

SUBMINIATURE TETRODE THYRATRON

DESCRIPTION

This reliable subminiature xenon tetrode thyratron is from the Bendix Red Bank line of reliable gas tubes. It is specifically designed for use in counters, grid control rectifiers, and other control circuits such as Gyro erection systems, missile systems and automatic flight control applications where freedom from early failures, long average service life and uniform operating characteristics are extremely important. In addition, this tube is designed for use in equipment where high levels of shock, vibration and other accelerations are to be encountered. Each tube is given a 24-hour run-in under various conditions of overload comparable to those to be encountered in service. This run-in period serves to reduce early failures by eliminating tubes that may have minor defects which could possibly lead to failure under operating conditions.

The mechanical and electrical design, combined with a program of 100% microscopic inspection during manufacture, assures a high degree of reliability in all applications where severe mechanical shock and vibration may be encountered. Careful exhaust to a high degree of vacuum is employed before xenon is put into the envelope to ensure a long life expectancy. The large cathode area operating at moderate temperatures gives long service life. Small mass of the tube elements and electrode spacing provide increased ability of the tube to withstand shock and vibration. This tube has a control character-

ELECTRICAL RATINGS

Heater Voltage	6.3 volts
Heater Current	0.15 amperes
Peak Plate Inverse Voltage	500 volts
Peak Forward Plate Voltage	500 volts
Maximum Negative Grid 1 Voltage	
(Before Conduction)	—200 volts
Maximum Negative Grid 2 Voltage	
(Before Conduction)	—100 volts
Average Cathode Current	16 mAdc
Peak Cathode Current	100 mA
Heater-Cathode Voltage:	
Maximum	+25 Vdc
Minimum	—100 Vdc
Cathode Warm-up Time	10 sec
Maximum Negative Grid 1 or Grid 2	
Voltage During Conduction	— 10 volts

istic which is virtually independent of ambient temperature over a comparatively wide range. (Refer to the enlarged view on the last page for the many improved features of this tube.)

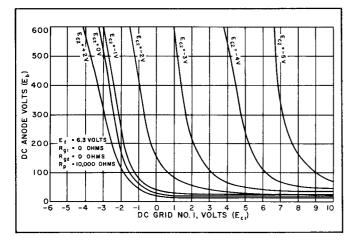
MECHANICAL DATA

Base	Button: Subminiature 8-pin long leads	
Envelope	T-3 (8-1)	
Bulb Length (Max)	1.375 in.	
Diameter (Max)	0.400 in.	
Mounting Position	Any	
Altitude Rating (Max)	60,000 ft.	
Bulb Temperature (Max)	125°C	
Ambient Temperature (Min)	—55°C	
Cathode	Coated Unipotential	

Red Bank DIVISION, EATONTOWN, NEW JERSEY

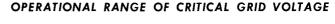
ELECTRICAL CHARACTERISTICS AND TEST DATA

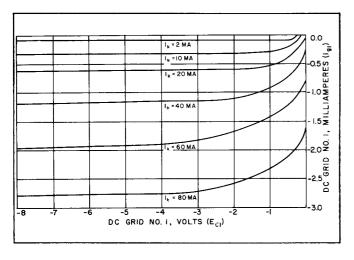
END OF LIFE TEST CONDITIONS AND CHARACTERISTICS LIMITS

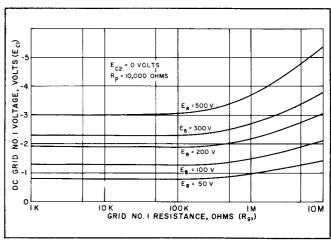

CHARACTERISTIC		SYMBOL	MIN.	DESIGN CENTER	MAX.	UNITS
PRODUCTION TESTS	5					
Heater Current		If	138	150	164	mA
Heater-Cathode Leakage		lhk	_	_	<u>±</u> 20	μAdc
Grid Voltage (1)		Egl	0.8	_	— 5.0	Vdc
Grid Voltage (2)		Egl	_		_	Vdc
Anode Voltage		Ebb	_	_	70	Vdc
Pulse Emission		tď	_	_	100	Vac
Short and Continuity						
ELECTRODE:		Ef Ec2			Ehk	
TEST CONDITIONS:	6.3 volts		0		+25 Vdc 100 Vdc	

ADDITIONAL TESTS

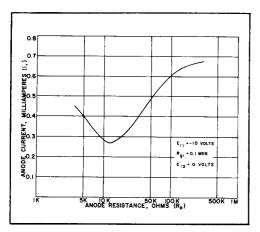
In addition to the production and design tests shown other tests are performed on a sampling basis to assure a high outgoing quality level. See below.

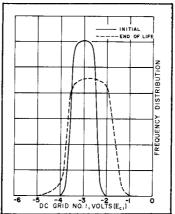

TEST	2NOITIONO3	DURATION		
Heater cycling Life Test	On 1 Min. Off 4 Min. Ef = 7.0 Ehk == 18	2500 on-off cycles		
High Temp. Life Test	Under ''Test Conditions'' Bulb Temp. 125° C	600 Hours		
Survival Rate Life Test	Under ''Test Conditions''	100 Hours		
High Level Fatigue Test	2.5G Excitation 60/sec. rep. rate	96 Hours		
Shock	500 G			
Altitude Test	60,000 Feet			
Glass Strain Test	Boiling Water to Ice Water	15 sec. hot 5 sec. cold		
Lead Fatigue	1 Pound 4 Arcs			
Mount Inspection	100% Test—Microscopi	c Inspection		

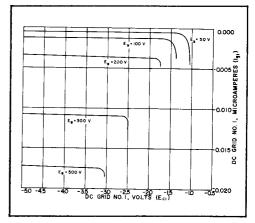

350



THE RANGES SHOWN TAKE INTO ACCOUNT INITIAL DIFFERENCES BETWEEN INDIVIDUAL TUBES AND SUBSEQUENT DIFFERENCES DURING TUBE LIFE FOR A HEATER VOLTAGE RANGE OF 6.0 TO 66 VOLTS AND FOR A BULB TEMPERATURE RANGE OF -70 TO +125°C -8 -7 -6 -5 -4 -3 -2 -1 O DC GRID NO.1, VOLTS (Ec,)


AVERAGE CONTROL CHARACTERISTICS

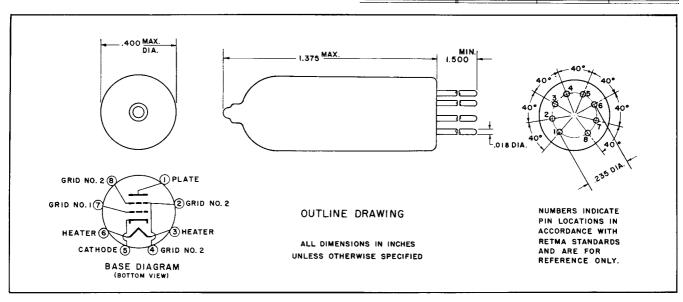


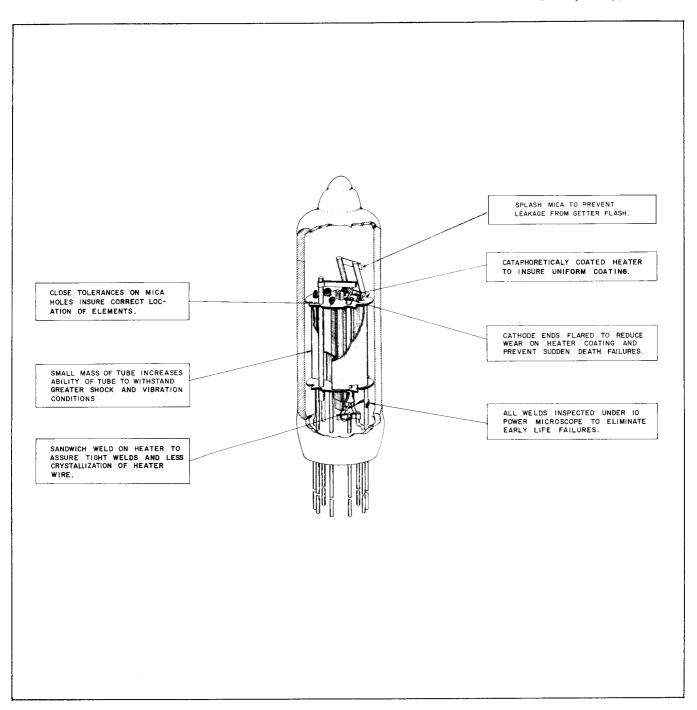

SUBMINIATURE TETRODE THYRATRON

AVERAGE GRID FIRING DISTRIBUTION

AVERAGE GRID CHARACTERISTICS BEFORE ANODE CONDUCTION

APPLICATION NOTES


Special attention should be given to the temperatures at which the tubes are to be operated. Reliability will be seriously impaired if maximum bulb temperature is exceeded. The life expectancy will be reduced if conditions other than those specified for life test are imposed on the tube and will be reduced appreciably if absolute maximum ratings are exceeded. Both reliability and performance are directly related to the degree that regulation of the heater voltage is maintained at its center rated value.


The increased rating chart is presented to emphasize the dangers of operating simultaneously at or near all maxima. In general, the effect on life of operation at increased ratings is additive and cumulative. Interpolation within this chart will give the designer a general idea of the life expectancy and reliability of his application. Each proposed application should be life tested under maximum environmental conditions in order to check that the design gives the desired reliability.

Typical use of this subminiature thyratron is in gridcontrolled rectifiers, counter circuits and various control circuits where a high degree of reliability is required. When conservatively used, this tube has a life expectancy of over 1000 hours.

EFFECT ON LIFE OF INCREASED RATINGS

See also Application Notes	OPERATING CONDITIONS			
RATING OR CHARACTERISTIC	CONSERVATIVE	TYPICAL	MAXIMUM	
Heater Voltage	6.3V ± 2%	6.3V ± 3%	6.3V ± 5%	
Plate Voltage (dc)	350 Vdc	400 Vdc	500 Vdc	
Plate Voltage (ac)	275 Vac	300 Vac	350 Vac	
Peak Plate Voltage Inv.	350 V	400 V	500 V	
Plate Current (Av.)	12mA	14mA	16mA	
Cathode Current (Peak)	50 m:A	65 m A	100mA	
H-K Voltage	± 10V	+20; -90V	+25; —100V	
Grid Resistance	100,000 ohms	1,000,000 ohms	10,000,000 ohms	
Bulb Temperature	85°C	100°C	125°C	
Altitude	050,000 ft	50,000 ft.	60,000 ft.	
Vibration	0 G	2.5 G	5 G	
LIFE EXPECTANCY	MAXIMUM	HIGH	MEDIUM	
				

STRUCTURAL FEATURES OF 5643 PROVIDE HIGH RELIABILITY AND LONG LIFE.

