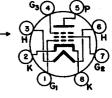

TUME-SOL -

PENTODE

SUBMINIATURE TYPE


COATED UNIPOTENTIAL CATHODE

HEATER

6.3±5% VOLTS 0.15 AMP.

AC OR DC

ANY MOUNTING POSITION

BOTTOM VIEW

BASING DIAGRAM JEDEC BDC

GLASS BULB
SUBMINIATURE BUTTON
8 LEAD BASE E8-10
OUTLINE DRAWING
JEDEC 3-1

THE 6205 IS A SHARP-CUTOFF PENTODE IN THE 8 PIN SUBMINIATURE CONSTRUCTION. IT IS DESIGNED FOR USE IN HIGH-FREQUENCY CIRCUITS. IN ON-OFF CONTROL APPLICATIONS, THE TUBE WILL MAINTAIN ITS EMISSION CAPABILITIES AFTER LONG PERIODS OF OPERATION UNDER CUTOFF CONDITIONS. EXCEPT FOR THE INCORPORATION OF AN EXTERNAL CONNECTION FOR THE SUPPRESSOR GRID, THE 6205 IS IDENTICAL TO THE 5840.

DIRECT INTERELECTRODE CAPACITANCES

	WITH	WITHOUT	
	SHIELDA	SHIELD	
GRID #1 TO PLATE, MAX.	0.015	0.03	μμ£
INPUT	4.2	4.0	μμf
OUTPUT	3.4	1.9	μμf

A WITH EXTERNAL SHIELD OF 0.405 INCH INSIDE DIAMETER CONNECTED TO CATHODE

RATINGS ABSOLUTE MAXIMUM VALUES

HEATER VOLTAGE	6.3±5%	VOLTS
MAXIMUM PLATE VOLTAGE	165	VOLTS
MAXIMUM SCREEN VOLTAGE	155	VOLTS
MAXIMUM SUPPRESSOR VOLTAGE	22	VOLTS
MAXIMUM POSITIVE DC GRID #1 VOLTAGE	0	VOLTS
MAXIMUM NEGATIVE DC GRID #1 VOLTAGE	55	VOLTS
MAXIMUM PLATE DISSIPATION	→ 1.1	WATTS
MAXIMUM SCREEN DISSIPATION	→ 0.55	WATTS
MAXIMUM DC CATHODE CURRENT	16.5	MA.
MAXIMUM HEATER=CATHODE VOLTAGE:		
HEATER POSITIVE WITH RESPECT TO CATHODE	200	VOLTS
HEATER NEGATIVE WITH RESPECT TO CATHODE	200	VOLTS
MAXIMUM GRID #1 CIRCUIT RESISTANCE	1.1	MEGOHMS
MAXIMUM BULB TEMPERATURE AT HOTTEST POINT	220	С

INDICATES A CHANGE. CONTINUED ON FOLLOWING PAGE

TUNS-SOL

CONTINUED FROM PRECEDING PAGE

TYPICAL OPERATING CONDITIONS AND CHARACTERISTICS

CLASS A1 AMPLIFIER

HEATER VOLTAGE HEATER CURRENT PLATE VOLTAGE SUPPRESSOR, CONNECTED TO CATHODE AT SOCKET	6.3±5% 0.15 100	VOLTS AMP. VOLTS
SCREEN VOLTAGE CATHODE-BIAS RESISTOR PLATE RESISTANCE, APPROX. TRANSCONDUCTANCE PLATE CURRENT SCREEN CURRENT GRID #1 VOLTAGE, APPROX. Ib = 10 µAMPS.	100 150 0.26 5000 7.5 2.4 -9.0	VOLTS OHMS MEG. μMHOS MA. MA. VOLTS

CLASS A RESISTANCE COUPLED AMPLIFIER

LOW IMPEDANCE DRIVE (APPROXIMATELY 200 OHMS)													
R _L R _{gf}		ELL = 90 VOLTS			Ebb = 150 VOLTS			E66 = 225 VOLTS					
ــــــــــــــــــــــــــــــــــــــ		Rk	R _{c2}	E,	Gain	R	R _{e2}	E.	Gein	R,	R _{e2}	E	Gain
0.10	0.10	1000	0.2	13	50	500	0.3	19	83	400	0.3	29	110
-0.10	0.24	1000	0.2	16	73	500	0.3	25	120	400	0.3	38	160
ļ		<u> </u>			<u>L</u>					1		- 55	1.00
0.24	0.24	1700	0.5	13	72	1500	0.6	20	100	700	0.8	29	160
0.24	0.51	2000	0.6	15	89	1500	0.7	24	140	700	0.9	35	210
	<u> </u>								1	700	0.3	33	210
0.51	0.51	2500	1.3	11	93	2000	1.5	18	140	1000	1.7	28	200
0.51	1.0	3000	1.5	13	110	2000	1.7	20	180	1000	2.0	31	260
		HIG	н імр	EDAN	CE DR	IVE (AF	PROXI	MATE	LY 100	КОНМ	C)		
R,	_	HIGH IMPEDANCE DRI			Ebb = 150 VOLTS			Ebb = 225 VOLTS					
R _L R _{gf}		Rk	R _{c2}	E.	Gain	R _k R _{c2} E _o Gain		RL	R _{c2}	E.	Gain		
0.10	0.10	1200	0.2	13	48	700	0.2	18	77	500	0.3	28	110
0.10	0.24	1300	0.2	16	70	800	0.3	24	110	500	0.3		110
										500	0.5	37	150
0.24	0.24	2800	0.4	12	68	1700	0.6	20	100	1200			
0.24	0.51	3000	0.5	15	82	1800	0.7	24	140		8.0	29	150
L								4.4	140	1300	0.8	35	190
0.51	0.51	5500	1.0	11	76	3500	1.3	18	120	2400			
0.51	1.0	6200	1.2	12	92	3800	1.6	19	160	2400 2500	1.6	26	180
32 3800 1.8 19 160 2500 1.8 31 230													

- 1. E O IS MAXIMUM RMS VOLTAGE OUTPUT FOR APPROX-IMATELY 5% TOTAL HARMOINIC DISTORTION.
- 2. GAIN IS MEASURED FOR AN OUTPUT VOLTAGE OF TWO VOLTS RMS.
- 3. R_k IS IN OHMS; R_{c2} , R_L , & R_{gf} , ARE IN MEGOHMS.
- 4. COUPLING CAPACITORS (C) SHOULD BE SELECTED TO GIVE DESIRED FREQUENCY RESPONSE. ${\it R}_{\it k}$ & ${\it R}_{\it c2}$ SHOULD BE ADEQUATELY BY-PASSED.

DISTORTION.

OUT VOLTAGE OF TWO Esig Cc2 RL

f, ARE IN MEGOHMS.

OULD BE SELECTED ESPONSE. Rk & Rc2 SED.

CONTINUED ON FOLLOWING PAGE

TUM6-20L

CONTINUED FROM PRECEDING PAGE

CHARACTERISTICS LIMITS

HEATER CURRENT:			MIN.	MAX.	
PLATE CURRENT: EF-6.3 VOLTS, Ek=150 OHMS (BYPASSED), g3 71ED TO k SCREEN CURRENT: Ef =6.3 VOLTS, Eb=100 VOLTS, Ec2= 100 VOLTS, Rk=150 OHMS (BYPASSED) g3 71ED TO k INITIAL INITIAL I.5. 3.3 MA. TRANSCONDUCTANCE (1): Ef =6.3 VOLTS, Eb=100 VOLTS, Ec2=100 VOLTS, Rk=150 OHMS (BYPASSED) g3 71ED TO k INITIAL INITIA					
SCREEN CURRENT:	Ef=6.3 VOLTS, Eb= 100 VOLTS, Ec2= 100 VOLTS, Rk =150 OHMS (BYPASSED),			-	
### STIED TO \$ INITIAL 1.5 3.3 MA. TRANSCONDUCTANCE (1): Ef =6.3 VOLTS, Eb =100 VOLTS, Ec2=100 VOLTS, Rk =150 OHMS (BYPASSED), g3 TIED TO k	SCREEN CURRENT: Ef =6.3 VOLTS, Eb =100 VOLTS, Ec2=				
Ef =6.3 VOLTS, Eb =100 VOLTS, Ec2=100 VOLTS, Rt =150 OHMS (BYPASSED), g3 TIED TO k INITIAL 4200 5800 μMHOS TRANSCONDUCTANCE CHANGE WITH HEATER VOLTAGE DIFFERENCE BETWEEN TRANSCONDUCTANCE (1) AND TRANSCONDUCTANCE AT Ef=5.7 VOLTS (OTHER CONDITIONS THE SAME) EXPRESSED AS A PERCENTAGE OF TRANS- CONDUCTANCE (1) INITIAL EXPRESSED AS A PERCENTAGE OF TRANS- CONDUCTANCE (1) INITIALLY AND AFTER OPER- ATION EXPRESSED AS A PERCENTAGE OF INITIAL VALUE 500 HR 20 PERCENT AVERAGE TRANSCONDUCTANCE CHANGE WITH OPERATION: AVERAGE OF VALUES FOR "TRANSCON- DUCTANCE CHANGE WITH OPERATION" 500 HR 15 PERCENT PLATE RESISTANCE: Ef=6.3 VOLTS, Eb=100 VOLTS, Ec2= 100 VOLTS, Rk=150 OHMS (BYPASSED), g3 TIED TO k INITIAL PLATE CURRENT CUTOFF: Ef=6.3 VOLTS, Eb=100 VOLTS, Ec2= 100 VOLTS, Eb=100 VOLTS, Ed2= 100 VOLTS, Ed=100 VOLTS, Ed2= 100 VOLTS, Eb=100 VOLTS, Ed2= 100 VOLTS, Ed=100 VOLTS, Ed2= 100 VOLTS, Ed2= 1	g3 TIED TO k	INITIAL	1.5	3.3	MA.
HEATER VOLTAGE DIFFERENCE BETWEEN TRANSCONDUCTANCE (1) AND TRANSCONDUCTANCE AT EE-5.7 VOLTS (OTHER CONDITIONS THE SAME) EXPRESSED AS A PERCENTAGE OF TRANS- CONDUCTANCE (1)	Ef =6.3 VOLTS, Eb =100 VOLTS, Ec2=100 VOLTS, Rk =150 OHMS (BYPASSED),	INITIAL	4200	5800	μмноs
DIFFERENCE BETWEEN TRANSCONDUCTANCE (1) AND TRANSCONDUCTANCE AT Ef=5.7 VOLTS (OTHER CONDITIONS THE SAME) EXPRESSED AS A PERCENTAGE OF TRANS- CONDUCTANCE (1) INITIAL 10 PERCENT TRANSCONDUCTANCE CHANGE WITH OPERATION: DIFFERENCE BETWEEN TRANSCONDUC- TANCE (1) INITIALLY AND AFTER OPER- ATION EXPRESSED AS A PERCENTAGE OF INITIAL VALUE 500-HR 20 PERCENT AVERAGE TRANSCONDUCTANCE CHANGE WITH OPERATION: AVERAGE OF VALUES FOR "TRANSCON- DUCTANCE CHANGE WITH OPERATION" 500-HR 15 PERCENT PLATE RESISTANCE: Ef=6.3 VOLTS, Eb=100 VOLTS, Ec2= 100 VOLTS, Rb=150 OHMS (BYPASSED), g3 TIED TO k INITIAL 0.175 MEGOHMS PLATE CURRENT CUTOFF: Ef=6.3 VOLTS, Eb=100 VOLTS, Ec2= 100 VOLTS, Ec19.0 VOLTS, g3 TIED TO k INITIAL 50 µAMPS. INTERELECTRODE CAPACITANCES: GRID #1 TO PLATE (G1 TO P) INITIAL 0.015 µµf INPUT (G1 TO P, K, G2,G3) INITIAL 3.5 4.9 µµf OUTPUT (F) TO H, K, G2,G3) INITIAL 3.5 4.9 µµf (MEASURED WITH EXTERNAL SHIELD OF 0.405-INCH INSIDE DIAMETER CONNECTED TO CATHODE. NEGATIVE GRID #1 CURRENT: Ef=6.3 VOLTS, Eb=100 VOLTS, Ec2= 100 VOLTS, Rk=150 OHMS (BYPASSED) Rg1=1.0 MEG., g3 TIED TO k INITIAL 0 0.3 µAMPS. PAMPS.	TRANSCONDUCTANCE CHANGE WITH				
TRANSCONDUCTANCE CHANGE WITH OPERATION: DIFFERENCE BETWEEN TRANSCONDUCTANCE (1) INITIALLY AND AFTER OPERATION EXPRESSED AS A PERCENTAGE OF INITIAL VALUE 500-HR 20 PERCENT AVERAGE TRANSCONDUCTANCE CHANGE WITH OPERATION: AVERAGE OF VALUES FOR "TRANSCONDUCTANCE CHANGE WITH OPERATION: AVERAGE OF VALUES FOR "TRANSCONDUCTANCE CHANGE WITH OPERATION" DUCTANCE CHANGE WITH OPERATION" PLATE RESISTANCE: Ef=6.3 VOLTS, Eb=100 VOLTS, Ec2= 100 VOLTS, Rk=150 OHMS (BYPASSED), g3 TIED TO k INITIAL D.175 MEGOHMS PLATE CURRENT CUTOFF: Ef=6.3 VOLTS, Eb=100 VOLTS, g3 TIED TO k INITIAL INITIAL D.175 MEGOHMS MEGOHMS INITIAL D.175 MEGOH	DIFFERENCE BETWEEN TRANSCONDUCTANO (1) AND TRANSCONDUCTANCE AT EF-5.7 VOLTS (OTHER CONDITIONS THE SAME) EXPRESSED AS A PERCENTAGE OF TRANS-			10	PERCENT
DIFFERENCE BETWEEN TRANSCONDUCTANCE (1) INITIALLY AND AFTER OPERATION EXPRESSED AS A PERCENTAGE OF INITIAL VALUE OF INITIAL VALUE OF INITIAL VALUE OF INITIAL VALUE OF INITIAL VALUE OF INITIAL VALUE OF INITIAL VALUE OF INITIAL VALUE OF INITIAL VALUE OF INITIAL VALUE OF INITIAL VALUE OF INITIAL VALUE	CONDUCTANCE				
WITH OPERATION: AVERAGE OF VALUES FOR "TRANSCONDUCTANCE CHANGE WITH OPERATION" PLATE RESISTANCE: Ef=6.3 VOLTS, Eb=100 VOLTS, Ec2= 100 VOLTS, Rk=150 OHMS (BYPASSED), g3 TIED TO k PLATE CURRENT CUTOFF: Ef=6.3 VOLTS, Eb=100 VOLTS, Ec2= 100 VOLTS, Ec1=-9.0 VOLTS, g3 TIED TO k INITIAL 50 \$\mu AMPS\$. INTERELECTRODE CAPACITANCES: GRID #1 TO PLATE (G1 TO P) INITIAL 0.015 \$\mu \mu \mu \mu \mu \mu \mu \mu \mu \mu	DIFFERENCE BETWEEN TRANSCONDUC- TANCE (1) INITIALLY AND AFTER OPER- ATION EXPRESSED AS A PERCENTAGE			20	PERCENT
PLATE RESISTANCE: Ef=6.3 VOLTS, Eb=100 VOLTS, Ec2= 100 VOLTS, Rk=150 OHMS (BYPASSED), g3 TIED TO k INITIAL 0.175 MEGOHMS PLATE CURRENT CUTOFF: Ef=6.3 VOLTS, Eb=100 VOLTS, Ec2= 100 VOLTS, Ec1 =-9.0 VOLTS, g3 TIED TO k INITIAL 50 µAMPS. INTERELECTRODE CAPACITANCES: GRID #1 TO PLATE (G1 TO P) INITIAL 0.015 µµf INPUT (G1 TO H, K, G2,G3) INITIAL 3.5 4.9 µµf OUTPUT (P TO H, K, G2G3) INITIAL 2.9 3.9 µµf (MEASURED WITH EXTERNAL SHIELD OF 0.405-INCH INSIDE DIAMETER CONNECTED TO CATHODE. NEGATIVE GRID #1 CURRENT: Ef=6.3 VOLTS, Eb=100 VOLTS, Ec2= 100 VOLTS, Rk=150 OHMS (BYPASSED) Rg1 =1.0 MEG., g3 TIED TO k INITIAL 0 0.3 µAMPS.	WITH OPERATION: AVERAGE OF VALUES FOR "TRANSCON-			•-	DEDCENT
Ef=6.3 VOLTS, Eb=100 VOLTS, Ec2= 100 VOLTS, Rk=150 OHMS (BYPASSED), g3 TIED TO k INITIAL 0.175 MEGOHMS PLATE CURRENT CUTOFF: Ef=6.3 VOLTS, Eb=100 VOLTS, Ec2= 100 VOLTS, Ec1 =-9.0 VOLTS, g3 TIED TO k INITIAL 50 μAMPS. INTERELECTRODE CAPACITANCES: GRID #1 TO PLATE (G1 TO P) INITIAL 0.015 μμf INPUT (G1 TO H, K, G2,G3) INITIAL 3.5 4.9 μμf OUTPUT (P TO H, K, G2G3) INITIAL 2.9 3.9 μμf (MEASURED WITH EXTERNAL SHIELD OF 0.405-INCH INSIDE DIAMETER CONNECTED TO CATHODE. NEGATIVE GRID #1 CURRENT: Ef=6.3 VOLTS, Eb=100 VOLTS, Ec2= 100 VOLTS, Rk=150 OHMS (BYPASSED) Rg1 =1.0 MEG., g3 TIED TO k INITIAL 0 0.3 μAMPS. 500-HR. 0 0.8 μAMPS.		500-HR.		15	PERCENT
Ef=6,3 VOLTS, Eb=100 VOLTS, Ec2= 100 VOLTS, Ec1 =-9.0 VOLTS, g3 TIED TO k INITIAL 50 μAMPS. INTERELECTRODE CAPACITANCES: GRID #1 TO PLATE (61 TO P) INITIAL 3.5 4.9 μμf INPUT (61 TO H, K, G2,G3) INITIAL 2.9 3.9 μμf OUTPUT (P TO H, K, G2G3) INITIAL 2.9 3.9 μμf (MEASURED WITH EXTERNAL SHIELD OF 0.405-INCH INSIDE DIAMETER CONNECTED TO CATHODE. NEGATIVE GRID #1 CURRENT: Ef=6.3 VOLTS, Eb=100 VOLTS, Ec2= 100 VOLTS, Rk=150 OHMS (BYPASSED) Rg1 =1.0 MEG., g3 TIED TO k INITIAL 0 0.3 μAMPS.	Ef=6.3 VOLTS, Eb=100 VOLTS, Ec2= 100 VOLTS, Rk=150 OHMS (BYPASSED),	INITIAL	0.175		MEGOHMS
INTERELECTRODE CAPACITANCES: GRID #1 TO PLATE (G1 TO P) INITIAL 0.015	Ef=6.3 VOLTS, Eb=100 VOLTS, Ec2= 100 VOLTS, Ec1 =-9.0 VOLTS, g3	INITIAI		50	иAMPS.
INPUT (G1 TO H,K,G2,G3) OUTPUT (P TO H, K, G2G3) INITIAL 3.5 4.9 µµf (MEASURED WITH EXTERNAL SHIELD OF 0.405-INCH INSIDE DIAMETER CONNECTED TO CATHODE. NEGATIVE GRID #1 CURRENT: Ef=6.3 VOLTS, Eb=100 VOLTS, Ec= 100 VOLTS, Rk=150 OHMS (BYPASSED) Rg1 =1.0 MEG., g3 TIED TO k INITIAL 0 0.3 µAMPS. 500-HR. 0 0.8 µAMPS.	INTERELECTRODE CAPACITANCES:			-	· _
OUTPUT (P TO H, K, G2G3) INITIAL 2.9 3.9 μμf (MEASURED WITH EXTERNAL SHIELD OF 0.405-INCH INSIDE DIAMETER CONNECTED TO CATHODE. NEGATIVE GRID #1 CURRENT: Ef=6.3 VOLTS, Eb=100 VOLTS, Ec2= 100 VOLTS, Rk=150 OHMS (BYPASSED) Rg1 =1.0 MEG., g3 TIED TO k INITIAL 0 0.3 μAMPS. 500-HR. 0 0.8 μAMPS.	and the second s				
TO CATHODE. NEGATIVE GRID #1 CURRENT: Ef=6.3 VOLTS, Eb=100 VOLTS, Ec2= 100 VOLTS, Rk=150 OHMS (BYPASSED) Rg1 =1.0 MEG., g3 TIED TO k INITIAL 0 0.3 μAMPS. 500-HR. 0 0.8 μAMPS.					• •
Ef=6.3 VOLTS, Eb=100 VOLTS, Ec2= 100 VOLTS, Rk=150 OHMS (BYPASSED) Rg1 =1.0 MEG., g3 TIED TO k INITIAL 0 0.3 μAMPS. 500-HR. 0 0.8 μAMPS.		405-INCH II	ISIDE DIAME	TER CONNE	CTED
Rg1 =1.0 MEG., g3 TIED TO k INITIAL 0 0.3 μAMPS. 500-HR. 0 0.8 μAMPS.	Ef=6.3 VOLTS, Eb=100 VOLTS, Ec2=				
300 TR. 5 0.0 pm. d.			-		•
	CONTINUED ON FO		•	0.0	vi

TUNG-SOL -

CONTINUED FROM PRECEDING PAGE

CHARACTERISTICS LIMITS - cont'd.

		MIN.	MAX.	
HEATER-CATHODE LEAKAGE CURRENT: Ef =6.3 VOLTS, Ebk=100 VOLTS HEATER POSITIVE WITH RESPECT TO				
CATHODE	INITIAL		5.0	μAMPS.
HEATER NEGATIVE WITH RESPECT TO	500-HR.		10	μAMPS.
CATHODE	INITIAL		5.0	μAMPS.
	500 HR.		10	μAMPS.
INTERELECTRODE LEAKAGE RESISTANCE: Ef=6.3 VOLTS. POLARITY OF APPLIED DC INTERELECTRODE VOLTAGE IS SUCH THAT NO CATHODE EMISSION RESULTS.				,
GRID #1 TO ALL AT 100 VOLTS DC	INITIAL	100		MEG.
PLATE TO ALL AT 300 VOLTS DC	500 HR.	50		MEG.
TEATE TO ALL AT 300 VOLTS DC	INITIAL	100		MEG.
	500-н г.	50		MEG.
VIBRATIONAL NOISE OUTPUT VOLTAGE, RMS: Ef=6.3 VOLTS, Ebb=100 VOLTS, Ec2=100 VOLTS, Rk=150 OHMS (ByPASSED) RL =10,000 OHMS, g3 TIED TO k, VIBRATION ACCELERATION = 15 G AT 40 cps	INITIAL		60	MV.
GBID #1 FMICE ON COMPANY			00	MV.
GRID #1 EMISSION CURRENT: Ef=7.5 VOLTS, Eb=100 VOLTS, Ec2 =100 VOLTS, Ec1=-9.0 VOLTS, Rg1=1.0 MEG.,				
g3 TIED TO k	INITIAL	0	0.5	μAMPS.

THE INDICATED 500.HOUR VALUES ARE LIFE.TEST END POINTS FOR THE FOLLOWING CONDITIONS OF OPERATION: $E(=6.3\ \text{VOLTS},\ E_b=100\ \text{VOLTS},\ E_c2=100\ \text{VOLTS},\ R_K=150\ \text{OHMS},\ g_3\ \text{TIED}\ \text{TO}\ k,\ R_g|=1.0\ \text{MEG},\ Ebk=200\ \text{VOLTS}\ \text{WITH HEATER POSITIVE WITH RESPECT TO CATHODE,}\ AND BULB TEMPERATURE=220\ C.$

SPECIAL TESTS AND RATINGS

STABILITY LIFE TEST

STATISTICAL SAMPLE OPERATED FOR ONE HOUR TO EVALUATE AND CONTROL INITIAL VARIATIONS IN TRANSCONDUCTANCE.

SURVIVAL RATE LIFE TEST

STATISTICAL SAMPLE OPERATED FOR ONE HUNDRED HOURS TO EVALUATE AND CONTROL EARLY-LIFE ELECTRICAL AND MECHANICAL INOPERATIVES.

HEATER-CYCLING LIFE TEST

STATISTICAL SAMPLE OPERATED FOR 2000 CYCLES MINIMUM TO EVALUATE AND CONTROL HEATER-CATHODE DEFECTS. CONDITIONS OF TEST INCLUDE EF=7.0 VOLTS CYCLED FOR ONE MINUTE ON AND FOUR MINUTES OFF, Eb=Ec3=Ec1=0 VOLTS, AND Ebk=140 VOLTS RMS.

SHOCK RATING-450 G

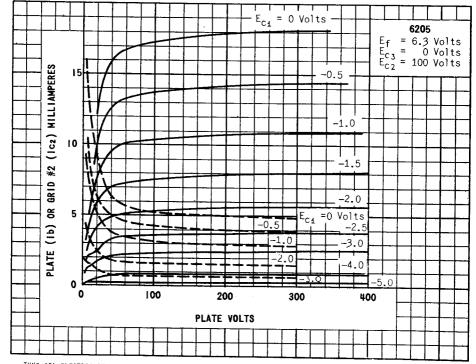
STATISTICAL SAMPLE SUBJECTED TO FIVE IMPACT ACCELERATIONS OF 450 G IN EACH OF FOUR DIFFERENT POSITIONS. THE ACCELERATING FORCES ARE APPLIED BY THE NAVY-TYPE HIGH IMPACT (FLYWEIGHT) SHOCK MACHINE FOR ELECTRONIC DEVICES OR ITS EQUIVALENT.

CONTINUED ON FOLLOWING PAGE

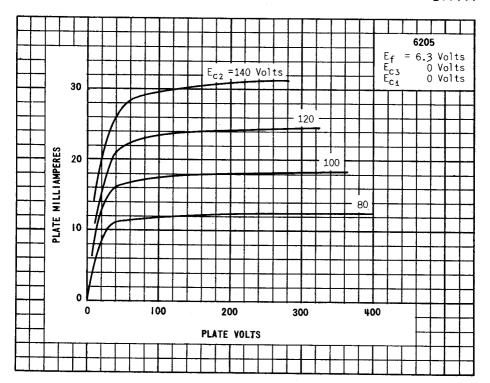
- TUNG-SOL -

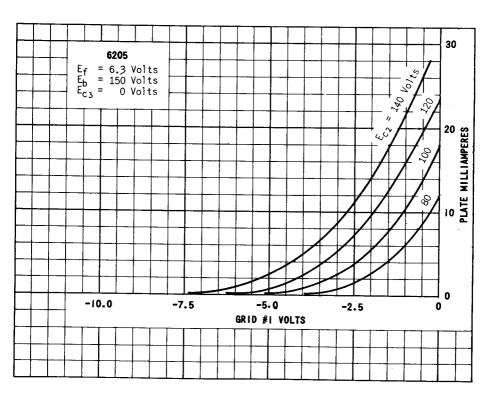
CONTINUED FROM PRECEDING PAGE

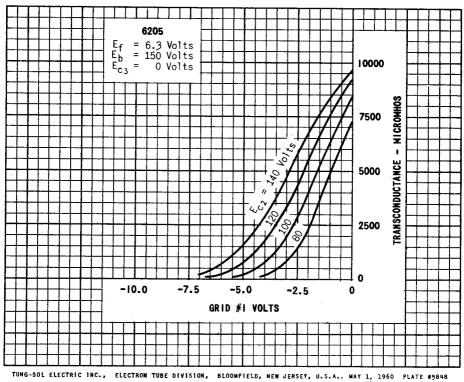
SPECIAL TESTS AND RATINGS


FATIGUE RATING-2.5 G

STATISTICAL SAMPLE SUBJECTED TO VIBRATIONAL ACCELERATION OF 2.5 G FOR 32 HOURS MINIMUM IN EACH OF THREE DIFFERENT POSITIONS. THE SINUSOIDAL VIBRATION IS APPLIED AT A FIXED FREQUENCY BETWEEN 25 AND 60 CYCLES PER SECOND.


ALTITUDE RATING-60,000 FEET


STATISTICAL SAMPLE SUBJECTED TO PRESSURE OF 55 MILLIMETERS OF MERCURY TO EVALUATE AND CONTROL ARCING AND CORONA.


NOTE: THE CONDITIONS FOR SOME OF THE INDICATED TESTS HAVE DELIBERATELY BEEN SELECTED TO AGGRAVATE TUBE FAILURES FOR TEST AND EVALUATION PURPOSES. IN NO SENSE SHOULD THESE CONDITIONS BE INTERPRETED AS SUITABLE CIRCUIT OPERATING CONDITIONS. IN THE DESIGN OF MILITARY EQUIPMENT EMPLOYING THIS TUBE, REFERENCE SHOULD BE MADE TO THE APPROPRIATE MIL-E-I SPECIFICATION.

Phintee in V. S. A.

