#2 FOR ZFR

RO-RX TiJ RY

LAST RESULT REG#2Z
CARRY TO LEB

ROFRX TO RO
i

RO FUOR RESULT
FINIZH ALDD

NIOTE X—-REG IS 12x2)

FiUSH LOW FC BYIE VIA R12

PLSH HIGH-DORDER FC EBY(E
N CARRY TEST
OISFLACEMENT BYIE

ADD TO FC

DIDUELE RESLLT-REG INDEX
TO X-REG FUOR INUEXING
EZT FOR FLUS

ERANICH IF 3D

DOLELE RESIWT-RES INLEX

TEST FOR MINUS

DOLIBLE RESLILT-REG INUEX

TEST FOR ZEROD
(BOTH EBYTES)
BRANCH IF =0
DOLE RESULT-REG INUEX

TEST FIOR NONZERD

| Distributed under the Creative Commons License on page 5

Page 0133 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

1:4S F M., 10/2/1%77 FASE: &
F/CE 15 01 217 DA ROHL X (BCOTH EYTES)
F o Do LF Z13 EHE ER1 ERANCH IF 50
Fru2: ~0 Z17 RT=
s (8]4) 220 EmnMt AL A DilplE RESIWT-REDS INLEX
Frsu4: AA 221 TAX
LS BS Q0 L2 LA ROL, X CHECK BOTH EYI1ES
1"su7: 35 01 ZE3 {ANU ROH, X FIJR $FF (MINUS 1)
Froy: 47 FF 224 EQR #SFF
F/LE: FOQO <4 225 EER EBR1 ERANCH IF 30
F700: &0 Z26 RTS
F/uc: 0O/ 227 Ml AS A DOUELE RESULT-RES INLEX
F7uF: AA =23 TAX
PR B2 QO 223 LA ROL., X
F/EZ: 35 01 2320 ANLY ROH, X CHK EBOTH BYVTES FOR NOJ 3FF
F7<4: a7 fF 231 {ELR #3FF
F7eb: 0o B2 32 EME ER1 ERANCH IF NOJT MINUS 1
L F/RE: 0 23 NG RTS=
F/e?: AY 132 24 R= LDX #%13 12#2 FOR R12Z A3 3TK PNTR
F7ek: 20 A6 F7 235 JSR DCR DECR STACK FOINTER
F7EE: Al 0O E LbA (ROL, XD FOFP HIGCH REIURN ADR TO PC
F7F0: =5 1F] =T R1SH
FYF2Z: 20 AL JERODCR SAME FOR LOW-ORDER BYTE
F7FS: Al 0O LDA (ROL, X))
F7F7: =5 1E STA RI1SL
F7F9 40 RT=
F7FA" 4z 127 FH 242 RTN JME RTNZ

P EEFEFERFSNICETSFLUL ASSEMELY: NI ZRRORS

| Distributed under the Creative Commons License on page 5 Page 0134 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

CRLAS RS L CE
LAz —rorainnVioe !

ALD
BC
B
EM1
GMNC
ENCZ
ML
ENZ
B
CR
LR
ERZ
B TRL
B3
B7
crn
LR
IRz
INR
INRZ
Ly
I AT
LUUAT
NI
- TBL
Frisf
F2
[HC
PoD
RO

ROL

K14H
R1SH
R15L

RESTIZRE
R

RN
RTNZ
S1AFAG
TAVE
SCT
SLTZ
SEVZ
ST
STAT
STATZ
STHTE
STLAT
UTHAT

Y v

[ox]

[

- =
[an

bt s e s
. N
m

0wy o 0

b3

Rt R X

[[

T oo
™o

)

,‘
‘“
I~
=

F/zé
F7E0
F706
F7CA
FoO3
F7YF
F7AaF
F70E
F/CA
763
F73E
i-7A1
F7Ab6
FLE4
F7+4
[VAWS
F771
F746
F76a0
F71iF
F725
F705
F726
F743
F7ES
FLES
K730
"7ZA
F743
F/34
QoO1(2)

000O(Z)

0O10CL)
OO1F ()
0CiE

FrZF
I TE%
FTFA
F&il7
QLF7
I'F4A
F703
HAEZ
| aCF
F70E
F717
F71%
F7LD
K75z
72
F7LF

[BIS R
0oL
Q126
0075
[SI80r)
OO0S
Q079
cZ01
o123
0055
G101
SIBH=~
0100
0104
o152
010z
0125
Q73
Qo
OC2e
0103
Q049
DO0
0124
0154
Qo
O0OLAS
01£7
QOLS
013%
0174
044
OOZ
0026
o127
QOAZ
[BIeRvA>)
o077
x4z

iNTZRFRETER

(e
oy
(0]
a

01453

O
N
+
(0]

105

0112
(93 WO
0109
0140
0175

oCx
0150

o147
124

(&
-
[
o

G152

0106

011z
014675
0111
0144
0174
O1Z3
COs4
00z7
0151

0Z1

)

Lo
-
n
u

0107

0117
0177
0115
0151
0210
0142
Q74
004
0240

<
I
(1]
[}

0113
017&
0114
01354
014
0172
0133

QOSZ

0233

0124
OZ00
0120
0155

Yy T
‘-) e

C1vz

0L

o132
020S
0121
0157

DXZF

0174
0044

0141
0Z11
0124
0140

236

0237
00L7

0147
0217
0123
0164
QZ37

D071

0150 0137
02Z3 0230
012% 0136
0145 0146

0072 o121

| Distributed under the Creative Commons License on page 5

Page 0135 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

AL LS nIelaslED IWdem il DN ERFAZ ER
TUER FLGY 004z
IGERZ FLEF oCsz

| Distributed under the Creative Commons License on page 5 Page 0136 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

The Woz Wonderbook

DOCUMENT

Apple-1II
6502 Code Relocation Program

14 November 1977

This page is not part of the original Wonderbook

| Distributed under the Creative Commons License on page 5 Page 0137 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

This page is not part of the original Wonderbook

| Distributed under the Creative Commons License on page 5 Page 0138 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

A 6 50 2
CODE RELOCATTION
PROGRAM
for the

APPLE-T1TI COMPUTEHR

S. Wozniak (WOZ)

November 14, 1977

| Distributed under the Creative Commons License on page 5 Page 0139 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

page 1

APPLE-11 MACHINE CODE RELOCATION PROGRAM

Quite frequently I have encountered situations calling for
relocation of machine language (not BASIC) programs on my 6502-
based APPLE-II computer. Relocation means that the new version must
run properly from different memory locations than the original.
Because of the felative branch instrugtion, certain small 6502
programs need simply be moved and not altered. Others require only
minor hand modification, which is simplified on the APPLE-II by the
built-in disassembler which pinpoints absolute memory reference
instructions such as JMPs and JSRs. However, most of the situations
which I have encountered involved rather lengthy programs containing
multiple data segments interspersed with code., For example, I once
spent over an hour to hand-relocate the 8K byte APPLE8II monitor and
BASIC to run from RAM addresses and at least one error probably

went by undetected. That relocation can now be accomplished in a

couple minutes using the relocation program described herein.

| Distributed under the Creative Commons License on page 5 Page 0140 of 0213)

T -
he Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc

The following :isituations call for program relocation:

ted which runs from RAM (different addresses).

run from EPROM or ROM addresses.

machine.

unusable address space.on an APPLE-II (or other)

the program from one make of computer to another.

page 2

(1) Two programs which were written to run in identical

locations must now reside and run in memory concurrently.

(2) A progra& currently runs from ROM. In order to modify

its operation experimentally, a version must be genera-

(3) A program currently running in RAM must be converted to

(4) A program currently running on a 16K machine must be
relocated in order to run on a 4K machine. Furthermore,

the relocation may have to be performed on the smaller

(5) Due to memory mapping differences, a program running on

an APPLE-1 (or other 6502 based) computer falls into

computer.

(6) Due to operating system variable assignment differences
either the page-zero Or non-page-zero variable allocation

for a specific program may have to be modified when moving

(7) A program exists as several chunks strewn about memory

shich must be combined in a single, contiguous block.

| Distributed under the Creative Commons License on page 5

Page 0141 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

page 3

(8) A program has outgrown the available memory space and

must be relocated to a larger 'free' space.

(9) A program insertion or deletion requires a chunk of the

program to move a few bytes up or down.

(10) On a whim, the user wishes to move a program,

| Distributed under the Creative Commons License on page 5

Page 0142 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

page 4

PROGRAM MODEL

It is easy to visualize relocation as taking a program which
resides and runs in a 'source block' of memory and creating a
modified version in a ‘destinationrblock‘ which runs properly.

This model dictates that the relocation must be performed in an
environment in which the program may in fact reside in both blocks.
In many cases, the relocation is being performed because this is
impossible. For example, a program written to begin at location
$400 on an APPLE-I ($ stands for hex) falls in the APPLE-II screen
memory range. It must be loaded elsewhere on the APPLE-II prior

to relocation.

A more versatile program model is as follows. A program or
section of a program runs in a memory range termed the 'source block'
and resides in a range termed the 'source segments'. Thus a program
written to run at location $400 may reside at location $800. The
program is to be relocated so that it will run in a range termed
the 'destination block' although it will reside in a range termed
'destination segments' (not necessarily the same). Thus a program
may be relocated such that it will run from location $DO0Q (a ROM
address) yet reside beginning at location $CO0 prior to being saved
on tape or used to burn EPROMs (obviously, the reloéated program
cannot immediately reside at locations reserved for ROM). In some

cases the source and destination segments may overlap.

| Distributed under the Creative Commons License on page 5 Page 0143 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

page 5
BLOCKS AND SEGMENTS EXAMPLE
Location during
___Relocation
$800 ————
Program runs from
location $400 _
on APPLE-I
$B87 —————
Relocation
$CO0 — |
Relocated version
runs from
location $DO00OO
on APPLE-II
SFR7 ——————>—
SOURCE BLOCK: $400-%787 - DEST BLOCK: $D0O00-$D387
SOURCE SEGMENTS: $800-3B87 DEST SEGMENTS: $C00-3F87

| Distributed under the Creative Commons License on page 5 Page 0144 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

page 6

THE RELOCATION ALGORITHM

(1) Set SOURCE PTR to beginning of source segment and DEST PTR

to begiﬁning of destination segment.

(2) Copy 3 bytes from source segment (using SOURCE PTR) to temp

INST area.
(3) Determine instruciton length from opcode (1, 2, or 3 byte).

(4) If two byte instruction with non-zero-page addressing mode

(immediate or relative) then go to (7).

(5) If two byte instruction then clear 3rd byte so address field

is 0-255 (zero page).

(6) If address field (2nd and 3rd bytes of INST area) falls within

source block, then substitute

ADR - SOURCE BLOCK BEGIN + DEST BLOCK BEGIN

(7) Move 'length' bytes from INST area to dest segment (using

DEST PTR). Update SOURCE and DEST PTRs by length.

(8) If SOURCE PTR is less than or equal to SOURCE SEGMENT END

then goto (2), else done.

| Distributed under the Creative Commons License on page 5 Page 0145 of 0213
S

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

page 7

DATA SEGMENTS

The problem with relocating a large program all at once is that
data (tables, text, etc.) may be interspersed throughout the code.
Thus data may be 'relocated' as though it were code or might cause
some code not to be relocated due to boundary uncertainty introduced
whenithe data takes on the multi-byte attribute of code. This problem

is circumvented by considering the 'source segments' and 'destination
g

segments' sections to contain both code and data segments.

CODE AND DATA SEGMENTS EXAMPLE

$800 ——| Code Segment
$800-$892

Data Segment
$893-%992

Code Segment
$993-$ABF

Data Segment
$ACO-SBACF

Code Segment
$B7 —> $ACF-$B87

The source code segments are relocated to the 'destination segments'
area and the source data segments are moved. Note that several commands

will be necessary to accomplish the complete relocation,

| Distributed under the Creative Commons License on page 5 Page 0146 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

page 8B

USAGE

1. Load RELOC by hand or off tape into memory locations $3A6-33FA.
Note that locations $3FB-$3FF are not disturbed by tape load
versions to insure that the APPLE-II interrupt vectors are not
clobbered. The monitor user function YC (Control-Y) will now

call RELOC as a subroutine at location $3F8.

2. Load the source program into the 'source segments' area of memory
if it is not already there. Note that this'peed not be where

the program normally runs.

3. Specify the source and destinétion block parameters, remembering
that the blocks are the locations that the program normally
runs from, not the locations occupied by the source and destination
segments during the relocation. If only a portion of-a program

is to be relocated then that portion alone is specified as the

block.

* DEST BLOCK BEG < SOURCE BLOCK BEG . END YC =

Note that the syntax of this command closely resembles that of
the MONITOR 'MOVE' command. The initial '*' is generated by

the MONITOR, not typed by the user.

| Distributed under the Creative Commons License on page 5 Page 0147 of 0213
S

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

page 9

4. Move all data scegments and relocate all code segments in sequential

(incrcasing address) order.

First Segment (if CODE)

* DEST SEGMENT BEG < SOURCE SEGMENT BEG . END yC

First Segment (if DATA)

* DEST SEGMENT BEG < SOURCE SEGMENT BEG . END M

Subsequent segments (if CODE)

* . SOURCE SEGMENT END YC (Relocation)

Subsequent segments (if DATA)

* _ SOURCE SEGMENT END M (Move)

Note that it is wise to prepare a list of segments (code and data)

prior to relocation.

I1f the relocation is performed 'in place' (SOURCE and DEST
SEGMENTS reside in identical locations) then the SOURCE SEGMENT

BEG parameter may be ommitted from the first segment relocate

(or move).

| Distributed under the Creative Commons License on page 5 Page 0148 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

page 10

EXAMPLES

1. Straightforward Relocation

Program A resides and runs in locations $800-$97F. The relo-

cated version will reside and run in locations $A00-$B7F.

SOURCE SEGMENTS DEST SEGMENTS
3800+ CODE $A00 — CODE
$800-388T 3A00-8AS8F
DATA DATA
$890-$8AF $A90-$AAF
CODE CODE
$8BO-$90F | $ABO-SBOF
DATA DATA
$910-$93F $B10-$B3F
CODE CODE
$97F+»| $940-$97F $B7F —| $B40-3B7F
SOJRCE BLOCK $800-3S97F DEST BLOCK $A00-$B7F
SOURCE SEGMENTS 3800-897F DEST SEGMENTS $A0O0-$B7F

(a) Load RELOC
(b) Define blocks
* A00 < 800 . 97F YC *
(c) Relocate first segment (code).

x A00 < 800 . 88F Y©

| Distributed under the Creative Commons License on page 5 Page 0149 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

page 11

(d) Move and relocate subsequent segments in order.

* , 8BAF M (data)
x+ . 90F YC (code)
* . 93F M (data)
x . 97F YC (code)

Note that step (d) illustrates abbreviated versions of

the following commands:

* A90 < 890 . 8AF M (data)
¥ ABO < 8BO . 90F Y® (code)
* B10 < 910 . 93F M (data)

* B40 < 940 . 97F YC (code)

| Distributed under the Creative Commons License on page 5 Page 0150 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

page 12

2. Index into block

Assume that the program of example 1 uses an indexed reference

into the data segment at $890 as follows:
LDA 7B0,X

The X-REG is prcsumed to contain SEO-$FF. Because $7B0O is

outside the source block, it will not be relocated, This may

be handled in one of two ways.

(a) The exception is fixed by hand, or

(b) The block specifications begin one page lower than the
addresses at which the original and relocated programs
begin to account for all such 'early regerences'. In
step (b) of example (1) change to:

* 900 < 700 . 97F YC *

Note that program references to the 'prior page' (in this

case the $7XX page) which are not intended to be relocated

will be.

| Distributed under the Creative Commons License on page 5

Page 0151 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

page 13

3. Immediate Address References

Assume that the program of example (1) has an immediate ref-

erence which is an address. For example,

LDA #$3F
STA LOCO
LDA #308
STA LOC1

JMP (LOCO)

In this example, the LDA #%08 will not be changed during relocation

and the user will have to hand-modify it to $0A.
4. User function (YC) programs

Relocating programs such as RELOC introduces another irregularity.
Because RELOC uses the MONITOR user function command (YC)

its entry point must remain fixed at $3F8. The rest of RELOC

may be relocated anywhere in memory (which is trivial since

RELOC contains no absolute memory references other than the

JMP at $3F8). The user must leave the JMP at $3F8 undisturbed

or find some way other than vC to pass parameters.

| Distributed under the Creative Commons License on page 5 Page 0152 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

page 14
5. Unus=able block ranges

A program was written to run from locations $400-$78F on an
APPLE-I. A version which will run in ROM locations SDO0O0O-$D38F
must be generated. The source (and destination) segments may
reside in locations S$S00-$B8F on the APPLE-II where relocation

is performed.

SEGMENTS, SOURCE AND DEST

Locations
during
relocation

-
$800 —— CODE Runs from locations
$800-397F $400-$78F on APPLE-I
but must be relocated
DATA to run from locations
$980-$9FF ’ $D000-$D38F on the
APPLE-II.
CODE
SBSF ——» | $A00-$B8F
SOURCE BLOCK $400-878F DEST BLOCK $DO0O0-$D38F
SOURCE SEGMENTS $800-$B8F DEST SEGMENTS $800-%$BS8F

(a) Load RELOC

(b) Load original program into locations $800-$B8F (despite the
faét that it doesn't run there).

(c) Specify block parameters (i.e. where the original and

relocated versions will run)

* D000 < 400 . 78F YC =*

| Distributed under the Creative Commons License on page 5 Page 0153 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

page 15
(d) Move and relocate all segments in order.

x 800 < 800 . 97F YC (first segment, code)

* . 9FF M (data)

* Bsf Y€ (code)
Note that because the relocation is done 'in place' the
SOURCE SEGMENT BEG parameter is the same as the DEST SEGMENT
BEG parameter ($800) and need not be specified. The initial
segment relo%ation command may be abbreviated as follows:

* 800 <. 97F YC

6. The program of example (1) need not be relocated but the page
zero variable allocation is from $30 to $3F. Because these
locations are reserved for the APPLE-II system monitor, the
allocation must be changed to locations $80-$8F. The source
and destination blocks are thus not the program but rather
the variable area.

SOURCE BLOCK $20-$2F DEST BLOCK $80-38F
SOURCE SEGMENTS $800-397F DEST SEGMENTS $800-397F
(a) Load RELOC
(b) Define blocks
+ 80 < 20.2F Y© *

(c) Relocate code segments and move data segments in place.

* 800 <.88F YC (code)

x . SAF M (data)
x . 90F Y€ (code)
x . 93F M (data)
* . 97F YC (code)

| Distributed under the Creative Commons License on page 5 Page 0154 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

page 16

7. Split blocks with cross-referencing

Program A resides and runs in locations $800-$8A6. - Program B

resides and runs in locations $900-$9F1. A single, contiguous

program is to be generated by moving program B so that it
immediately follows program A. Each of the programs contains
memory references within the other. It is assumed that the

programs contain no data segments.

SOURCE SEGMENTS DEST SEGMENTS

$800 —————!| Program A $800 —>—|Program A
$800-$846 $800-38A6
$8A6 ——— $8A6 —
$BAT7 —>
Unused
Program B
$900 ——
Program B
$9F1 —————| $900-39F1

SOURCE BLOCK 3$900-%9F1 DEST BLOCK $8A7-3998
SOURCE SEGMENTS $800-$%8A6 (A) DEST SEGMENTS $800—$8A6 (a)

$900-$9F1 (B) $8A7-$998 (B)

(a) Load RELOC

(b) Defihe blocks (program B only)

x 8A7 < 900 . 9F1 YC =*

| Distributed under the Creative Commons License on page 5 Page 0155 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

page 17
(c) Relocate each of the two programs’individually. Program A
must be relocated even though it does not move.
* 800 <. 8A6 yC (program A, 'in place')

* 8A6 < 900 . 9F1 yC (program B, not 'in place')

Note that any data segments within the two programs would
!

necessitate additional relocation and move commands.
8. Code deletion.

4 bytes of code are to be removed from within a program and the

program is to contract accordingly.

SOURCE SEGMENTS DEST SEGMENTS
$800 ——>— CODE $800 ——— CODE
$800-$88F $800-$88F
DATA DATA
$890-$8AF $890-38AF
Remove 4 CODE CODE
bytes here $8B0O-$90F $8B0-3$90B
($8C0-$8C3)
DATA DATA
$910-$93F $90C-$93B
CODE CODE
$97F — | $940-$97F $97B ——| $93C-$97B
SOURCE BLOCK $8C4-$97F DEST BLOCK $8C0-$97B
SOURCE SEGMENTS $800-$88F (code) DEST SEGMENTS $800-$88F (code)
$890-$8AF (data) $890-$8AF (data)
$8B0-$8BF (code) $8B0-$8BF (code)
$8C4-390F (code) $8C0-$90B (code)
$910-893F (data) $90C-$93B (data)
«aAnN_RA7F (code) $93C-$97B (code)

Distributed under the Creative Commons License on page 5 Page 0156 of 0213
S

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

page 18

(a) Load RELOC

(b) Define blocks
* 8CO < 8C4 . 97F YC *
(¢) Relocate code segments and move data segments in ascending
address sequence.

* 800 <. 88F YC (code, 'in place')

* | 8AF M (data)
* . 8BF YC (code)
* 8C0O < 8C4 . 90F YC (code, not 'in place')
* . 93F M (data)
x . 97F Y© (code)

(d) Relative branches crossing the deletion boundary will be
incorrect since the relocation process does not modify them
(only zero-page and absolute memory references). The user

must patch these by hand.

| Distributed under the Creative Commons License on page 5 Page 0157 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

page 19

9. Relocating the APPLE-II monitor ($F800-$FFFF) to run in RAM

(-S800-GFFF)

SOURCE BLOCK 3$F700-$FFFF
(see example (2))

SOURCE SEGMENTS $F800-$F961

IMMEDIATE ADDRESS REFS (see example (3))
$FFBF
$FEA8

(more if not relocating to page boundary)

(a) Load RELOC

$F962—$F§42 (data)
$FA43-$FB18 (code)
$FB19-$FB1D (data)
S$FB1E-$FFCB (code)

$FFCC-$FFFF (data)

(b) Block parameters

c

* 700 < F700 . FFFF Y

(c) Segments

* 800 < F800 . F961 YC

*

*

FA42 M
FB18 Y©
FB1D M
rrcB YC

FFFF M

DEST BLOCK $700-%FFF

*

(code) DEST SEGMENTS $800-$961 (code)

$962-3A42 (data)
$A43-B18 (code)
$B19-$B1D (data)
$B1E-$FCB (code)

$FCC-$FFF (data)

(first segment, code)

(data)
(code)
(data)
(code)

(data)

| Distributed under the Creative Commons License on page 5

Page 0158 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

page 20

(¢c) Inmediate address references

* FBF ;. E (was $FE)

* EA8 : E (was $FE)

| Distributed under the Creative Commons License on page 5 Page 0159 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

page 21

OTHER 6502 SYSTEMS

The following details illustrate features specific to the APPLE-II
which are used by RELOC. If adapted to other systems, the convenient
and flexible parameter passing capability of the APPLE-II monitor

may be sacrificed.

1. The APPLE-II monitor command

* A4 < Ay . Ag Y€ (A1, Ao, and A4 are addresses)
vectors to location $3F8 with the value A1 in locations $3C (1lo
and $3D (high), A2 in locations $3E (low) and $3F (high),

and A4 in locations $42 (low) and $43 (high). Location

$34 (YSAV) holds an index to the next character of the command
buffer (after the YC). The command buffer (IN) begins

at $200.

2. 1I1f YC is followed by an '*' then the block parameters are

simply preserved as follows:

Parameter Preserved at SWEET16 Reg Name
DEST BLOCK BEG $8, $9 TOBEG
SOURCE BLOCK BEG $2, $3 . FRMBEG
SOURCE BLOCK END $4, $5 FRMEND
3. 1f YC is not followed by and '*' then a segment relocation is

initiated at RELOC2 ($3BB). Throughout, Al ($3C, $3D) is the
source segment pointer and A4 ($42, $43) is the destination

segment pointer.

Distributed under the Creative Commons License on page 5 Page 0160 of 0213
S

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

page 22

4. INSDS2 is an APPLE-II monitor subroutine which determines the
length of a 6502 instruction in the variable LENGTH (location $2F)

given the opcode in the A-REG,

Instruction type LENGTH
Invalid 0
1 byte , 0
2 byte 1
3 byte 2

5. The code from XLATE to SW16RT ($3D9-$3E6) uses the APPLE-II
16-bit interpretive machine, SWEET16. The target address of
the 6502 instruction being relocated (locations $C low and
$D high) occupies the SWEET16 register named ADR, If ADR is
between FRMBEG and FRMEND (inclusive) then it is replaced by

ADR - FRMBEG + TOBEG.

6. NXTA4 is and APPLE-II monitor subroutine which increments Al
(source segment index) and A4 (destination segment index).
Y
If Al exceeds A2 (source segment end) then the carry is set,

otherwise it is cleared.

Distributed under the Creative Commons License on page 5 Page 0161 of 0213
S

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

4:36 P.M., 11/10/1977

6502 RELOCATION SUBROUTINE

1 TITLE '6502 RELOCATION SUBROUTINE®
2 ISR A RS S REE SRR SR REEEEENEESS]
3 * *
4 * 6502 RELOCATION *
5 * SUBROUTINE *
6 * *
7 * 1. DEFINE BLOCKS *
8 * *A4<Al.A2 Y *
9 * ("Y 1S CRTL-Y) *
10 * *
11 * 2, FIRST SEG *
12 * *A4<A1.A2 Y *
13 % (IF CODE) *
14 * *
15 % *A4<A1.A2 M *
16 (IF MOVE) *
17 * *
18 * 3. SUBSEQUENT SEGS *
19 * *. A2 Y OR *.A2 M *
20 * *
21 WoZ 11-10-77 *
22 * APPLE COMPUTER INC. *
23 * *
24 kkhkhkkkkhkhkxhkkhkhkrxrkhkhkdhkhik
25 PAGE

PAGE: 1

| Distributed under the Creative Commons License on page 5

Page 0162 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

4:36 P.M., 11/105%977

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

RELOCATION SUBR EQUATES
SUBTTL RELOCATICN SUBR EQUATES

R1L
INST
LENGTH
YSAV
AlL
A4L

IN
SW16
INSDS2
NXTA4
FRMBEG
FRMEND
TOBEG
ADR

EPZ
EPZ
EPZ
EPZ
EPZ
EPZ
EQU
EQU
EQU
EQU
EPZ
EPZ
EPZ
EPZ
PAGE

$2
$B
$2F
$34
$3C
$42
$200
SF689
$F8BE
$FCB4
$1

$2

$4

$6

PAGE: 2

SWEET16 REG 1.

3-BYTE INST FIELD.
LENGTH CODE.

CMND BUF POINTER.
APPLE-I1I MON PARAM AREA.
APPLE-II1 MON PARAM REG 4
MON CMND BUF.

SWEET16 ENTRY.
DISASSEMBLER ENTRY.
POINTER INCR SUBR.
SOURCE BLOCK BEGIN.
SOURCE BLOCK END.

DEST BLOCK BEGIN.

ADR PART OF INST.

| Distributed under the Creative Commons License on page 5

Page 0163 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

4:36 P.M.,
03A6: A4
03A8: BSY
03AB: C9
03AD: DO
03AF: E®6
03Bl: A2
03B3: BS
03B5: 95
03B7: CA
03B8: 10
03BA: 60
03BB: AQ
03BD: Bl
03BF: 99
03C2: 88
03C3: 10
03Cs: 20
03C8: A6
03CA: CA
03CB: DO
03CD: AS
03CF: 29
03D1: FO
03D3: 29
03D5: DO
03D7: 85
03D9: 20
03DC: 22
03DD: D6
03DE: 02
03EOQ: 26
03El: Bl
03E2: 02
03E4: A4
03E5: 36
03E6: 00
03E7: A2
03E9: BS
03EB: 91
O3ED: E8
G3EE: 20
03F1: C6
03F3: 10
03F5: 90
03F7: 60

11/10/1977
42
43
34 44
00 02 45
AA 46
0C 47
34 48
07 49
3C 50
02 51
52
F9 53
54
02 55
3C 56
B 00 57
58
F8 59
8E F8 60
2F 61
62
0C 63
0B 64
0D 65
14 66
08 67
10 68
0D 69
89 F6 70
71
72
06 73
74
75
02 76
11
78
79
00 80
0B 81
42 82
83
B4 FC 84
2F 85
F4 86
C4 87
88
89

03F8: 4C A6 03 90
x*x*SUCCESSFUL ASSEMBLY:

6502 RELOCATION SUBROUTINE

PAGE: 3

SUBTTL 6502 RELOCATION SUBROUTINE

RELOC

INIT

RELOC2
GETINS

XLATE

SW16RT
STINST
STINS2

USRLOC

NO

ORG $3A6
LDY YSAV
LDA IN,Y
CMP #SAA
BNE RELOC2
INC YSAV
LDX §$7
LDA AlL,X
STA R1L,X
DEX

BPL INIT
RTS

LDY #$2
LDA (AlL),Y
STA INST,Y
DEY

BPL GETINS
JSR INSDS2
LDX LENGTH
DEX

BNE XLATE
LDA INST
AND $$D
BEQ STINST
AND #88
BNE STINST
STA INST+2
JSR SW16
LD FRMEND
CPR ADR
BNC SW16RT
LD ADR
SUB FRMBEG
BNC SW16RT
ADD TOBEG
ST ADR
RTN

LDX #S0
LDA INST,X
STA (A4L),Y
INX

JSR NXTA4
DEC LENGTH
BPL STINS2
BCC RELOC2
RTS

ORG S3F8
JMP RELOC
ERRORS

CMND BUF POINTER.
NEXT CMND CHAR.
txiD
NO, RELOC CODE SEG.
ADVANCE POINTER. !

MOVE BLOCK PARAMS
FROM APPLE-II MON
AREA TO SW16 AREA.
R1=SOURCE BEG, R2=
SOURCE END, R4=DEST BE(

COPY 3 BYTES TO
SW16 AREA.

CALCULATE LENGTH OF
INST FROM OPCODE.
"0=1 BYTE, 1=2 BYTE,

2=3 BYTE.

WEED OUT NON-ZERO-PAGE
2 BYTE INSTS (IMM).
IF ZERO PAGE ADR
THEN CLEAR HIGH BYTE.

IF ADR OF ZERO PAGE
OR ABS 1S IN SOURCE
(FRM) BLOCK THEN
SUBSTITUTE ADR-
SOURCE BEG+DEST BEG.

COPY LENGTH BYTES
OF INST FROM
SW16 AREA TO
DEST SEGMENT. UPDATE
SOURCE, DEST SEGMENT
POINTERS. LOOP IF NOT
BEYOND SOURCE SEG END.

ENTRY FROM MONITOR.

| Distributed under the Creative Commons License on page 5

Page 0164 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

CROSS-REFERNCE:

AlL
A4L
ADR
FRMBEG
FRMEND
GETINS
IN
INIT
INSDS2
INST
LENGTH
NXTA4
R1L
RELOC
RELOC2
STINS2
STINST
SW1leé
SW16RT
TOBEG
USRLOC
XLATE
YSAV
FILE:

003C
0042
0006
0001
0002
03BD
0200
03B3
F88E
000B
002F
FCB4
0002
0326
03BB
03E9
03E7
F689
03E6
0004
03F8
03D9
0034

6502 RELOCATION SUBROUTINE

0050
0082
0072
0075
0071
0059
0045
0053
0060
0057
0061
0084
0051
0090
0047
0086
0066
0070
0073
0077

0063
0044

0056

0074 0078

0064 0069 0081
0085

0087

0068

0076

0048

| Distributed under the Creative Commons License on page 5 Page 0165 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

This page is not part of the original Wonderbook

| Distributed under the Creative Commons License on page 5 Page 0166 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

The Woz Wonderbook

DOCUMENT

Apple-1I1

Renumbering and Appending
BASIC Programs

15 November 1977

This page is not part of the original Wonderbook

| Distributed under the Creative Commons License on page 5 Page 0167 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

This page is not part of the original Wonderbook

| Distributed under the Creative Commons License on page 5 Page 0168 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

RENUMBERTING AND APPENDING

BASIC PROGRAMS

on the

APPLE-TITI COMPUTEHR

S. Wozniak (W0Z)

November 15, 1977

| Distributed under the Creative Commons License on page 5 Page 0169 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

page 1

RENUMBERING AND APPENDING APPLE-II BASIC PROGRAMS

The answer to the question "what do 5, 11, 36, 150, 201, and 588
have in common?'" is given as ""adjacent rooms in the Warsaw Hilton'"y
but might just as well be "adjacent 1ine numbers in my last BASIC
prograq.” The laws of entropy insure that the line numbers of a
debugged and operational BASIC program give the appearance of having
been selected by a KENO machine.* Many.a time I have spent an extra
hour to retype a finished program while spacing the line numbers‘

evenly just to make it 'look good'.

Another difficulty which I have experienced is joining two
BASIC programs into a single, larger one. This 'append' operation
is easier to accomplish by hand than renumbering. The sophistocated
user can examine the BASIC memory map and perform some manual mani-
pulations to join the programs providing that the line numbers do
not overlap. Still, the manual append operation is highly prone

to error.

1 The Official Polish/Italian Joke Book, L. Wilde, Pinnacle Books,
New York, N.Y., 1973, p. 17

* In fact, while several texts detail how the boundary conditions
of a KENO game lead to predictable outcomes, finished programs
seldom exhibit this property.

| Distributed under the Creative Commons License on page 5 Page 0170 of 0213
S

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

page 2

The APPLE-II BASIC user now has a solution to these needs in

the form of a hand- or tape-loadable program, RENUM/APPEND, described
herein. The CALL command is used to activate one of three machine
level programs. The renumber operation (RENUM) requires user speci-
fication of the original line number range over which renumbering
is to %ccur, the new initial line numbe; to be applied to the range,
and thé new line number increment to use. - The example below specifies
that lines 200 to 340 be renumbered starting with 100 and spaced
by 10's.

RANGE BEGIN 200

RANGE END 340

NEW BEGIN 100

NEW INCREMENT 10

A second RENUM entry renumbers the entire program, relieving
the user of the need to specify the range begin and end parameters.

The append operation (APPEND) reads the second user (BASIC) program

off tape with the first in memory.

Renumber and append error conditions (memory full and line number
overlap) are detected just as in BASIC. 1In case of error the user

is notified and no program alteration occurs.

| Distributed under the Creative Commons License on page 5 Page 0171 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

vectors.

POKE
POKE

POKE
POKE

CALL

POKE
POKE

POKE
POKE

POKE
POKE

POKE
POKE

CALL

1. Load RENUM/APPEND (* 300.3D4 R)

Note that the high-order bytes of page 3 are not loaded, preventing

inadvertant alteration of the interrupt and user function (YC)

The '*' is generated by the MONITOR, not the user.

2. Load a BASIC program.

3. To renumber

2)
3,

4,
5,

768

Note: START L is equivalent to START MOD 256

START H is equivalent to START / 256

4. To renumber

w N

page 3

USING RENUM/APPEND

entire program:

START L User must supply low and high bytes

START H of new STARTing line number.
INCR L User must supply low and high bytes
INCR H of new line number INCRement.

(does not alter locations 2-5)

a range of the program
START L
START H

INCR L
INCR H

RANGE START L User must supply low and high bytes
RANGE START H of renumber range starting line number.

RANGE END L User must supply low and high bytes
RANGE END H of renumber range ending line number.

(does not alter locations 2-9)

| Distributed under the Creative Commons License on page 5 Page 0172 of 0213
S

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

page 4

5. To append program #2 (larger line’numbers) to program #}

(smaller line numbers):

(a) Load program #2

(b) CALL 956
Be sure you are running the tape of program #1 as this
command will load it.

(c) If you get a memory full error then use the command

CALL 973 to recover the original program.

| Distributed under the Creative Commons License on page 5 Page 0173 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

page 5

ERRORS

If not enough free memory exists to contain the line number

table during pass 1 of RENUM then the message '(beep) *** MEM FULL ERF
is displayed and no renumbering occurs. The same message is

displayed if not enough free memory exists to hold the product

of an APPEND. 1In the case of APPEND, the user will have to type

the BASIC command CALL 973 to recover his original program,

The user can free additional memory by eliminating all active

BASIC variables with the CLR command.

If'renumbering results in a line number overlap (detected during
pass 1 of RENUM) then the message '(beep) *** RANGE ERR' is
displayed and no renumbering occurs. This error may mean that

one or more parameters were not specified or were incorrectly

specified.

CAUTIONS

When appending a program, always load the one with greater

line numbers first.

The user must be aware that branch target expressions may not
be renumbered. For example, the statement GO TO ALPHA will
not be modified by RENUM. The statement GO TO 100 + ALPHA

will be modified only to reflect the new line number assigned

to the old line 100.

| Distributed under the Creative Commons License on page 5

Page 0174 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

page 6

APPLE-II BASIC STRUCTURE

An understanhing of the internal representation of a BASIC
program is necessary in order to develope RENUMBER and APPEND
algorithms. Figure 1 illustrates the significant pointers for a
program in memory. Variable and symbol table assignment begins gt
the location whose address is contained in the pointer LOMEM ($4A
and $4B where '$' stands for hex). This is $800 (2048) on the
APPLE-II unless changed by the user with the LOMEM: command.

A second pointer, PV (Variable Pointer, at $CC and $CD) contains

the address of the location immediately following the last location
allocated to variables. PV is equal to LOMEM if no variables are
actively assigned as is the case after a NEW, CLR, or LOMEM: command,

As variables are assigned, PV increases.

The BASIC program is stored beginning with the lowest numbered
line at the location whose address is contained in the pointer PP
(Program Pointer, at 3CA and $CB). The pointer HIMEM ($4C and $4D)
contains the address of the location immediately following the
last byte of the last line of the program. This is normally the top
of memory unless changed by the user with the HIMEM: command.

As the program grows, PP decreases. PP is equal to HIMEM if there
is no program in memory. Adequate checks in the BASIC insure that
PV never exceeds PP. This in essence says that variables and program

are not permitted to overlap.

| Distributed under the Creative Commons License on page 5 Page 0175 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

page 7

Lines of a BASIC program are not stored as they were originally
entered (in ASCII) on the APPLE-II due to a pre-translation stage.
Internally each line begins with a length byte thch may serve as
a link to the next line. The length byte is immediately followed
by a two-byte line number stored in binary, low-order byte first.
Line numbers range from 0 to 32767. The line number is followed
by 'items' of various types, the final of which is an 'end-of-line'

token ($01). Refer to figure 2.

Single bytes of value less than $80 (128) are 'tokens' generated
by the translator. Each token stands for a fixed unit of text as
required by the syntax of the language BASIC. Some stand for keywords
such as PRINT or THEN while others stand for punctuation or operators
such as ',' or '+'.

Integer constants are stored as three consecutive bytes. The
first contains $B0O-3$B9 (ASCII '0'-'9') signifying that the next
two contain a binary constant stored low-order byte first. The line
number itself is not preceeded by $B0-$BS. All constants are
in this form including line number references such as 500 in the
statement GO TO 500. Constants are always followed by a token.
Although one or both bytes of a constant may be positive (less

than $80) they are not tokens.

| Distributed under the Creative Commons License on page 5 Page 0176 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

page 8

Variable names are stored as consecutive ASCII characters with
the high order bit set. The first character is between $C1 and $DA
(ASCII 'A'-'2Z'), distinguishing names from constants, All names
are terminated by a token which is recognizable by a clear high-order

bit. The 'S$' in string names such as A$ is treated as a token.

String constants are stored as a token of Yalue $28 followed
by ASCII text (with high-order bits set) followed by a token of
value $29. REM statements begin with the REM token (3$5D) followed

by ASCII text (with high-order bits set) followed by the 'end-of-1line’

token.

| Distributed under the Creative Commons License on page 5

Page 0177 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

page 9
Figure 1 - MEMORY MAP
T ’ =~ ———— LOMEM (start of variables)
($4A,4B)
BASIC
VARIABLES
" IgTTT.. .~py (Variable Pointer, end of variables)
! ($CC,CD) 1
Tt TTT T T = PP (Program Pointer, start of program)
($CA,CB)
—— first line
BASIC
PROGRAM
1,,y//“‘1a5t line
T 77777 < -———HIMEM (end of program)
(%4C,4D)
Figure 2 - LINE REPRESENTATION
l ‘ low I [higpl] $01
length line number items 'end-of-line'
byte token

| Distributed under the Creative Commons License on page 5

Page 0178 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

page 10

Figure 3 - ITEMS

Constant: l Aj | lowAAJ i higgw ‘ '
$B0O-S$SB9 value positive
token
s 3] Ged |]
Name (4BC): | $C1 | |scz | | sc3 | |
negative positive
ASCI1 token

String Constant ("123"): | s28 | | s81 | [ss2 | [sB3 | [s29 |

quote negative quote
token ASCII token

e ey

v [50] [7 | o

REM negative 'end-of-1line'
token ASCI1I token

Tokens: $00-37F

GO TO - $5F
GOSUB - $5C
THEN 1n - 324
LIST - $74 (tokens used by RENUMBER)
LIST , - 875
STR CON - 328
REM - 85D
EOL - $01

| Distributed under the Creative Commons License on page 5 Page 0179 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

page 11

RENUMBER - THEORY OF OPERATION

Because of the rigid internal representation of APPLE-II BASIC
programs (insured by the translator syntax check) writing a renumber
program was a somewhat easier fask than it would‘have been on many
Smill BASIC's. Fortunately all constants in APPLE-II BASIC (in-

cluding line number references) are preconverted to binary.

The normal renumber subroutine entry point is RENUM ($308).
The RENX entry ($300) conveniently sets the renumber range for the
user such that the entire program will be renumbered. RENUM exten-
sively uses SWEET16, the code-saving 16-bit interpretive machine
built into the APPLE-II.q Occasional 6502 code is interspersed

throughout RENUM for even greater code efficiency.

RENUM scans the entire program from beginning to end twice.
During pass 1 a line number table is built containing all line
numbers of the program found to be within the renumber range.
This table begins at the address specified by the BASIC variable
pointer, PV, and is limited in length by the program pointer, PP.
Each entry is two bytes long. A memory full error occurs if not

enough free memory is available for the table.

1 Byte Magazine, Nov. 1977, pp.

| Distributed under the Creative Commons License on page 5 Page 0180 of 0213
S

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

page 12

As line numbers are entered in the table corresponding new
line numbers are generated and both new and old are displayed.
Should the new line numbers result in an 'out of ascending sequence'
condition, then a range error occurs and renumbering is terminated.
It is assumed that the line numbers of the original program are in

ascending sequence.

The purpose of pass 2 is to scan the entire BASIC program while
updating all references of line numbers found in the table to new
assignments. Aside from the line numbers themselves, the line number

references sought are identified as constants immediately preceeded

by one of the following tokens:

GOTO
GOSUB
THEN 1no
LIST

LIST

No other statement normally permitted within an APPLE-ITI BASIC

program may contain a line number reference. No errors will occur

during pass 2.

Exceptions such as empty line number table and null program

are properly considered by both passes of RENUM.

| Distributed under the Creative Commons License on page 5 Page 0181 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

immediately above it in memory.

performed.

Original Program After Load

Pp——b
Prog #1

PP —» HIMEM —pm
Prog #2 Prog #2
(hidden)

Y Y

HIMEM — -

When APPEND is called, the user program with larger line
will be in memory and the one witp smaller line numbers will
off tape. The current program reéides between two poin£ers,
HIMEM. HIMEM is preserved and set to the value contained in

This 'hides' the original program and prepares to load a new

program will still be hidden. Fortunately,

APPEND - THEORY OF OPERATION page 13

The BASIC load subroutine is called and a normal memory full
error condition will result if not enough free memory is available

to contain both programs. If this error occurs then the original

calling the tail end of APPEND at $3CD which simply restores HIMEM.
I1f the load is successful then HIMEM is restored to its original value

and both programs will be joined. No line number overlap check is

HIMEM Restored

PP —»—

Prog #1

Prog #2

HIMEM ——»—

numbers
be read
PP and
PP.

one

it can be recovered by

| Distributed under the Creative Commons License on page 5

Page 0182 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

RENUMBER EXAMPLE

Renumber lines 100-110
Original to start at 150
spaced by 10

>LIST : >POKEZ 2, 150 MOD 256
1 GOTQ 100 P 3
2 GOSJ3 103 >P0KE 3, 150 / 256
3 IF TRUZ THEIN 107
4 LIST 103,110 >POKE 4, 10 MOD 256
100 R=ZM
103 2EM >POKE 5, 10 7/ 256
107 REM
109 RIM >POKE 6, 100 MOD 256
110 REM
200 FOR I=]1 TN 10 >POKE 7, 100 7 256
210 PRINT 1
220 NZXT 1! >POKE 8, 110 MOD 256
230 GOTO
>POKEZ 9, 110 / 256
>CALL 776
100->150
103->160
107->170
103->180
110->190
>LIST
1 GOTO 150

2 GOSUB 160
3 IF TRUE THEN 170
4 LIST 180,190
150 R=M
160 REM
170 RZIM
180 RzM
190 REM
200 FOR I=1 TO 10
210 PRINT 1
220 NEXT 1
230 GOTOC 1

page 14

| Distributed under the Creative Commons License on page 5

Page 0183 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

>POKE

>POKE

>POKZ

>POKE

>CALL
1->10
2->15
3->20

4->23

>LIST
10
1S
20
25
30
35
40
45
50
55
60
65
70

page 15

RENUMBER EXAMPLE (cont)

Renumber lines 100-110 to start at
10 spaced by 5

2, 10 MOD 256
3, 10 7 256
4, 5 MOD 256
5, 53 7/ 256

768

130->30
160~->35
170->40
180->45
190->50
200->35
210->60
220->65
230->70

GOTO 30

GosuB 35

IF TRUE THEN 40
LIST 45,50

Rz M

' 0
v

[N O]

WRXXIXX

I=1 TO 10
PRINT 1
NEXT 1

GOTO 10

| Distributed under the Creative Commons License on page 5

Page 0184 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

page 16

APPEND EXAMPLE

>LIST
100
200
300

0 .U

THE ORIGINAL PROGRAM

o
IXX

g

>CALL

0
w
(e]

>LIST
10

20

30
100
200
300

U

THIS PROGRAM CAME FR0OM TAPE

THZ ORIGINAL PR0OGRAM

ISR URUNUNUNG!
XXX

U 00w

| Distributed under the Creative Commons License on page 5 Page 0185 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

APPLE-11 BASIC RENUMBER/APFEIND SUBROUTINES

9153 A«Me, 1172171977 PAGE: |
TITLE 'APPLE-1l 3ASIC RENUM3ER/APPEND SUBRQUTINES'

1

2 SR RRKE KR RRAERR KRR R A KR
3 * =
4 * APPLE~-11 BASIC *
S * RENUMBER AND APPEND ¥
6 * SUBROUTINES *
7 * *
8 t RENUMBER *
9 * NEW INITIAL (2,3) »
10 * NEW INCR (4.,5%) *
1t * RANGE 3E£G (6,7) *
12 * RANGE END (8,9 *
13 * *
14 * USE RENX ENTRY *
1S * FOR RENUMBER ALL *
16 *® *
17 * 70z 117167717 *
18 * APPLE COMPUTER INC. =%
19 % *
20 ARk REE R KRR R ARk kAR kK
21 PAGE

| Distributed under the Creative Commons License on page 5 Page 0186 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

9153 AcMe, 1172171977

22
23
24
28
26
27
28
29
30
31
32
33
34
35
36
37

SU3TTL 6502

]0L

ROH
RI1IL

R LH
HIMEM
PPL

PYL
MEMFULL
PRDEC
RANGERR
LOAD
s716
CROUT
cout

6502 ZNUJATES

ZQUATES
EPZ 30
EPZ $1
EPZ 816
EPZ 317
EPZ 34C
EPZ S$CA
ZzpzZ $CC
EQU 3E36B
EQU SESIB
EQU 3EE6S8
EQU 3$FODF
EQY $F639
EQU SFDBE
EQU SFDED
PAGE

PAGE: 2

LOW-0®RDER] SW!&6 RO BYTR
H1-0RDER.

LOV-0ORDER SWi8 R/1l 3Y%
HI-0RDER.

BASIC HIMEM POINTER.

3AS1C PROG POINTER.

BASIC VAR POINTER.,

BAS1C MEM FULL ERROR.

BASIC DECIMAL PRINT SR

BASIC RANGE ERROR.

BASIC LOAD SU3R.

SWEET!6 ENTRY.

CAR RET SUB3R.

CHAR QUT SUBR.

| Distributed under the Creative Commons License on page 5

Page 0187 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

1172171917
38
39
40
41
42
43
44
45
46
a7
43
49
50
51
52
53
54
S5
56
S7
58
59
60
61
62
83
64
65
66
67

9’53 AOMOI

SWEET!6 EQUATES

SUBTTL SWEETI6 EQUATES
ACC EPZ 30
NEVLOV EPZ S|
NEVINCR EPZ $2
LNLOY EPZ $3
LNHI1 EPZ 34
TBLSTRT EPZ $5
T3LNDX1 EPZ $6
TSLIM EPZ 37
scas EPZ 38
HMEM EPZ $8
SCR9 EPZ $9
PRGNDX EPZ 39
PRGNDX] EPZ S$A
NEWLN EPZ $B
NEWLN1 EPZ $C
TBLND EPZ 36
PAGNDX2 EPZ 87
CHRO EPZ $9
CHRA EPZ SA
MODE EPZ 30
TBLNDX2 EPZ $B
OLDLN EPZ $D
STRCON EPZ $B
REM EPZ sC
R13 EPZ $D
THEN EPZ $D
LIST EPZ $D
SCRC EPZ $C

PAGE

PAGEs 3

SWEET!6 ACCUMULATOR.

NEW INITIAL LNO.

NEW LNO INCR.

LOW LNO OF RENUM RANGR

HI LNO OF RENUM RANGZ.

LNO TABLE START.

DASS | LNO TBL INDEZXY.

LNO TA3LE LIMIT.

SCRATCH R:zGe.

HIMEM (END OF PRGM).

SCRATCH REG.

PASS | PROG INDEX,
ALSO PROG INDZX.

NEXT *NEW LNO°'.

PRIOR 'NEZW LNJ* ASSIGE

PASS 2 LNO TABLE END.

PASS 2 PROG INDEX.

ASCII *0°'.

ASCII °‘A‘,

CONST/LNO MODE.

LNO TBL IDX FOR UPDATE

OLD LNO FOR UPDATE.,

BASIC STR CON TOKEN.

BASIC REM TOKEN.

SWEETI16 REG 13 (CPR RR

BASIC THEN TOKEN.

3ASIC LIST TOXEN.

SCRATCH REG FOR APPEND

| Distributed under the Creative Commons License on page 5

Page 0188 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

9153 AeMe, 1172171977
68
69
03003 20 89 F6 70
0303: BO 71
030a: 33 72
03051 34 73
0306: Fa 74
0307s 00 75
0308: 20 89 F6 76
03083 18 aCc 00 77
030E: 68 78
030F:s 38 79
0310: 19 CE 00 80
08133 €9 81
0314: 3S 82
0318: 36 83
0316t 21 g4
0317:s 3B 85
0318 3C 86
0319s C9 87
031At 37 88
0318: 39 89
031Cs 29 90
031D: D8 91
031Es 03 a6 92
0320t 3A 93
03213 26 93
03223 EO 9%
0323s D7 96
0324: 03 38 97
0326t 4A 98
03271 A9 99
0328: 39 100
03291 6A 101
032A: D3 102
03283 02 2A 103
032Dt D& 104
032E1 02 02 10S
0330: 07 30 106
0332s 76 107
0333: 00 108
03341 A5 0Ol 109
0336t A6 00 110
0338: 20 1B ES 111
033Bt A9 AD 12
033Ds 20 ED FD 113
03401 A9 BE 114
0342% 20 ED FD 1158
03451 AS 17 116
0347t A6 16 117
0349t 20 18 £S5 118
034C:s 20 8E FD 119
034F: 20 BC F6 120
0352¢ 2B 121

SUBTTL APPLE=-I] BASIC RENUMBER SU3ROUTINE - PASS 1

RENX

RENUM

PASS1

PlA

0RG
JSR
suB
ST
ST
DCR
RTN
JSR
SET
LDD
ST
SET
POPD
ST
ST
LD
ST
sT
POPD
ST
ST
LD
crPR
BC
ST
LD
INR
CPR
BC
LD
ADD
ST
LDD
CPR
BNC
CPR
BNC
BNZ
STD
RTN
LDA
LDX
JSR
LDA
JSR
LDA
JSR
Lba
LDX
JSR
JSR
JSR
LD

APPLE-I1 BASIC RENUM3ER SUBROUTINE =~ PASS |

$300
SWi6
ACC
LNLOW
LNHI
LNHI

Svié

SCRB,HIMEM

#SCRS
HMEM

SCR9,PVL+2

#SCR9
TBLSTRT
TBLNDX1
NEWLOW
NEWLN
NEVLN1}
#SCR9
TBLIM
PRGNDX
PRGNDX
HMEM
PASS2 |
PRGNDX1!
TBLNDX1
ACC
TBLIM
MERR
@PRGNDX1!
PRGNDX
PRGNDX

@ PRGNDX!
LNLOW
PIB

LNHI
PtlAa

PIC
@TBLNDX1

ROH
ROL
PRDEC
#SAD
cour
#$3BE
courTt
RItH
RIIL
PRDEC
CROUT
SW1l3+3
NEWLN

PAGE: 4

OPTIONAL RANGE ENTRY.

SET LNLOV=O0,
LNHI=SFFFF

BASIC HIMEM POINTER
TO HMEM.

BASIC VAR PTR TO
TBLSTRT AND TBLNDX!.

COPY NEWVLOW (INITIAL)
TO NEWLN.

BASIC PROG PTR
TO TBLIM
AND PRGNDX.

IF PRGNDX >s= HMEM
THEN DONE PASS 1.

IF < 2 BYTES AVAIL IN
LNO TABLE THEN RETUR
WITH *MEM FULL® MSG.

ADD LEN BYTE TO
PROG INDEX.

LINE NUMBER.

IF < LNLOW THEN
GO TO P13.

IF > LNHI THEN
GO TO PIC.

ADD TO LNO TABLE.
wx#x 6502 CODE #x%*x

PRINT OLD LNO *->' NEB
(RO,RI1) IN DECINMAL.

x% END 6502 CODE #x#

| Distributed under the Creative Commons License on page 5

Page 0189 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

93153 AeMe,
03533 3C
0354: A2
0355s 3B
0356t 0D
0357: D!
0358: 02
035A: 00
035Bt 4aC
035Es 00
035Fs 4C
0362: EC
0363: DC
0364s 02

ca
68 EE

68 E3

Fa

APPLE-I1 BASIC
11721719117

122
123
124
125
126
127
128
129
130
131
132
133
134
135

PlB
RERR
MERR

PIC

ST
ADD
ST
NUL

- CPR

BNC
RTN
JMP
RTN
JMP
INR
CPR
BNC
PAGE

RENUYMBER SUEROUTINE - PASS |

NEWLN]
NEWINCR
NEWLN

NEWLOW
PASS1

RANGERRA

MEMFULL
NEWLNIL
NEWLN1
RERR

PAGEsY S

COPY NEWLN TO NEWLNI
AND INCR NEVLN BY
NEWINCR.

(WILL SKIP NEXT INST).

I'F LOW LNO < NEWLOVW
THEN RANGE ERR.

PRINT °'RANGE ERR\' MSG
AND RETURN.

PRINT °'MEM FULL' MSG
AND RETURN.

IF H1 LNO <= MOST RECH
NEWLN THEN RANGE EZRR

| Distributed under the Creative Commons License on page 5

Page 0190 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

9153 AeM.,
0366s 19
0369 1A
036Cs 27
036Ds:s D8
036Es 03
0370: E7
0371 67
0372: 3D
0373s 25
0374t 3B
0375s 21
0376: 1IC
0377s 2C
03783 A2
0379: 3C
037a: 2B
0378: B6
037Cs 03
037Es 6B
031Fs BD
0380 07
0382 C7
0383: 2C
0384t 77
0385: 1B
0388: 1C
0389: 67
038As FC
038B:s 08
038Dt 47
03BE: D9
038Fs 02
0391s DA
03923 02
0394: F7
039%: 67
0396 05
0398s F7
0399: 47
039A: DB
039Bs 06
039Ds IC
03A0: DC
03Als 06
03A3: 08
03ASs FD
03A6t FD
03ATs 06
03A9: iD
03ACs DD
03ADs: 06

1r/72t/71977

30
cl

63

oo

07

FS

28
00

ES

09

FS

FC

F7
SD

Fl
13
oF
24

09

00
00

00

00
00

00

s 1]

136
137
138
t39
140
1414
142
143
144
145
146
137
148
149
1s0
1S5t
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
178
176
177
178
179
180
181
182
183
184
185
186
187
188
189

APPLE-]11 3AS51C RENUMBER SUBROUTINE - PASS 2
PAGEs §
SUBTTL APPLE-1l BASIC RENUMBER SUBROUTINE - PASS 2
PASS2 SET CHRO,3B0 ASC1It! *0°*
SET CHRA,sC! ASCII ‘A’
P2A LD PRGNDX2
CPR HMEM 1F PROG INDEX = MIMEM
BC DONE THEN DONE PASS 2.
INR PRGNDX2 SKI!P LEN BYTE.
LDD @PRGNDX2 LINE NUMBER.
UPDATE ST OLDLN SAVE OLD LNO.
LD TBLSTRT
ST TBLNDX2 INIT LNQO TABLE INDEX.
LD NEWLOV INIT NEWLNl TO NEWLOV.
SET NEWLN!,O0 (WILL SKIP NEXT 2 INSR®
ORG x=2
up2 LD NEWLN!
ADD NEWINCR ADD INCR TO NEWLNI.
ST NEWLN1
LD TBLNDX2 IF LNO TBL 1DX = TBLND
SUB TBLND THEN DONE SCANNING
BC uUD3 LNO TABLE.
LDD e@eTBLNDX2 NEXT LNO FROM LNO TABE
SUB OLDLN LOOP TO UD2 IF NOT SAM
BNZ UD2 AS OLDLN.
POPD @PRGNDX2 REPLACE OLD LNO WITH
LD NEWLN1 CORRESPONDING NZW LB
STD @#PRGNDX2
ubD3 SET STRCON.,S$28 STR CON TOXEN.
SET MODE,O (SKIPS NEXT 2 INSTR'S)
ORG *-2
GOTCON LDD @PRGNDX2
DCR MODE 1F MODE = (Q THEN UPDAE
BMt UPDATE LNO REF.
ITEM LD ¢PRIGNDX2 BASIC ITEM.
CPR CHRO
BNC CHKTOX CHECK TOKEN FOR SPECIA
CPR CHRA IF >= *0' AND <« *'A' TH
BNC GOTCON SKIP CONST OR UPDATS
SKPASC DCR PRGNDX2
LDD @PRGNDX2 SKIP ALL NEG BYTES OF
BM SKPASC STR CON, REM, OR NAB
DCR PRGNDX2
LD ¢ PRGNDX2
CHKTOK CPR STRCON STR CON TOKEN?
BZ SKPASC YES, SKIP SUBSEQUENS
SET REM,S$5D
CPR REM REM TOKEN?
BZ . SKpPASC YES, SKIP SUBSEQUENS
BM1 CONTST GOSUB, LOOK FO2R LNO.
DCR R13
DCR RI13 (TOKEN $5F 1S GOTO)
BZ CONTST THEN LNO, LOOK FOR LNO.
SET THEN.,3$234
CPR THEN
BZ CON/JST TH:N LNO, LOOK FOR LNO.

| Distributed under the Creative Commons License on page 5

Page 0191 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

9153 Ao”o,
03AF: FO
03301 06
0382s D
0335s 8D
0336t 09
0338: BQ
0389s 3C
033A: 0l

BA
74 00

ot

D1

190
191
192
193
194
198
196
197
198

CONTST
conTs2

DCR
3z
SET
suB
BNM1
sus
ST
BR
PAGE

APPLE-11 BASIC RENUMBER SUBROUTINE
1172171977

ACC

P2A
LIST,%74
L1ST
CONTS2
ACC

MODZ
I1TEM

- PASS 2
PAGEs 7

EOL (TOKEN $01)?

SET MODE = 0 IF LIST
OR LIST COMMA ($73,8

CLEAR MODE FOR LNO
UPDATE CHECK.

CHECKX NEXT 'BASIC ITEM.

| Distributed under the Creative Commons License on page 5

Page 0192 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

9‘53 A'M.l
033Cs: 20
033Fs 1IC
03C2: CGC
03Cc3: 38
03C4: 1%
03C7: 69
03Cc8s 7C
03C9%s 00
03Cas 20
03CDs 20
03DQ: CC
03D1s 28
03p2: 17C
03D3: 00
03D4as 60

9
E

S

CA

DF
89

Fé
00

oc

FO
Fé

199
200
201
202
203
204
20s
206
207
208
209
210
211
212
213
214

S'I3TTL APPLE-11 BASIC APPEIND SUBROUTINE

AHPPIND

DONE

+x+»x%k%k2SUCCESSFUL ASSEMBLY:

JSR SwW1ié
SET SCRCLHIMEM+2
POPD #SCRC
ST HMEM
SET SCR9,PPL
LDD @SCRS
STD @SCRC
]TN
JSR LOAD
JSR SV16
POPD #SCRC
LD HEMEM
STD @SCRC
RTN
RTS

NO ERRORS

APPLE-I1 BASIC APPEND SU3RJUTINE
1721716717

PAGEs 8

SAVE HIMEM.

SET HIMEM TO PRZSERVE
PROGRAM.

LOAD FROM TAPE.

RESTORE HIMEM TO SHOV
B0TH PROGRAMS
(OLD AND NZIW).
RETURN.

| Distributed under the Creative Commons License on page 5

Page 0193 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

£2C

P PEND
ClTOX
CHiRO
CHRA
CONTS2
CTnTST
CJT
CO0uT
HENTI %
G3.,C0ON
Hi. &M

| TR |
ITEM
L1ST
LKL
LILOW
L3AD
MEESULL
MIRR

1 3DE
mCWINCR
MO WLN
LoWLNI
NEWLOW
OLNDLN
PlA

PIB

»1C

PrA
22881
PASS2
FPL
==DEC
PLGNDX
=i ENIX!L
TRINDX2
=L

20H

ROL
RI11H
2111,
P13
PAMNGERR
RENTIM
RINX
SRR
SCR8
5CRQ
SCRC
SKPASC
ST=CON
SW16
T3LIM
T2 AD
TRLYOX!
=1 NDY2
T31.STRT
TUIN

CROSS~-REFEANCES

0000
033C
03IQA
009
0002A
0339
2=z8
FDED
FDSE
02D3
0329
004aC
0008
038D
030D
0004
0003
FODF
E36B
035E
000C
0002
0008
gooC
0001
000D
0332
0357
0362
036C
031C
0356
00CA
£ES1B
0309
000A
0007
00CC
000t
0000
0017
0016
000D
EE6S
000C
0108
c300
0:SA
cn08
0009
0cocC
03%4
0008
F589
ca07
9006
0C0%
0038
0039
002D

A7PLE-11 3ASIC 3ENUMBER/APFEND SUBROUTINES
o003 0190 019%

0071

0170
0137
0138
01354
0133
0113
olt9
D141
0172
0017
0079
ats97
ots2
0073
06072
0208
0131
0097
0163
0123
0o8s
0036
0084

0144,

010S
0103
0106
0191
o127
0692
0204
gttt
0089
0033
013%
0080
0109
otio
o116
otz
0!18a
o129
0130

0134
0077
0Ceo0
0g0l1
017%
otez
0070
0css
0iS4
0083
0116
ocz2
0187

0149
o171

0186
ot1s

0201
5091

0193
0074
o102

0166
0151
ot21
o122
o126
0157

o118
0090
058
0142

0185

o181

cc78
008t
0202
0179
o178
0076
0036

te34
Q153
0145
0138

0189

0140

0134

0196

0124
0132
o147

0099
o101
0143

0087
0206

0182

0120

0107

o156

0203 0211

0133 0148 0150 0152 0160

0100

Oi59 ot61 0165 0168 0173 0174 0176 0177

0204 0205
0210 0212

€200 c209

| Distributed under the Creative Commons License on page 5

Page 0194 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

CROSS REFERENCE: ATPLE-1!1 2AS1C RENUMBER/APPEND SUBROUTINES

ub2 0377 ciss
uD3 0385 01SS
UPDATE 0372 0167

Page 0195 of 0213)

| Distributed under the Creative Commons License on page 5

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

This page is not part of the original Wonderbook

| Distributed under the Creative Commons License on page 5 Page 0196 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

The Woz Wonderbook

DOCUMENT

References

©®3 November 2004

This page is not part of the original Wonderbook

| Distributed under the Creative Commons License on page 5 Page 0197 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

This page is not part of the original Wonderbook

| Distributed under the Creative Commons License on page 5 Page 0198 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

The Woz Wonderbook

References

David T Craig « 03 November 2004

Here is a list of Apple Computer and Apple-II computer technical and historical
reference materials that may prove beneficial to readers of the Woz Wonderbook
who want to know more about the details behind this document and the Apple-II
computer in the late 1970's.

These more polished references originated in publicly published Apple Computer
documents, magazine articles, and Apple-II enthusiast private materials.

David T Craig (shirlgato@cybermesa.com) has digital copies of all of these
materials. These materials may possibly be provided with DigiBarn's Woz
Wonderbook digital materials via its web site or a CD.

SYSTEM DESCRIPTION: THE APPLE-II

Steve Wozniak ¢« BYTE Magazine + May 1977

This description of the Apple-II computer by its main designer provides a
concise description of this computer's technical features.

MICROCOMPUTER FOR USE WITH VIDEO DISPLAY

Steve Wozniak ¢ US Patent 4,136,359 + 23 January 1979

This is Apple Computer's patent for the Apple-II computer assigned to Steve
Wozniak. Dry reading, but has some good Apple-II technical information.
Available on the US Patent Office web site http://www.uspto.gov/patft/.

APPLE-II HISTORY

Steven Weyhrich ¢ http://apple2history.org/history/ « 1991-2003

This great web site contains a cornucopia of accurate Apple-II historical
information. If you want to learn about the origins of Apple Computer and the
Apple-I and Apple-II computers, this is the place to go. Also available on the
internet at http://www.blinkenlights.com/classiccmp/apple2history.html.

SWEET-16: THE 6502 DREAM MACHINE

Steve Wozniak < BYTE Magazine < November 1977

This is Steve Wozniak's comprehensive description of his SWEET-16 16-bit byte-
code "meta microprocessor" interpreter built into the Apple-II Integer BASIC
ROM. Wozniak's Apple-II system description in BYTE May 1977 also has a short
description of SWEET-16.

This page is not part of the original Wonderbook

| Distributed under the Creative Commons License on page 5 Page 0199 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

APPLE-II REFERENCE MANUAL ("RED BOOK")

Apple Computer < January 1978

This is Apple Computer's first published technical reference manual for the
Apple-II computer. It is commonly referred to as the "Red Book" because it has a
red cover. The Red Book's contents (155 pages) were based on the Woz Wonderbook
but in a more polished format, but is not as comprehensive or readable as the
later Apple-II reference manuals. A good PDF scan of the Red Book can be found
on the internet at http://bitsavers.org/pdf/apple/ along with several other
older Apple-II manuals.

APPLE-II REFERENCE MANUAL

Apple Computer + 1979 ¢ Document # 030-0004-01

This is Apple Computer's first revision of the Apple-II Red Book. This 275 page
manual is much improved over the Red Book and tremendously improved over the Woz
Wonderbook materials. Note the Apple document number (030-0004-01) which
indicates this is a technical manual (030), is document number 4 (0004), and is
revision 1 (01) which means this is Apple's 4th published manual.

APPLE-II MINI MANUAL

Apple Computer « 1977-1978

This 68 page manual from Apple Computer appears to be the predecessor to the Red
Book from 1978. As such, I would date this manual in the 1977-1978 range. More
complete and more detailed than the Woz Wonderbook, but not as good as the Red
Book. A good PDF scan of this manual can be found on the internet at
http://bitsavers.org/pdf/apple/.

THE WOZ PAK][

Call-A.P.P.L.E. Magazine « 15 November 1979

This 138 page document contains a large number of technical documents about the
Apple-II computer courtesy of Apple Computer and Call-A.P.P.L.E. magazine. This
is better organized and more comprehensive than the Woz Wonderbook or the Red
Book, but not as good as the Apple-II Reference Manual from 1979. Contains a
detailed article on the Apple-II floating point package.

PEEKING AT CALL-A.P.P.L.E.
Call-A.P.P.L.E. Magazine « 1978 and 1979

This 2 volume set (volume 1 dated 1978 has 92 pages, volume 2 dated 1979 has 206

pages) contains lots of Apple Computer re-produced technical information and
original Call-A.P.P.L.E. magazine information. Well worth reading.

This page is not part of the original Wonderbook

| Distributed under the Creative Commons License on page 5 Page 0200 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

PROGRAMMER'S AID #1:

INSTALLATION AND OPERATING MANUAL
Apple Computer e« 1978 « Document # 030-0026-01

This 113 page Apple manual describes the special programming built into the
Programmer's Aid #1 ROM chip (there was never an Aid #2 chip AFAIK). Includes
several 6502 assembly language programs by Steve Wozniak which used his SWEET-16
16-bit byte-code interpreter. Includes more polished information for the Integer
BASIC renumber and append programs described in the Woz Wonderbook.

FLOATING POINT ROUTINES FOR THE 6502

Steve Wozniak & Roy Rankin
Dr. Dobb's Journal of Computer Calisthenics & Orthodontia ¢ August 1976

This is an article on the Apple-II floating point package pre-dating the Woz
Wonderbook. Has more details about this package than the Wonderbook. Available
on the internet at www.strotmann.de/twiki/bin/view/APG/AsmAppleFloatingPoint.
Concerning authorship of this floating point package, web site
http://1linux.monroeccc.edu/~paulrsm/dg/dg32.htm says Wozniak wrote the core
package routines (e.g. ADD) and Rankin wrote the transcendental routines (e.g.
LOG) .

DISASSEMBLER PROGRAM FOR THE 6502

Steve Wozniak & Allen Baum
Dr. Dobb's Journal of Computer Calisthenics & Orthodontia + September 1976

This is an article on the Apple-II 6502 disassembler pre-dating the Woz
Wonderbook. Available on the internet at http://users.telenet.be/kiml-
6502/kun/i14/pB6.html.

THE APPLE Il PLUS PERSONAL COMPUTER SYSTEM

Apple Computer e+« November 1981

This is Apple Computer's data sheet for the Apple-II Plus computer, the
successor to the Apple-II computer. Shows how some of the enhancement ideas
documented in the Woz Wonderbook and the Red Book were implemented by Apple.

PRELIMINARY APPLE BASIC USERS MANUAL

Apple Computer e« October 1976

This 16 page manual seems to be Apple Computer's first user manual for its
Apple-II Integer BASIC programming language. The Woz Wonderbook is very lacking
in Integer BASIC information for the user. A good PDF scan of this manual can be
found on the internet at http://bitsavers.org/pdf/apple/.

This page is not part of the original Wonderbook

| Distributed under the Creative Commons License on page 5 Page 0201 of 0213

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

APPLE TECH NOTES

Apple Computer and the International Apple Core (IAC) -« July 1982

This 500 page document contains an extensive collection of Apple Computer
technical notes from 1982 covering the Apple-II and Apple-III computer families.
Many Apple-II hardware, software and documentation errata details are here.
Includes articles about the Apple-II mini-assembler and cassette interfacing. A
treasure trove of early Apple system technical information.

APPLE-II SYSTEM MONITOR ROM LISTING

Apple Computer « 1977

For detailed information about the internal software workings of the Apple-II
computer the source listing for the Apple-II System Monitor ROM is the key.
Available in the Apple-II reference manual dated 1979 or on the internet at
http://members.buckeye-express.com/marksm/6502/.

STEVE WOZNIAK INTERVIEW: HOMEBREW TO CHAMPAGNE

Apple Orchard Magazine ¢ Spring 1981

An early interview with Steve Wozniak in which he provides contemporary details
about Apple Computer's origins and early days.

STEVE WOZNIAK INTERVIEW: THE APPLE STORY

BYTE Magazine < December 1984

A great interview with Steve Wozniak by BYTE magazine with lots of Apple
Computer and Apple-II information. Also includes a retrospective on SWEET-16,
Wozniak's 16-bit byte-code interpreter. This is available on the internet at
http://apple2history.org/museum/articles/byte8412/byte8412.html.

STEVE WOZNIAK INTERVIEW: STEVE WOZNIAK UNBOUND

SlashDot Interview ¢ January 2000
http://slashdot.org/interviews/00/01/07/1124211.shtml

This 2000 interview of Steve Wozniak contains some good 24 year recollections
about Apple Computer's origins and early years.

This page is not part of the original Wonderbook

| Distributed under the Creative Commons License on page 5 Page 0202 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

The Woz Wonderbook

DOCUMENT

Bill Goldberg Interview

19 April 2004

This page is not part of the original Wonderbook

| Distributed under the Creative Commons License on page 5 Page 0203 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

This page is not part of the original Wonderbook

| Distributed under the Creative Commons License on page 5 Page 0204 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

The Woz Wonderbook

Bill Goldberg Interview

Bruce Damer -« 19 April 2004

Source:
http://www.digibarn.com/collections/books/woz-wonderbook/goldberg-on-woz-won
derbook.mp3 (3.3 MB file)

Transcript created by
David T Craig <shirlgato@cybermesa.com> -- 02 November 2004

Interviewer: Bruce Damer <bdamer@digitalspace.com>
Interviewee: Bill Goldberg <billau@coastside.net>

Interview duration: 3:39 minutes

BACKGROUND

The "Woz Wonderbook" was a compilation of notes from Steve Wozniak's filing
cabinet that served as the first documentation and technical support manual
for the Apple II computer (before the more famous "red book" of January
1978). Bill Goldberg, longtime Apple employee, donated his copy of the
Wonderbook to the DigiBarn (thanks Bill!). At the time he was at Apple there
was only a single copy of this thick binder of photocopied notes, diagrams
and such to be found in the Apple library. Bill, being in the technical
support role and a natural pack rat, made a copy of the Wonderbook.

INTERVIEW TRANSCRIPT

BILL GOLDBERG: Here it's faded. This is the Woz Wonderbook. And its
disorganized but I found the copy of this in the Apple library
and immediately made some copies of it.

BRUCE DAMER: So this was before the Red Book?

BILL GOLDBERG: This is what the Red Book was made from.

BRUCE DAMER: Oh gosh.

BILL GOLDBERG: Actually, I've got one or two Red Books for you.

BRUCE DAMER: Wonderful, because the Red Book we have is on loan.

BILL GOLDBERG: Actually, in Service Engineering we would get the leftovers of
things. People would say "we don't need any more of this". So we

had two cases of Red Books and a few of us in the department
said "Hmm, these are worth something" and we divided them up.

This page is not part of the original Wonderbook

| Distributed under the Creative Commons License on page 5 Page 0205 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

BRUCE DAMER:

BILL GOLDBERG:

BRUCE DAMER:

BILL GOLDBERG:

BRUCE DAMER:

BILL GOLDBERG:

BRUCE DAMER:

BILL GOLDBERG:

BRUCE DAMER:

BILL GOLDBERG:

BRUCE DAMER:

BILL GOLDBERG:

BRUCE DAMER:

BILL GOLDBERG:

BRUCE DAMER:

BILL GOLDBERG:

BRUCE DAMER:

BILL GOLDBERG:

BRUCE DAMER:

BILL GOLDBERG:

BRUCE DAMER:

Wow.

So, anyway, in here you will find some of the stuff typed, a
number of different articles, but you will also find,
unfortunately the xerox did the best job it could and it has
faded over the years, but there's handwritten notes.

So Woz wrote these notes?

Uh-Hmm [yes]. Here's a listing with some hand disassembly and
his comments. Article on the disassembler.

So this is Woz's hand notes?
Well, it's hand notes, it's various articles.
Here's a disassembled disassembler.

Uh ha. But all written by hand.

Written by hand. Yup.

And let's see. Here for instance, here's an article on the

cassette system.
Ok.

We (he?) gave up on using the cassette, but this actually is his
handwritten notes on the cassette system. So ...

This is a big book. He must have sat for hours writing this
down.

You know, somebody just went through a file drawer of his notes
and put it in a binder.

Oh.
And there was only one of these in the Apple library. So ...
Wow.

Either I or one of my colleagues checked it out and made some
copies because this was going to disappear into obscurity.

This is the Woz Wonderbook?
This is what it was called on the spine.

This would have been [19]777?

This page is not part of the original Wonderbook

| Distributed under the Creative Commons License on page 5

Page 0206 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

BILL GOLDBERG:

BRUCE DAMER:

BILL GOLDBERG:

BRUCE DAMER:

BILL GOLDBERG:

BRUCE DAMER:

BILL GOLDBERG:

Uhm, actually the first article on the first of this has a date
of 9/20/77 [20 September 1977]. So, but this is just a

collection of a lot of different ... this actually goes into
explaining ...

Yeah ...

Yup. The detail that, you know ... I'm sure some of this is

hideously proprietary but who will ever know.

Well, not at this point.

Ok, so that's the Woz

Woz ...

Actually, it won't hurt to write on the spine ... here take a
pen, so its in your handwriting. That was my handwriting, so

there's nothing special about that.

HHH#

This page is not part of the original Wonderbook

| Distributed under the Creative Commons License on page 5

Page 0207 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

This page is not part of the original Wonderbook

| Distributed under the Creative Commons License on page 5 Page 0208 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

The Woz Wonderbook

DOCUMENT

Credits

This page is not part of the original Wonderbook

| Distributed under the Creative Commons License on page 5 Page 0209 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

This page is not part of the original Wonderbook

| Distributed under the Creative Commons License on page 5 Page 0210 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

The Woz Wonderbook

Credits

Thanks to Bill Goldberg for donating this copy of the Woz Wonderbook.

The DigiBarn Computer Museum and Curator Bruce Damer for providing it to the
education and research community.

David T Craig is to be thanked for resurrecting the Wonderbook into a modern
digital format.

And of course, thanks to Steve Wozniak for creating the Woz Wonderbook!

Steve Wozniak, Co-lounder Apple

Steve Wozniak circa 1977 and 1981

This page is not part of the original Wonderbook

| Distributed under the Creative Commons License on page 5 Page 0211 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

This page is not part of the original Wonderbook

| Distributed under the Creative Commons License on page 5 Page 0212 of 0213)

The Woz Wonderbook -- 1977 -- DigiBarn Computer Museum -- Steve Wozniak, Apple Computer Inc.

The Woz Wonderbook

The End

0 Y
— T
i

This page is not part of the original Wonderbook

| Distributed under the Creative Commons License on page 5 Page 0213 of 0213)

