TUNG-SOL -

DOUBLE TRIODE

MINIATURE TYPE

COATED UNIPOTENTIAL CATHODE

HEATER
8.4 VOLTS 0.45 AMP.
AC OR DC

ANY MOUNTING POSITION

BOTTOM VIEW

SMALL BUTTON NOVAL 9 PIN BASE 9AJ

CLASS A

THE 8CG7 IS A GENERAL PURPOSE, MEDIUM-MU TWIN TRIODE USING THE 9-PIN MINIATURE CONSTRUCTION. IT IS INTENDED PARTICULARLY FOR USE AS A VERTICAL DEFLECTION OSCILLATOR AND HORIZONTAL DEFLECTION OSCILLATOR IN TELEVISION RECEIVERS. IT MAY ALSO BE USED AS A PHASE INVERTER, MULTIVIBRATOR, SYNCHRONIZING SEPARATOR AND AMPLIFIER, AND RESISTANCE COUPLED AMPLIFIER IN ELECTRONIC EQUIPMENT. THERMAL CHARACTERISTICS OF THE HEATER ARE CONTROLLED SUCH THAT HEATER VOLTAGE SURGES DURING THE WARM-UP CYCLE ARE MINIMIZED PROVIDED IT IS USED WITH OTHER TYPES WHICH ARE SIMILARLY CONTROLLED. EXCEPT FOR HEATER RATINGS IT IS IDENTICAL TO THE 6CG7.

DIRECT INTERELECTRODE CAPACITANCES - APPROX.

	UNIT 1	UNIT 2	
GRID TO PLATE: G TO P	4.0	4.0	µи f
INPUT: G TO (K+H&IS)	2.3	2.3	µц f
OUTPUT: P TO (K+H&IS)	2.2	2.2	$\mu\mu$ f

RATINGS INTERPRETED ACCORDING TO DESIGN CENTER SYSTEM

EACH UNIT

HEATER VOLTAGE	AMPLIFIER 8.4	VOLTS
MAXIMUM HEATER-CATHODE VOLTAGE:	0.4	10213
HEATER NEGATIVE WITH RESPECT TO CATHODE HEATER POSITIVE WITH RESPECT TO CATHODE A	200 200	VOLTS VOLTS
MAXIMUM PLATE VOLTAGE	300	VOLTS
MAXIMUM GRID VOLTAGE: POSITIVE BIAS VALUE	0	VOLTS
MAXIMUM PLATE DISSIPATION: EACH PLATE BOTH PLATES (BOTH UNITS OPERATING)	3.5 5	WATTS WATTS
MAXIMUM CATHODE CURRENT	20	MA.
MAXIMUM GRID CIRCUIT RESISTANCE: FIXED BIAS OPERATION HEATER WARM-UP TIME (APPROX.) B	1.0 11.0	MEGOHMS SECONDS

ATHE DC COMPONENT MUST NOT EXCEED 100 VALTS.

CONTINUED ON FOLLOWING PAGE

But Heater warm-up time is defined as the time required for the voltage across the heater to reach 80% of its rated voltage after applying 4 times rated heater voltage to a circuit consisting of the tube heater in series with a resistance of value 3 times the nominal heater operating resistance.

- TUNG·80L -

CONTINUED FROM PRECEDING PAGE

RATINGS C CONT DINTERPRETED ACCORDING TO DESIGN CENTER SYSTEM

EACH UNIT

	DEFLECTION D	IORIZONTAL DEFLECTION DSCILLATOR	
HEATER VOLTAGE	8.4		VOLTS
MAXIMUM PEAK HEATER CATHODE VOLTAGE:			
HEATER NEGATIVE WITH RESPECT TO CATHODE	200		VOLTS
HEATER POSITIVE WITH RESPECT TO CATHODE	200	D	VOLTS
MAXIMUM DC PLATE VOLTAGE	300	300	VOLTS
MAXIMUM NEGATIVE PULSE GRID VOLTAGE	400 ^E	600 ^F	VOLTS
MAXIMUM CATHODE CURRENT:			
PEAK	70	300	MA.
DC	20	20	MA.
MAXIMUM PLATE DISSIPATION:			
EACH PLATE	3.5	3.5	WATTS
BOTH PLATES (BOTH UNITS OPERATING)	5	5	WATTS
MAXIMUM GRID CIRCUIT RESISTANCE:			
FIXED BIAS, GRID—RESISTOR BIAS OR CATHODE—BIAS OPERATION HEATER WARM—UP TIME (APPROX.) G	2.2	2.2	ME GOHMS SECONDS
= ()	11.0	•	

C FOR OPERATION IN A 525-LINE, 30-FRAME SYSTEM AS DESCRIBED IN "STANDARDS OF GOOD ENGINEERING PRACTICE CONCERNING TELEVISION BROADCAST STATIONS", FEDERAL COMMUNICATIONS COMMISSION.

TYPICAL OPERATING CONDITIONS AND CHARACTERISTICS

EACH UNIT	CLASS A1 Amplifier		
HEATER VOLTAGE		8.4	VOLTS
HEATER CURRENT	0.45		AMP.
PLATE VOLTAGE	90	250	VOL TS
GRID VOLTAGE	0	-8	VOLTS
AMPLIFICATION FACTOR	20	20	
PLATE RESISTANCE (APPROX.)	6700	7700	OHMS
TRANSCONDUCTANCE	3000	2600	μ M HOS
GRID VOLTAGE (APPROX.)			
FOR I = 10 LAMP.	-7	-18	VOLTS
PLATE CURRENT OR GRID VOLTAGE OF -12.5 VOLTS		1.3	MA.
PLATE CURRENT	10	9	MA.

 $^{^{\}mbox{\scriptsize D}}$ The DC component must not exceed 100 volts.

E THIS RATING IS APPLICABLE WHERE THE OURATION OF THE VOLTAGE PULSE DOES NOT EXCEED 15 PERCENT OF ONE VERTICAL SCANNING CYCLE. IN A 525-LINE, 30-FRAME SYSTEM; 15 PERCENT OF ONE VERTICAL SCANNING CYCLE IS 2-5 MILLISECONDS.

F THIS RATING IS APPLICABLE WHERE THE DURATION OF THE VOLTAGE PULSE DOES NOT EXCEED 15 PERCENT OF ONE HORIZONTAL SCANNING CYCLE IN A 525-LINE, 30-FRAME SYSTEM; 15 PERCENT OF ONE HORIZONTAL SCANNING CYCLE IS 10 MICROSECONDS.

GHEATER WARM—UP TIME IS DEFINED AS THE TIME REQUIRED FOR THE VOLTAGE ACROSS THE HEATER TO REACH 80% OF ITS RATED VOLTAGE AFTER APPLYING 4 TIMES RATED HEATER VOLTAGE TO A CIRCUIT CONSISTING OF THE TUBE HEATER IN SERIES WITH A RESISTANCE OF VALUE 3 TIMES THE NOMINAL HEATER OPERATING RESISTANCE.

