
TUNG-SOL -

DOUBLE TRIODE

MINIATURE TYPE

9 PIN BASE E9-1 OUTLINE DRAWING JEDEC 6-3 COATED UNIPOTENTIAL CATHODE

HEATER 6.3 VOLTS 900 MA. AC OR DC

ANY MOUNTING POSITION

2G(3 7)IG 8)IK 2 2G⁽ 2P

> BOTTOM VIEW BASING DIAGRAM JEDEC 9HF

THE 6DR7 IS A DOUBLE TRIODE WITH DISSIMILAR SECTION IN THE 9-PIN MINIATURE CONSTRUCTION. SECTION #1 HAS A HIGH MU AND IS INTENDED FOR USE AS A VER-TICAL DEFLECTION OSCILLATOR, SECTION #2 HAS A LOW MU AND IS DESIGNED FOR USE AS A VERTICAL DEFLECTION AMPLIFIER, SECTION #2 OF THE 6DR7 IS IDENT-ICAL TO SECTION #2 OF THE 6DE7.

DIRECT INTERELECTRODE CAPACITANCES - APPROX.

GRID TO PLATE: (G TO P) 4.5 8.5 рf INPUT: G TO (H+K) 2.2 5.5 рf pf OUTPUT: P TO (H+K) 0.34 1.0

RATINGS

DESIGN CENTER VALUES - SEE EIA STANDARD RS-239 VERTICAL DEFLECTION OSCILLATOR AND AMPLIFIERA

	TRIODE #1 OSCILLATOR	TRIODE #2	
MAXIMUM HEATER-CATHODE VOLTAGEB			
HEATER NEGATIVE WITH RESPECT TO CATHODE			
TOTAL DC AND PEAK	200		VOLTS
HEATER POSITIVE WITH RESPECT TO CATHODE			
DC	100		VOLTS
TOTAL DC AND PEAK	200		VOLTS
MAXIMUM DC PLATE VOLTAGE	330	275	
MAXIMUM PEAK POSITIVE PULSE PLATE			
VOLTAGE (ABS. MAX.)		1500	VOLTS
MAXIMUM PEAK NEGATIVE PULSE GRID VOLTAGE	400	250	VOLTS
MAXIMUM PLATE DISSIPATION ^C	1.0	7.0	WATTS
MAXIMUM AVERAGE CATHODE CURRENT	20	50	MA.
MAXIMUM PEAK CATHODE CURRENT	70	175	MA.
MAXIMUM GRID CIRCUIT RESISTANCE			
SELF BIAS	2.2	2.2	MEGOHMS

CONTINUED ON FOLLOWING PAGE

TUNG-SOL -

CONTINUED FROM PRECEDING PAGE

TYPICAL OPERATING CONDITIONS AND CHARACTERISTICS

TRIODE #1

TRIODE #2

PLATE VOLTAGE	250	150	VOLTS
GRID #4 VOLTAGE	-3	-17.5	VOL TS
PLATE CURRENT	1.4	35	MA.
TRANSCONDUCTANCE	1600	6500	μMH'OS
AMPLIFICATION FACTOR	€4 ←	6.0	
PLATE RESISTANCE (APPROX.)	40 000	925	
GRID VOLTAGE FOR $1b = 10 \mu A$	5.5		VOLTS
GRID VOLTAGE FOR Ib = 50 μ A		-44	VOLTS
PLATE CURRENT AT Ec =-24 Vdc		10	MA.
ZERO BIAS PLATE CURRENT			
Eb = 60V; Ec = 0 (INSTANTANEOUS VALUES)		80	MA.

⁻⁻ INDICATES A CHANGE.

C IN STAGES OPERATING WITH GRID LEAK BIAS, AN ADEQUATE CATHODE BIAS RESISTOR OR OTHER SUITABLE MEANS IS REQUIRED TO PROTECT THE TUBE IN THE ABSENCE OF EXCITATION.

SIMILAR TYPE REFERENCE: The 6DR7 is identical to the 10DR7 except for heater ratings and heater warm-up time of the 10DR7.

A FOR OPERATION IN A 525-LINE, 30-FRAME SYSTEM AS DESCRIBED IN "STANDARDS OF GOOD ENGINEERING PRACTICE FOR TELEVISION BROADCAST STATIONS: FEDERAL COMMUNICATIONS COMMISSION", THE DUTY CYCLE OF THE VOLTAGE PULSE MUST NOT EXCEED 15% OF ONE SCANNING CYCLE.

B
DESIGN-MAXIMUM RATINGS ARE THE LIMITING VALUES EXPRESSED WITH RESPECT TO BOGIE TUBES AT WHICH
SATISFACTORY TUBE LIFE CAN BE EXPECTED TO OCCUR. TO OBTAIN SATISFACTORY CIRCUIT PERFORMANCE,
THEREFORE, THE EQUIPMENT DESIGNER MUST ESTABLISH THE CIRCUIT DESIGN SO THAT NO DESIGN-MAXIMUM
VALUE IS EXCEEDED WITH A BOGIE TUBE UNDER THE WORST PROBABLE OPERATING CONTITIONS WITH RESPECT
TO SUPPLY-VOLTAGE VARIATION, EQUIPMENT COMPONENT VARIATION, EQUIPMENT CONTROL ADJUSTMENT, LOAD
VARIATION, AND ENVIRONMENTAL CONDITIONS.