Indirectly heated Beam Tetrode with aligned grid construction to minimise screen current. It is rated to dissipate a maximum of 7.5 watts at the anode, and is particularly suitable for use at frequencies up to 150 Mc/s., as an R.F. amplifier or as a frequency multiplier.

This data sheet should be read in conjunction with "Operating Notes, Part I—Power Valves," included in this volume of the Handbook.

CATHODE

Ind	irect	·lv	heated.	
ina	ireci	ш	neated.	

V_{h}	6.3	٧
l _h	0.6	Α
Heating time	22	secs.

CAPACITANCES

Cin	8.0	μμF
Cout	5.4	μμΕ
$C_{\mathbf{a}_{-}\mathbf{g}_{\mathbf{l}}}$	<0.1	μμΕ

CHARACTERISTICS at $V_a=300 \text{ V}$; $V_{g2}=250 \text{ V}$; $I_a=25 \text{ mA}$.

g _m	1.9	mA/V
$\mu_{\mathbf{g}_{1}-\mathbf{g}_{2}}$	5.6	
r _a	67	kΩ

LIMITING VALUES

V _a max.	400	٧
V _{g2} max.	250	٧
p _a max.	7.5	W
p _{g2} max.	2.0	W
l _k max.	50	mΑ
Ig1 max.	6.0	mΑ

R.F. POWER TETRODE

Indirectly heated Beam Tetrode with aligned grid construction to minimise screen current. It is rated to dissipate a maximum of 7.5 watts at the anode, and is particularly suitable for use at frequencies up to 150 Mc/s., as an R.F. amplifier or as a frequency multiplier.

OPERATING	CONDITIONS	FOR	SINGLE	VALVE	CLASS	"'C''
R.F. AMPLIEL	FR					

LIFIEK					
f	3	3	20	20	Mc/s
V _a	300	300	300	300	V
Vas	150	250	150	250	V
V _{g1}	-35	-50	-30	60	٧
J _a "	40	43	43.5	43.7	mΑ
lg ₂	7.2	6.6	4.7	5.9	mΑ
lg ₁	2.8	0.4	1.8	0.4	mΑ
V _{in(pk)}	58	60	48	67	V
Pa.	4.9	4.8	5.8	5.2	W
Pout	7.1	8.1	7.3	7.9	Ŵ
η	59	62	56	60	%
f	60	60	150	150	Mc/s
V _a	300	300	300	300	V
Va V	150	250	150	250	v
V _{g2} V _{g1}	-30	-50	-30	~50	v
V g1	-30 44	-30 44	-30 44	46	
la.					mA
g ₂	4.5	6.0	4.5	4.0	mA
l _{g t}	1.9	0.4	1.5	0.4	mA.
$V_{in(pk)}$	48	57	52	57	V
Pa	6.2	5.5	6.9	7.5	W
P_{out}	7.0	7.7	6.3	6.3	W
η	53	58	48	4 6	%

OPERATING CONDITIONS FOR TWO VALVES CLASS "C" R.F. AMPLIFIER

f	60	100	150	Mc/s
V _a	300	300	300	V
V _{g2}	250	250	250	٧
$V_{g_1}^{s_2}$	-60	60	-50	٧
la "	2×43	2×44.4	2×46	mΑ
l _{g2}	2×6.7	2×5.3	2×4.0	mΑ
l _{g1}	2×0.5	2×0.4	2×0.4	mΑ
Vin(pk)	2×68	2×68	2×57	V
	2×5.1	2×6.0	2×7.4	W
Pa P _{out}	15.6	14.7	12.6	W
η	60	55	46	%

OPERATING CONDITIONS FOR SINGLE VALVE FREQUENCY DOUBLER

f_{out}	20	75	100	150	Mc/s
V _a	300	300	300	250	V
V _{g2}	250	250	200	200	V
$V_{g_1}^{s_2}$	-80	-120	~120	-120	٧
la i	41	43.5	38.4	36.8	mΑ
l _{g2}	8.0	5.5	2.6	2.1	mΑ
l _{g1}	0.8	1.2	1.5	1.1	mΑ
Vin(pk)	81	124	120	144	٧
	6.8	7.4	7.1	6.9	W
Pa Pout	5.6	5.6	4.4	2.3	W
η	45	44	38	25	%

QV04-7

Indirectly heated Beam Tetrode with aligned grid construction to minimise screen current. It is rated to dissipate a maximum of 7.5 watts at the anode, and is particularly suitable for use at frequencies up to 150 Mc/s., as an R.F. amplifier or as a frequency multiplier.

OPERATING CONDITIONS AS FREQUENCY TREBLER

	Single Valve			Push-F	Pull
fout	20	75	100	150	Mc/s
$V_{\mathbf{a}}$	300	300	275	225	V
V_{g_2}	250	250	200	200	V
V _{R1}	-120	-140	-140	-140	V
l _a	35	34	36	2×36	mΑ
l _{g2}	4.2	2.8	2.5	2×2.5	mΑ
I_{g_1}	0.6	0.6	1.5	2×1.3	mΑ
Vin(pk)	109	130	i 42	2×152	V
Pa	7.3	7.1	7.1	2×6.6	W
P_{out}	3.3	3.2	2.8	3.1	W
η	31	31	28	19	%

WEIGHT Valve only; 1½ oz.

Parallel-line Push-pull R.F. Amplifier

R.F. POWER TETRODE

Indirectly heated Beam Tetrode with aligned grid construction to minimise screen current. It is rated to dissipate a maximum of 7.5 watts at the anode, and is particularly suitable for use at frequencies up to 150 Mc/s., as an R.F. amplifier or as a frequency multiplier.

DIMENSIONS AND BASE CONNECTIONS

9-PIN PRESSED GLASS BASE TO FIT B9G VALVE HOLDER

QV04-7

Indirectly heated Beam Tetrode with aligned grid construction to minimise screen current. It is rated to dissipate a maximum of 7.5 watts at the anode, and is particularly suitable for use at frequencies up to 150 Mc/s., as an R.F. amplifier or as a frequency multiplier.

ANODE CURRENT PLOTTED AGAINST ANODE VOLTAGE. Vg2=150V

R.F. POWER TETRODE

Indirectly heated Beam Tetrode with aligned grid construction to minimise screen current. It is rated to dissipate a maximum of 7.5 watts at the anode, and is particularly suitable for use at frequencies up to 150 Mc/s., as an R.F. amplifier or as a frequency multiblier.

ANODE CURRENT PLOTTED AGAINST ANODE VOLTAGE. Vg2=250V

QV04-7

Indirectly heated Beam Tetrode with aligned grid construction to minimise screen current. It is rated to dissipate a maximum of 7.5 watts at the anode, and is particularly suitable for use at frequencies up to 150 Mc/s., as an R.F. amplifier or as a frequency multiplier

GRID CURRENT PLOTTED AGAINST ANODE VOLTAGE Vg2=250V

R.F. POWER TETRODE

Indirectly heated Beam Tetrode with aligned grid construction to minimise screen current. It is rated to dissipate a maximum of 7.5 watts at the anode, and is particularly suitable for use at frequencies up to 150 Mc/s, as an R.F. amplifier or as a frequency multiplier.

FREQUENCY CHARACTERISTICS

