
4 .4 .5

- TUNG-SOL -

DOUBLE DIODE TRIODE

MINIATURE TYPE

COATED UNIPOTENTIAL CATHODE

HEATER
6.3 VOLTS 0.6±6% AMP.
AC OR DC

ANY MOUNTING POSITION

BOTTOM VIEW
MINIATURE BUTTON
9 PIN BASE
9ER

THE 6BJ8 IS A MEDIUM-MU TRIODE AND A DOUBLE DIODE IN ONE ENVELOPE USING THE 9 PIN MINIATURE CONSTRUCTION. EACH SECTION HAS ITS OWN CATHODE. IT IS DESIGNED FOR USE AS A PHASE SPLITTER, PHASE COMPARATOR AND HORIZONTAL DEFLECTION OSCILLATOR IN 600 MA. SERIES HEATER OPERATED RECEIVERS. THERMAL CHARACTERISTICS OF THE HEATER ARE CONTROLLED SUCH THAT HEATER VOLTAGE SURGES DURING THE WARM-UP CYCLE ARE MINIMIZED PROVIDED IT IS USED WITH OTHER TYPES WHICH ARE SIMILARLY CONTROLLED.

DIRECT INTERELECTRODE CAPACITANCES WITH NO EXTERNAL SHIELD

, TRIODE SECTION	_	
GRID TO PLATE: G TO P	2.6	иц f
INPUT: G TO (H+TK)	2.8	ии f
OUTPUT: P TO (H+TK)	0.31	ши f
DIODE SECTION		
#1 PLATE TO TRIODE GRID (MAX+)	•070	µц f
#2 PLATE TO TRIODE GRID (MAX.)	.11	иµ f
#1 CATHODE TO ALL: 1DK TO (H+TK+2DK+TP+1DP+TG+2DP)	4.8	$\mu\mu$ f
#2 CATHODE TO ALL: 2DK TO (H+TK+1 DK+TP+1 DP+2DP+TG)	4.8	ии f
#4 PLATE TO #2 PLATE (MAX.)	•060	μи f
#1 PLATE TO #1 CATHODE + HEATER: 1DP TO (1DK+H)	1.9	ши f
#2 PLATE TO #2 CATHODE + HEATER: 2DP TO (2DK+H)	1.9	ии f
#1 CATHODE TO #1 PLATE+HEATER: 10K TO (10P+H)	4.6	µµ f
#2 CATHODE TO #2 PLATE+HEATER: 2DK TO (2DP+H)	4.6	µц f
#1 PLATE TO ALL: 1DP TO (H+TK+1DK+2DK+TP+2DP+TG)	3.0	ии f
#2 PLATE TO ALL: 20P TO (H+TK+1DK+2DK+TP+1DP+TG)	3.0	µи f

CONTINUED ON FOLLOWING PAGE

TUNG-SOL .

CONTINUED FROM PRECEDING PAGE

RATINGS INTERPRETED ACCORDING TO DESIGN MAXIMUM SYSTEM

EACH SECTION VERTICAL B CLASS A1 DEFLECTION AMPLIFIER AMPL I FI ER HEATER VOLTAGE 6.3 **VOLTS** MAXIMUM HEATER-CATHODE VOLTAGE: HEATER NEGATIVE WITH RESPECT TO CATHODE TOTAL DC AND PEAK 200 **VOLTS** HEATER POSITIVE WITH RESPECT TO CATHODE DC 100 VOLTS TOTAL DC AND PEAK 200 VOLTS HEATER WARM-UP TIME (APPROX.) C 11.0 SECONDS TRIODE SECTION MAXIMUM PLATE VOLTAGE 330 330 VOLTS MAXIMUM POSITIVE DC GRID VOLTAGE **VOLTS** MAXIMUM POSITIVE PULSE PLATE VOLTAGE (ABSOLUTE MAXIMUM) 1 200 VOLTS. MAXIMUM PLATE DISSIPATIOND 4.0 4.0 WATTS MAXIMUM PEAK NEGATIVE PULSE GRID VOLTAGE 275 **VOLTS** MAXIMUM AVERAGE CATHODE CURRENT 22 22 MA. MAXIMUM PEAK CATHODE CURRENT 77 MA. MAXIMUM GRID CIRCUIT RESISTANCE: SELF BIAS 2.2 MEGOHMS DIODE SECTION MAXIMUM PEAK PLATE CURRENT (EACH PLATE) 54 MA. MAXIMUM DC CURRENT (EACH PLATE)

TYPICAL OPERATING CONDITIONS AND CHARACTERISTICS

9

MA.

CLASS A. AMPLIFIER

oznos al am z	I I LLIV		
HEATER VOLTAGE HEATER CURRENT		6.3 ← 0.6±6% ←	VOLTS
TRIODE SECTION PLATE VOLTAGE	90	250	VOLTS
GRID VOLTAGE	0	 9	VOLTS
PLATE RESISTANCE (APPROX.) TRANSCONDUCTANCE	4 700	7 150	OHMS
AMPLIFICATION FACTOR	4 700	2 800	∠MHOS
PLATE CURRENT	22 13.5	20 8.0	MA.
PLATE CURRENT AT EC = -12.5 VOLTS (DC)		1.7	MA.
GRID VOLTAGE (APPROX.) FOR Ib = 10 MAMP.	-7	-18	VOLTS
DIODE SECTION			
AVERAGE CURRENT (EACH PLATE) AT 10 VOLTS (DC)	50	MA.
VOLTAGE DROP (EACH SECTION) AT 1 = 9 MA. (DC)	2.6	VOLTS

BFOR OPERATION IN A 525-LINE, 30-FRAME SYSTEM AS DESCRIBED IN "STANDARDS OF GOOD ENGINEERING PRACTICE FOR TELEVISION BROADCASTING STATIONS; FEDERAL COMMUNICATIONS COMMISSION". THE DUTY CYCLE OF THE VOLTAGE PULSE NOT TO EXCEED 15 PERCENT OF A SCANNING CYCLE.

CHEATER WARM-UP TIME IS DEFINED AS THE TIME REQUIRED FOR THE VOLTAGE ACROSS THE HEATER TO REACH 80% OF 'TS RATED VOLTAGE AFTER APPLYING 4 TIMES RATED HEATER VOLTAGE TO A CIRCUIT CONSISTING OF THE WUBE HEATER IN SERIES WITH A RESISTANCE OF VALUE 3 TIMES THE NOMINAL HEATER OPERATING RESISTANCE

 $^{^{}m D}$ in stages operating with grid-leak bias, an adequate cathode bias resistor or other suitable means is required to protect the tube in the absence of excitation.