COATED UNIPOTENTIAL CATHODE

HEATER 6.3 VOLTS 1.2 AMP. AC OR DC

ANY MOUNTING POSITION

BOTTOM VIEW INTERMEDIATE SHELL 7 PIN OCTAL 6 AM

THE 6BOGGT IS A BEAM PENTODE DESIGNED SPECIFICALLY FOR USE AS A HORIZONTAL DEFLECTION AMPLIFIER IN TELEVISION RECEIVERS USING MAGNETIC DEFLECTION. THE PLATE IS BROUGHT OUT TO A TOP CAP FOR ISOLATION OF THE HIGH VOLTAGE AND CONVENIENCE IN CIRCUIT LAYOUT. ITS ELECTRICAL CHARACTER-ISTICS ARE SUCH AS TO PROVIDE GOOD PERFORMANCE WHERE THE SUPPLY VOLTAGES ARE LIMITED.

DIRECT INTERELECTRODE CAPACITANCES

GRID #1	то	PLATE: (G4 TO P)	0.6	μμ f
INPUT:	G,	TO $(H+K+G_2+BP)$	15	μμ f
		TO (H+K+G2+BP)	7.5	μu f

RATINGS

INTERPRETED ACCORDING TO RMA STANDARD M8-210 HORIZONTAL DEFLECTION AMPLIFIERA

HEATER VOLTAGE	6.3	VOLTS
MAXIMUM HEATER-CATHODE VOLTAGE: HEATER NEGATIVE WITH RESPECT TO CATHODE:		
TOTAL DC AND PEAK	200	VOLTS
HEATER POSITIVE WITH RESPECT TO CATHODE:	100	VOLTS
TOTAL DC AND PEAK	200	VOLTS
MAXIMUM DC PLATE SUPPLY VOLTAGE (BOOST + POWER SUPPLY)	550	VOLTS
MAXIMUM PEAK POSITIVE PLATE VOLTAGE (ABSOLUTE MAXIMUM)	5 500	VOLTS
MAXIMUM PEAK NEGATIVE PLATE VOLTAGE	1 250	VOLTS
MAXIMUM PLATE DISSIPATIONB	11	WATTS
MAXIMUM PEAK NEGATIVE GRID #1 VOLTAGE	30 0	VOLTS
MAXIMUM DC GRID #2 VOLTAGE	175	VOLTS
MAXIMUM GRID #2 DISSIPATION	2.5	WATTS
MAXIMUM AVERAGE CATHODE CURRENT	110	MA.
MAXIMUM PEAK CATHODE CURRENT	400	MA.
MAXIMUM GRID #1 CIRCUIT RESISTANCE	0.47	ME GOHM
MAXIMUM BULB TEMPERATURE (AT HOTTEST POINT)	220°	CENTIGRADE

A FOR OPERATION IN A 525-LINE, 30-FRAME SYSTEM AS DESCRIBED IN "STANDARDS OF GOOD ENGINEERING PRACTICE FOR TELEVISTON BROADCASTING STATIONS; FEDERAL COMMUNICATIONS COMMISSION". THE OUTY CYCLE OF THE VOLTAGE PULSE NOT TO EXCEED 15 PERCENT OF A SCANNING CYCLE.

CONTINUED ON FOLLOWING PAGE

PLATE 3142 FEB. 1 1953

NEWARK, NEW JERSEY, U.S.A.

BIN STAGES OPERATING WITH GRID-LEAK BIAS, AN ADEQUATE CATHODE BIAS RESISTOR OR OTHER SUITABLE MEANS IS REQUIRED TO PROTECT THE TUBE IN THE ABSENCE OF EXCITATION.

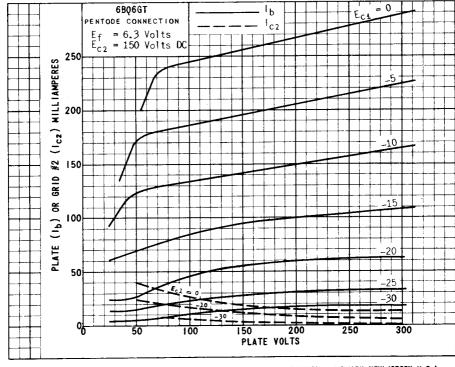
---- TUNG-SOL -

CONTINUED FROM PRECEDING PAGE

TYPICAL OPERATING CONDITIONS AND CHARACTERISTICS

CLASS A1 AMPLIFIER

HEATER VOLTAGE	6.3	VOLTS
HEATER CURRENT	1.2	AMP.
PENTODE CONNECTION:C		
PLATE CURRENT	55	MA.
GRID #2 CURRENT	2.1	MA.
TRANSCONDUCTANCE	5 500	UMHOS
PLATE RESISTANCE	20 000	OHMS
ZERO-BIAS:D		
PLATE CURRENT	225	MA.
GRID #2 CURRENT	25•	MA.
cut-off:E		
GRID #4 VOLTAGE (APPROX.)	-46	VOLTS
TRIODE AMPLIFICATION FACTOR	4.3	


 $[\]rm C_{with~E_b}$ = 250 volts, $\rm \epsilon_{C2}$ = 150 volts and $\rm \epsilon_{Cl}$ = -22.5 volts.

3143 FEB. 1 1953

 $^{^{}D}_{w_{1}\text{TH}}$ $\epsilon_{b}^{}$ = 60 volts and $\epsilon_{C2}^{}$ = 150 volts.

 $[\]rm E_{FOR~I\,b}$ = 1 MA. WITH $\rm E_b$ = 250 VOLTS AND $\rm E_{C2}$ = 150 VOLTS

 $^{{\}rm F}_{\rm W+TH}$ ${\rm E}_{\rm b}$ = ${\rm E}_{\rm C2}$ = 150 volts and ${\rm E}_{\rm C1}$ = -22.5 volts.

O M. O STR-84

PLATE 2337 FEB. 1 1950