engineering data service

325 Volts

6X4 12X4

MECHANICAL DATA

Bulb .															,	Γ -5½
Base .						E	7-1,	N	Air	niat	ure	·	3u	tto	n	7-Pin
Outline																
Basing																5BS
Cathode																
Mountin																

ELECTRICAL DATA

HEATER CHARACTERISTICS

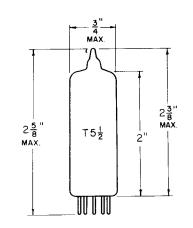
	6X4	12X4
Heater Voltage ¹	6.3	12.6 Volts
Heater Current		300 Ma .
Heater Negative with Respect to Cathode Total DC and Peak Heater Positive with Respect to Cathode	450	450 Volts Max.
Total DC and Peak	100	100 Volts Max.
RATINGS (Design Center Values) Peak Inverse Plate Voltage		See Rating Chart I210 Ma Max.1.0 Ampere Max.

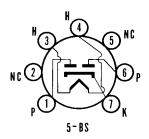
CHARACTERISTICS

Tu]	oe ₹	Voltage	Drop,	I_b	==	70	Ma	Each	Plate						22 \	Volts
-----	------	---------	-------	-------	----	----	----	------	-------	--	--	--	--	--	------	-------

A C Plate Supply Voltage Per Plate

TYPICAL OPERATION


Full-Wave Rectifier-Capacitor Input


Filter Input Capacitor³

1			-								
Total Effective Plate Supply Impedance (Per Plat	te)			525 Ohms							
DC Output Current											
D C Output Voltage at Filter Input (approx.)											
For DC Cathode Current of 35 Ma				365 Volts							
70 M a											
Difference (Voltage Regulation)											
Percentage Regulation											
Full-Wave Rectifier Service — Choke Input											
A C Plate Supply Voltage Per Plate (R M S)				450 Volts							
Filter Input Choke											
D C Output Current											
DC Output Voltage at Filter Input (approx.)	•	•	•	70 IVI							
For D C Cathode Current of 35 Ma				395 Volts							
70 Ma											
Difference (Voltage Regulation)											
Porcente as Population	•	•	•	2.5 Dercent							
Percentage Regulation	•	•	•	2.) reiceilt							

QUICK REFERENCE DATA

The Sylvania Types 6X4 and 12X4 are miniature, full-wave, cathode type rectifiers. They are intended for service in compact a c or auto receivers where the average current is not in excess of 70 Ma. Except for heater current and voltage the 6X4 is identical to the 12X4.

SYLVANIA ELECTRIC PRODUCTS INC.

RADIO TUBE DIVISION EMPORIUM, PA.

Prepared and Released By The TECHNICAL PUBLICATIONS SECTION EMPORIUM, PENNSYLVANIA

MARCH 1956
PAGE 1 OF 5

SYLVANIA

NOTES:

- 1. The 6X4 and 12X4 are intended to be used in automotive service from a nominal 6 or 12 volt battery source. The heaters and maximum ratings of these tubes provide for an adequate safety factor such that they will withstand a wide variation in supply voltages.
- 2. If capacitor input circuits are to be used, protect the circuits against the possibility of hot-switching and do not exceed a maximum peak current value of one ampere during the initial cycles of the hot-switching transient.
- 3. Higher values of capacitance than indicated may be used, but the effective plate supply impedance may have to be increased to prevent exceeding the maximum rating for hot-switching transient plate current.

INTERPRETATION OF RATING CHARTS

Rating Charts I, II and III represent boundary conditions beyond which operation of the 6X4 and 12X4 is not permitted. With the aid of simple laboratory measurements and the use of the three charts, any application may be analyzed for proper rectifier type operation.

The boundaries of Rating Chart I are based on limits of supply voltage, plate dissipation and output current. These boundaries differ, depending upon the type of filter used. With capacitor input, operation is confined to the area bounded by FAEDG while for choke input, the entire area bounded by FABCDG may be used.

The boundary of Rating Chart II defines the limit of steady-state peak current. Operation within the boundary is permitted.

Rating Chart III defines the minimum value of effective plate supply resistance, per plate, for any given plate voltage supply which will assure that the surge currents are within a safe value.

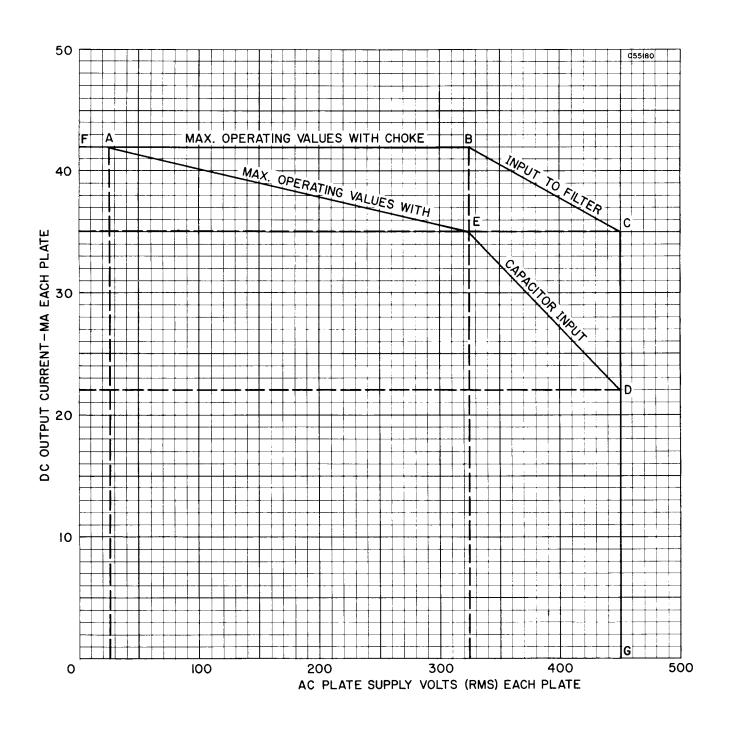
$$R_s = N^2 R_{pri} + R_{sec} + R_a$$

Where: N — Voltage step up ratio of plate transformer.

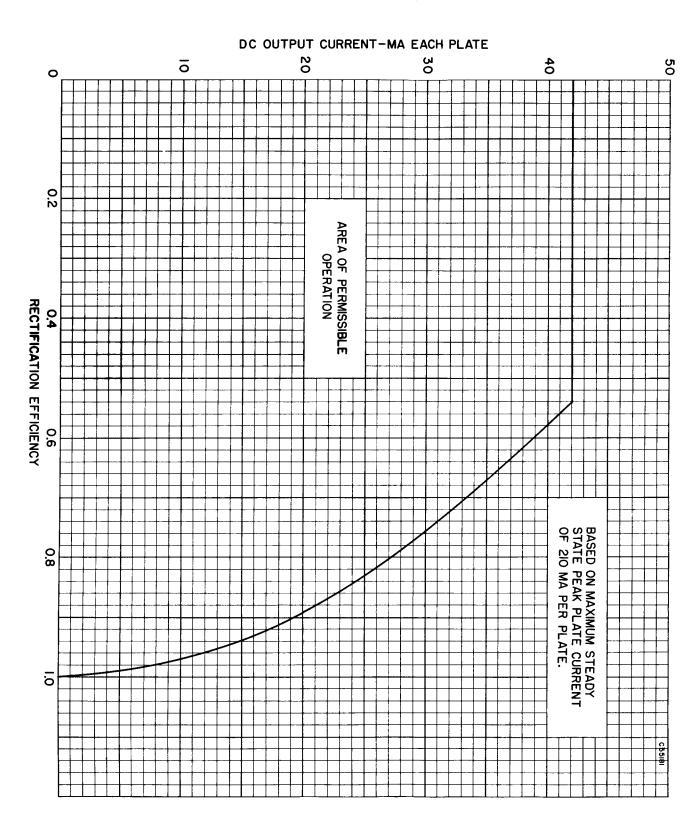
R_{pri} — D C resistance of transformer primary.

R_{sec} — Average D C resistance of transformer secondary per section.
R_a — Added series resistance.

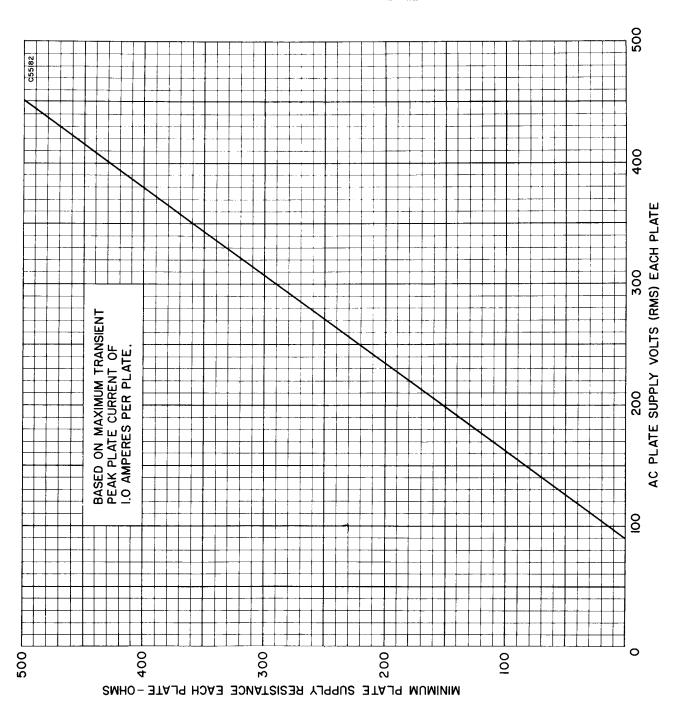
For any application, each Chart should be consulted. On all Charts the points of operation should fall within the proper boundaries.


Plate supply voltages are measured with the rectifier tube non-conducting, i.e., with the transformer unloaded. This unloaded voltage is used when calculating rectification efficiency.

The rectification efficiency is defined as:


D C Output Voltage √2 (Unloaded RMS Supply Voltage Per Plate)

The DC output voltage is measured at the input to the filter.


RATING CHART I

RATING CHART II

RATING CHART III

