TUNG-SOL -

PENTODE MINIATURE TYPE

UNIPOTENTIAL CATHODE

HEATER

8.4 VOLTS 0.6 AMP. AC OR DC

ANY MOUNTING POSITION

BOTTOM VIEW
SMALL-BUTTON NOVAL
9 PIN BASE
9 HN

THE 8EM5 IS A BEAM POWER PENTODE IN THE 9 PIN MINIATURE CONSTRUCTION AND IS INTENDED FOR USE AS THE VERTICAL DEFLECTION AMPLIFIER IN HIGH-EFFICIENCY DEFLECTION CIRCUITS OF TV RECEIVERS WHICH USE PICTURE TUBES WITH A 110° DIAGONAL DEFLECTION ANGLE. THERMAL CHARACTERISTICS OF THE HEATER ARE CONTROLLED SUCH THAT HEATER VOLTAGE SURGES DURING THE WARM-UP CYCLE ARE MINIMIZED PROVIDED IT IS USED WITH OTHER TUBES WHICH ARE SIMILARLY CONTROLLED. WITH THE EXCEPTION OF HEATER RATINGS AND HEATER WARM-UP TIME, THE 8EM5 IS IDENTICAL TO THE 6EM5.

DIRECT INTERELECTRODE CAPACITANCES WITHOUT EXTERNAL SHIELD

GRID #4 TO PLATE	0.7	$\mu\mu$ f
GRID #1 TO CATHODE & G3, G2, AND. HEATER	10	$\mu\mu$ f
PLATE TO CATHODE & G3, G2, AND HEATER	5.1	$\mu\mu$ f

RATINGS INTERPRETED ACCORDING TO DESIGN CENTER SYSTEM VERTICAL DEFLECTION AMPLIFIER

VERTICAL DE LEGITOR AMI ETITER		
HEATER VOLTAGE	8.4	VOLTS
MAXIMUM PLATE VOLTAGE:		
0 C	315	VOLTS
PEAK POSITIVE PULSE (ABS. MAX.) ^B	2 200 ^c	VOLTS
MAXIMUM GRIC #2 VOLTAGE	285	VOLTS
MAXIMUM PEAK NEGATIVE-PULSE GRID #1 VOLTAGE	-250	VOLTS
MAXIMUM CATHODE CURRENT:		
PEAK	210	MA.
AVERAGE	60	MA.
MAXIMUM PLATE DISSIPATION	10	WATTS
MAXIMUM GRID #2 INPUT	1.5	WATTS
MAXIMUM PEAK HEATER-CATHODE VOLTAGE:		
HEATER NEGATIVE WITH RESPECT TO CATHODE	200_	VOLTS
HEATER POSITIVE WITH RESPECT TO CATHODE	200 ^D	VOLTS
MAXIMUM BULB TEMPERATURE (AT HOTTEST POINT)	250	°c
MAXIMUM CIRCUIT VALUES:		
GRID #1 CIRCUIT RESISTANCE:		
FOR FIXED-BIAS OPERATION	2.2	MEGOHMS
FOR CATHODE-BIAS OPERATION	2.2	MEGOHMS
HEATER WARM-UP TIME (APPROX.)* CONTINUED ON FOLLOWING PAGE	11.0	SECONDS

TUNG-SOL

CONTINUED FROM PRECEEDING PAGE

TYPICAL OPERATING CONDITIONS AND CHARACTERISTICS

CLASS A1 AMPLIFIER

HEATER VOLTAGE	8.4	8.4	VOLTS
HEATER CURRENT	0.6	0.6	AMP.
PLATE VOLTAGE	60	250	VOLTS
GRID #2 (SCREEN-GRID) VOLTAGE	250	250	VOLTS
GRID #1 (CONTROL-GRID) VOLTAGE	0	-18	VOLTS
MU-FACTOR, GRID #1 TO GRID #2		8.7	
TRANSCONDUCTANCE		5100	μM HOS
PLATE CURRENT	180 ^E	40	MA.
GRID #2 CURRENT	30 [€]	3	MA.
PLATE RESISTANCE (APPROX.)		DÜ 000	CHMo
GRID #4 VOLTAGE FOR PLATE CURRENT O. 2 MA.		37	

DINDICATES AN ADDITION.

*HEATER WARM-UP TIME IS DEFINED AS THE TIME REQUIRED FOR THE VOLTAGE ACROSS THE HEATER TO REACH 80% OF ITS RATED VOLTAGE AFTER APPLYING 4 TIMES RATED HEATER VOLTAGE TO A CIRCUIT CONSISTING OF THE TUBE MEATER IN SERIES WITH A RESISTANCE OF VALUE 3 TIMES THE NOMINAL HEATER OPERATING MESSISTANCE.

B-FOR OPERATION IN A 525-LINE, 30-FRAME SYSTEM AS DESCRIBED IN "STANDARDS OF GOOD ENGINEERING PRACTICE FOR TELEVISION BROADCAST STATIONS: FEDERAL COMMUNICATIONS COMMISSION", THE DUTY CYCLE OF THE VOLTAGE PULSE MUST NOT EXCEED 15% OF ONE SCANNING CYCLE.

 $^{\text{C}}\textsc{under}$ no circumstances should this absolute value be exceeded.

DTHE DC COMPONENT MUST NOT EXCEED 100 VOLTS

ETHESE VALUES CAN BE MEASURED BY A METHOD INVOLVING A RE-CURRENT WAVEFORM SUCH THAT THE PLAYE DISSIPATION AND GRID #2 INPUT WILL BE KEPT WITHIN RATINGS. IN ORDER TO PREVENT DAMAGE TO THE TURE.

