R.F. POWER TRIODE

TYS4-500

R.F. power triode in silica envelope, and rated for an anode dissipation of 500W. Primarily intended as a self-excited oscillator in r.f. heating equipment, but also as an r.f. amplifier in transmitting or industrial equipment.

This data should be read in conjunction with GENERAL OPERATIONAL RECOMMENDATIONS - TRANSMITTING VALVES/which precede this section of the handbook. **FILAMENT** Thoriated tungsten, suitable for a.c./or d.c. operation 10 10 If (approx.) MOUNTING POSITION Vertical, filament leads downwards CAPACITANCES 10 ρF 7.5 ρF Cg-f 1.5 ρF c_{a-f} CHARACTERISTICS (measured mA/V 6.0 gm 24 μ 4.0 $\mathbf{k}\Omega$ r_a LIMITING VALUES (absolute ratings *Va(d.c.) max. (with natural cooling of seals) 4.0 kΥ w Ra max. 500 Ik max. 750 mΑ $i_{\mathbf{k}(\mathbf{p}\mathbf{k})}$ max. 3.0 Α Imax. (at pa max.) 100 mA max. (at 25% of p_a max.) 130 mA 10 $k\Omega$ 870 °C Temperature of central area of anode (at p_a max.) °C Max. temperature of metal-to-glass seals 260 max. (at V_a max. and natural cooling) 30 Mc/s

due to the regulation resistance of the equipment, etc.

*This figure may be allowed to rise to 4.5kV to cover temporary excesses

MAXIMUM OPERATING CONDITIONS AS CLASS "C" AMPLIFIER WITH NATURAL COOLING

This assumes complete protection for the valve against overload of the anode and/or grid and against inefficiency due to under-drive, etc.

f	15	Mc/s
$V_{\rm a}$	4.0	kΫ
Vg	–310	V
la [®]	500	mΑ
lg	75	mΑ
η̈́	75	07 70
Pout	1.5	kŴ
Pa	500	W
P_{load} ($\eta_{transfer} = 80\%$)	1.2	kW

DIELECTRIC HEATER WITH PROTECTION

Operating conditions for a dielectric heater employing single-phase, full-wave rectification (unsmoothed) for the anode supply and incorporating the maximum protection for the valve against overload, under-drive and inefficient operation.

f 18	Mc/s
V _{tr} 4,000–0–4,000	ĺ V
V _a 3.59	kV
P _{in} 1.79	kW
	mΑ
$\begin{array}{ccc} I_a & & 404 \\ R_{g-f} & & 4.5 \end{array}$	kΩ
lg 68	mΑ
$p_a (at \eta = 73\%)$ 485	W
P _{out} (less P _{drive}) 1.25	kW
$P_{load} (\eta_{transfer} = 80\%) $ 1.0	kW

This condition leaves a 3% tolerance on anode dissipation.

DIELECTRIC HEATER WITHOUT PROTECTION

Recommended operating condition for a dielectric heater employing single-phase, full-wave rectification (unsmoothed) for the anode supply, natural cooling of the oscillator valve and an over-current circuit-breaker as the sole protection.

f	18	Mc/s
$V_{ m tr}$	4,000-0-4,000	V
V_a	3.59	k٧
Pin	1.2	kW
la	270	mΑ
\tilde{R}_{g-f}	4.5	$\mathbf{k}\Omega$
Ig	75	mΑ
p_a (at $\eta = 73\%$)	322	W
Pout (less Pdrive)	828	W
$P_{load} (\eta_{transfer} = 80\%)$	660	W

INDUCTION HEATER

Maximum rated operating conditions, at the peak of the work cycle, for an induction heater employing single-phase, full-wave rectification for the anode supply.

f	450	kc/s
V_{tr}	4,000-0-4 000	V
V _a	3.59	kV
Pin	1.6 4	kW
	370	mΑ
$oldsymbol{l_a}{R_{g-f}}$	4.5	kΩ
Ig	70	mΑ
$p_a (at \eta = 75\%)$	4 10	W
Pout (less Pdrive)	1.23	kW
P_{load} ($\eta_{transfer} = 77\%$)	950	W

This condition makes an allowance in the anode dissipation for the supply voltage being 5% high and for an unwitting overload of 10% occurring concurrently.

WEIGHT

Valve only

ANODE AND GRID CURRENTS PLOTTED AGAINST ANODE VOLTAGE
WITH GRID VOLTAGE AS PARAMETER

CONSTANT CURRENT CURVES