
PRINTED IN U. S. A.

---- TUMB-SOL --

TRIODE PENTODE MINIATURE TYPE

GLASS BULB

COATED UNIPOTENTIAL CATHODE

HEATER

6.3 VOLTS 0.60 AMP.

ANY MOUNTING POSITION

BOTTOM VIEW

MINIATURE BUTTON 9 PIN BASE

9 A E

THE 6GU8 IS A SHARP CUTOFF PENTODE AND A MEDIUM MU TRIODE IN THE 9 PIN MINIATURE CONSTRUCTION. THE PENTODE SECTION IS INTENDED PRIMARILY FOR SERVICE AS AN OSCILLATOR IN THE HORIZONTAL DEFLECTION SYSTEM OF TELE-VISION RECEIVERS.

DIRECT INTERELECTRODE CAPACITANCES

TRIODE SECTION:	WITH SHIELD ^A	WITHOUT SHIELD	
GRID TO PLATE INPUT: G TO (H+K+Pk,G3,I.S.) OUTPUT: P TO (H+K+Pk, G3,I.S.)	2.6	2.6	μμ f
	3.6	3.4	μμ f
	2.4	1.6	μμ f
PENTODE SECTION:			
GRID #4 TO PLATE (MAX.) INPUT: G1 TO (H+K G3, I.S.+G2) OUTPUT: P TO (H+K G3, I.S.+G2)	0.025	0.036	μμ f
	8.0	8.0	μμ f
	3.2	2.4	μμ f

RATINGS INTERPRETED ACCORDING TO DESIGN MAXIMUM SYSTEM

Awith external shield 315 connected to cathode of section under Test.

THIERTRETED ACCORDING TO DESIGN MAXIMUM STOTEM					
	TRIODE SECTION	PENTODE SECTION			
HEATER VOLTAGE	6.	3	VOLTS		
MAXIMUM PLATE VOLTAGE	330	330	VOLTS		
MAXIMUM GRID #2 VOLTAGE	SEE RATI	NG CHART			
MAXIMUM GRID #2 SUPPLY VOLTAGE		330	VOLTS		
MAXIMUM POSITIVE GRID VOLTAGE	0	0	VOLTS		
MAXIMUM PLATE DISSIPATION	2.5	2.5	VOLTS		
MAXIMUM GRID #2 DISSIPATION		0.55	TTAW		
MAXIMUM GRID #1 CIRCUIT RESISTANCE:					
FIXED BIAS	1.0		MEGOHM		
SELF BIAS	2.2		ME GO HM		

CONTINUED ON FOLLOWING PAGE

- TUNG-SOL -

CONTINUED FROM PRECEDING PAGE

RATINGS - CONTID. INTERPRETED ACCORDING TO DESIGN MAXIMUM SYSTEM

HEATER VOLTAGE ^B	6.3	VOLTS
MAXIMUM HEATER-CATHODE VOLTAGE:		
HEATER NEGATIVE WITH RESPECT TO CATHODE		
TOTAL DC AND PEAK	200	VOLTS
HEATER POSITIVE WITH RESPECT TO CATHODE		
DC	100	VOLTS
TOTAL DC AND PEAK	.200	VOLTS
HEATER WARM-UP TIME* (APPROX.)	11.0	SECONDS

TYPICAL OPERATING CONDITIONS AND CHARACTERISTICS

CLASS A1 AMPLIFIER

	TRIODE SECTION	PENTODE SECTION	
HEATER VOLTAGE	(5.3	VOLTS
HEATER CURRENT ^C	0.60		AMP.
PLATE VOLTAGE	125	125	VOLTS
GRID #2 VOLTAGE		125	VOLTS
GRID #1 VOLTAGE	-1.0	-1.0	VOLTS
PLATE CURRENT	13.5	12	MA.
GRID #2 CURRENT		4.5	MA.
TRANSCONDUCTANCE	8500	7500	μ MHOS
AMPLIFICATION FACTOR	40		
PLATE RESISTANCE (APPROX.)	5000	150 000	OHMS
E_{C1} FOR $I_b = 20 \mu A$ (APPROX.)	-9	-6.5	VOLTS

^{*}HEATER WARM-UP TIME IS DEFINED AS THE TIME REQUIRED FOR THE VOLTAGE ACROSS THE HEATER TO REACH BOS OF ITS RATED VOLTAGE AFTER APPLYING 4 TIMES RATED HEATER VOLTAGE TO A CIRCUIT CONSISTING OF THE TUBE HEATER IN SERIES WITH A RESISTANCE OF VALUE 3 TIMES THE NOMINAL HEATER OPERATING RESISTANCE.

DESIGN-MAXIMUM RATINGS ARE LIMITING VALUES OF OPERATING AND ENVIRONMENTAL CONDITIONS APPLICABLE TO A BOGEY LECTRON DEVICE OF A SPECIFIED TYPE AS DEFINED BY ITS PUBLISHED DATA, AND SHOULD NOT BE EXCEEDED UNDER THE WORST PROBABLE CONDITIONS. THE DEVICE MANUFACTURER CHOOSES THESE VALUES TO PROVIDE ACCEPTABLE SERVICEABILITY OF THE DEVICE, TAKING RESPONSIBILITY FOR THE EFFECTS OF CHANGES IN OPERATING CONDITIONS DUE TO VARIATIONS IN DEVICE CHARACTERISTICS. THE EQUIPMENT MANUFACTURER SHOULD DESIGN SO THAT INITIALLY AND THROUGHOUT LIFE NO DESIGN-MAXIMUM VALUE FOR THE INTENDED SERVICE IS EXCEEDED WITH A BOGEY DEVICE UNDER THE WORST PROBABLE OPERATING CONDITIONS WITH RESPECT TO SUPPLY-VOLTAGE VARIATION, EQUIPMENT COMPONENT VARIATION, EQUIPMENT CONTROL ADJUSTMENT, LOAD VARIATION, SIGNAL VARIATION, AND ENVIRONMENTAL CONDITIONS.

B FOR PARALLEL HEATER OPERATION, EQUIPMENT SHOULD BESO DESIGNED SO THAT AT NORMAL SUPPLY VOLTAGE BOGGY TUBES WILL OPERATE AT THIS VALUE OF HEATER VOLTAGE.

 $C_{\sf FOR}$ SERIES HEATER OPERATION, EQUIPMENT SHOULD BE SO DESIGNED SO THAT AT NORMAL SUPPLY VOLTAGE BOGEY TUBES WILL OPERATE AT THIS VALUE OF HEATER CURRENT.