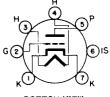

TUNG-SOL -

TRIODE

MINIATURE TYPE


HEATER

COATED UNIPOTENTIAL CATHODE

6.3±10% VOLTS 0.2 AMP.

AC OR DC

ANY MOUNTING POSITION

BOTTOM VIEW

BASING DIAGRAM JEDEC 7FP

GLASS BULB SMALL BUTTON MINIATURE

7 PIN BASE E7-1 OUTLINE DRAWING JEDEC 5-2

THE 6FH5 IS A NEUTRODE TRIODE TUNER IN THE 7 PIN MINIATURE CONSTRUCTION. IT IS DESIGNED FOR USE IN GROUNDED CATHODE RF AMPLIFIERS, WITH THE NEUTRODE CONSTRUCTION PROVIDING A LOWER GRID TO PLATE CAPACITANCE WITH CONSEQUENT EASE OF NEUTRALIZATION. THE CONVENTIONAL GRID RESULTS IN LOW INPUT CAPAC-ITANCE, EXCEPT FOR HEATER RATINGS AND HEATER WARM-UP TIME, THE 6FH5 IS IDENTICAL TO THE 2FH5 AND 3FH5.

DIRECT INTERELECTRODE CAPACITANCES

	WITH ^A SHIELD	WITHOUT SHIELD	
GRID TO PLATE: G TO P (MAX.) (BOGEY)	→ 0.52	→0.52	рf
INPUT : G TO (H+K+1.S.)	3,2	3.2	рf
OUTPUT: P TO (H+K+I.S.)	4.0	3.2	рf

AWITH EXTERNAL SHIELD #316 CONNECTED TO PIN #1.

RATINGS

INTERPRETED ACCORDING TO DESIGN MAXIMUM SYSTEM

	HEATER VOLTAGE	6.3±10%	VOLTS
	MAXIMUM PLATE VOLTAGE	150	VOLTS
	MAXIMUM GRID VOLTAGE (POSITIVE)	0	VOLT
	MAXIMUM PLATE DISSIPATION	2.2	WATTS
	MAXIMUM DC CATHODE CURRENT	22	MA.
	MAXIMUM GRID CIRCUIT RESISTANCE	1.0	MEGOHM
-	MAXIMUM DC HEATER-CATHODE VOLTAGE: TOTAL DC AND PEAK:		
	HEATER NEGATIVE WITH RESPECT TO CATHODE	100	VOLTS
	HEATER POSITIVE WITH RESPECT TO CATHODE	100	VOLTS

[→]INDICATES A CHANGE.

CONTINUED ON FOLLOWING PAGE

— TUNG·SOL —

CONTINUED FROM PRECEDING PAGE

TYPICAL OPERATING CONDITIONS AND CHARACTERISTICS

CLASS A AMPLIFIER

HEATER VOLTAGE	6.3±10%	VOLTS
HEATER CURRENT	0,2	AMP.
PLATE VOLTAGE	135	VOLTS
GRID VOL TAGE	-1.0	VOLT
PLATE RESISTANCE (APPROX.)	5600	OHMS
TRANSCONDUCTANCE	9000	μ MHOS
AMPLIFICATION FACTOR	50	
PLATE CURRENT	11	MA.
GRID VOLTAGE (APPROX.) FOR 100 µA PLATE CURRENT	- 5.5	VOLTS

DESIGN-MAXIMUM RATINGS ARE LIMITING VALUES OF OPERATING AND ENVIRONMENTAL CONDITIONS APPLICABLE TO A BOGEY ELECTRON DEVICE OF A SPECIFIED TYPE AS DEFINED BY ITS PUBLISHED DATA, AND SHOULD NOT BE EXCEEDED UNDER THE WORST PROBABLE CONDITIONS. THE DEVICE MANUFACTURER CHOOSES THESE VALUES TO PROVIDE ACCEPTABLE SERVICEABILITY OF THE DEVICE, TAKING RESPONSIBILITY FOR THE EFFECTS OF CHANGES IN OPERATING CONDITIONS DUE TO VARIATIONS IN DEVICE CHARACTERISTICS. THE EQUIPMENT MANUFACTURER SHOULD DESIGN SO THAT INITIALLY AND THROUGHOUT LIFE NO DESIGN-MAXIMUM VALUE FOR THE INTENDED SERVICE IS EXCEEDED WITH A BOGEY DEVICE UNDER THE WORST PROBABLE OPERATING CONDITIONS WITH RESPECT TO SUPPLY-VOLTAGE VARIATION, EQUIPMENT COMPONENT VARIATION, EQUIPMENT CONFORMER VARIATION, EQUIPMENT VARIATION, EQUIPMENT CONFORMER VARIATION, EQUIPMENT VARIATION, EQUIPMENT CONFORMER VARIATION, EQUIPMENT VARIATION, EXPRENTED VARIATION, EXPRENTED VARIATION, EXPRENTED VARIATION, EXPRENT