--- TUNG·SOL --

DUPLEX-DIODE TRIODE MINIATURE TYPE

COATED UNIPOTENTIAL CATHODE

HEATER

6.3 ± 10% VOLTS 0.6 AMP.

AC OR DC

ANY MOUNTING POSITION

BOTTOM VIEW SMALL BUTTON 9 PIN BASE 9FJ

THE 6BV8 IS A MINIATURE DUPLEX-DIODE MEDIUM MU TRIODE IN WHICH SEPARATE CATHODE AND PLATE CONNECTIONS ARE PROVIDED FOR EACH DIODE SECTION. THE TUBE IS INTENDED PRIMARILY FOR SERVICE AS A COMBINED SYNCHRONOUS DETECTOR AND CHROMINANCE AMPLIFIER IN COLOR TELEVISION RECEIVERS. THE HIGH PERVEANCE CHARACTERISTIC OF THE TRIODE SECTION ADAPTS THE TUBE PARTICULARLY TO THIS SERVICE. IT IS ALSO SUITABLE FOR USE AS A COMBINED FM DETECTOR AND AUDIO-FREQUENCY VOLTAGE AMPLIFIER. THERMAL CHARACTERISTICS OF THE HEATER ARE CONTROLLED SUCH THAT HEATER VOLTAGE SURGES DURING THE WARM—UP CYCLE ARE MINIMIZED PROVIDED IT IS USED WITH OTHER TYPES WHICH ARE SIMILARLY CONTROLLED.

DIRECT INTERELECTRODE CAPACITANCES

TRIODE GRID TO PLATE 2.0	μμ f
TRIODE INPUT	μμ f
TRIODE OUTPUT 0.4	μμf
GRID TO DIODE #1 PLATE (MAX.) 0.03	$\mu\mu$ f
GRID TO DIODE #2 PLATE (MAX.) 0.07	μμf
DIODE #1 PLATE TO DIODE #1 CATHODE & HEATER 2.4	$\mu\mu$ f
DIODE #2 PLATE TO DIODE #2 CATHODE & HEATER 2.4	μμ f

RATINGS INTERPRETED ACCORDING TO DESIGN CENTER SYSTEM

3±10%	VOLTS
330	VOLTS
0	VOLTS
2.7	WATTS
100	VOLTS
200	VOLTS
200	VOLTS
0.1	MEGOHMS
0.5	MEGOHMS
10	MA.
11.0	SECONDS
	0 2.7 100 200 200 200 0.1 0.5 10

CONTINUED ON FOLLOWING PAGE

- TUNG-SOL -

CONTINUED FROM PRECEDING PAGE

TYPICAL OPERATING CONDITIONS AND CHARACTERISTICS

HEATER VOLTAGE	6.3±10%	6.3±10%	VOLTS
HEATER CURRENT	0.6	0.6	AMP.
PLATE VOLTAGE	75	200	VOLTS
GRID VOLTAGE	0		VOLTS
CATHODE-BIAS RESISTOR		330	OHMS
AMPLIFICATION FACTOR		33	
PLATE RESISTANCE (APPROX.)		5 900	OHMS
TRANSCONDUCTANCE		5 600	μ MHOS
PLATE CURRENT	14	11	MA.
GRID VOLTAGE (APPROX.)			
$I_b = 100 \mu AMPS$		-11	VOLTS
AVERAGE DIODE CURRENT (EACH DIODE)			
WITH 5.0 VOLTS DC APPLIED		23	MA.

^{*}HEATER WARM-UP TIME IS DEFINED AS THE TIME REQUIRED FOR THE VOLTAGE ACROSS THE HEATER TO REACH 80\$ OF ITS RATED VOLTAGE AFTER APPLYING 4 TIMES RATED HEATER VOLTAGE TO A CIRCUIT CONSISTING OF THE TUBE HEATER IN SERIES WITH A RESISTANCE OF VALUE 3 TIMES THE NOMINAL HEATER OPERATING RESISTANCE.

DESIGN-MAXIMUM RATINGS ARE THE LIMITING VALUES EXPRESSED WITH RESPECT TO BOGIE TUBES AT WHICH SATISFACTORY TUBE LIFE CAN BE EXPECTED TO OCCUR. TO OBTAIN SATISFACTORY CIRCUIT PERFORMANCE, THEREFORE, THE EQUIPMENT DESIGNER MUST ESTABLISH THE CIRCUIT DESIGN SO THAT NO DESIGN-MAXIMUM VALUE IS EXCEDED WITH A BOGIE TUBE UNDER THE WORST PROBABLE OPERATING CONDITIONS WITH RESPECT TO SUPPLY-VOLTAGE VARIATION, GUIPMENT COMPONENT VARIATION, EQUIPMENT CONTROL ADJUSTMENT, LOAD VARIATION, AND ENVIRONMENTAL CONDITIONS.

6BV8 TENTATIVE DATA

CLASS A RESISTANCE-COUPLED AMPLIFIER

IK TOUL	SECTION	

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					1111	ODL OLOI	1011				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			LOW	I IMPEDA	NCE DRIV	/E (APPRO	XIMATEL	Y 200 OH	IMS)		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	P. P.		p Ebb = 90 Volt		lts	s Ebb = 180 Volts			Ebb = 300 Volts		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	''L	'\g†	Rk	Eo	Gain	Rk	Eo	Gain	Rk	Eo	Gain
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.10	0.10	1600	7.5	18	1500	16	20	1500	28	21
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1900	7.8	19	1900	22	21	1900	38	21
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							19			33	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					19	4300	26				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					18	7800	22			36	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.51	1.0								46	20
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			HIGH	IMPEDA	NCE DRIV	/E (APPRO	XIMATEL	Y 100K C	HMS)		
0.10	D D -		E _{bb} = 90 Volts		Ebb	E _{bb} = 180 Volts		Ebb = 300 Volts			
0.10 0.24 2500 15 18 1800 31 21 1600 53 22 0.24 0.24 5300 13 18 3700 28 20 3200 45 21 0.24 0.51 6100 16 18 4700 33 20 4100 57 21 0.51 0.51 8100 14 17 8000 28 19 7100 48 20 0.51 1.0 13000 17 18 10000 34 19 9300 59 20	I.L	l ⁿ gf	R _k	Εo	Gain	Rk	Eo	Gain	Rk	Еo	Gain
0.10 0.24 2500 15 18 1800 31 21 1600 53 22 0.24 0.24 5300 13 18 3700 28 20 3200 45 21 0.24 0.51 6100 16 18 4700 33 20 4100 57 21 0.51 0.51 8100 14 17 8000 28 19 7100 48 20 0.51 1.0 13000 17 18 10000 34 19 9300 59 20	0.10	0.10	2000	11	17	1400	24	20	1100	39	22
0.24 0.24 5300 13 18 3700 28 20 3200 45 21 0.24 0.51 6100 16 18 4700 33 20 4100 57 21 0.51 0.51 8100 14 17 8000 28 19 7100 48 20 0.51 1.0 13000 17 18 10000 34 19 9300 59 20			2500		18		31	21	1600	53	
0.51 0.51 8100 14 17 8000 28 19 7100 48 20 0.51 1.0 13000 17 18 10000 34 19 9300 59 20					18			20	3200	45	21
0.51 1.0 13000 17 18 10000 34 19 9300 59 20			6100		18		33	20	4100	57	21
15 2500			8100					19		48	20
	0.51	1.0	13000	17	18	10000	34	19	9300	59	20

NOTES:

- 1. ${\rm E_O}$ is maximum RMS voltage output for approximately five percent total harmonic distortion.
- 2. Gain is measured for an output voltage of two volts $\ensuremath{\mathsf{RMS}}_*$
- 3. $R_{\boldsymbol{k}}$ is in ohms; $R_{\boldsymbol{L}}$ and $R_{\boldsymbol{g}\,\boldsymbol{f}}$ are in megohms.
- 4. Coupling capacitors (C) should be selected to give desired frequency response. \mathbf{R}_{k} should be adequately by-passed.

