
IAMR-20F

DOUBLE DIODE SUBMINIATURE TYPE

COATED UNIPOTENTIAL CATHODE

HEATER
6.3 VOLTS 0.15 AMP.
AC OR DC

ANY MOUNTING POSITION

BOTTOM VIEW
SUBMINIATURE - 8
FLEXIBLE LEADS

THE 5829WA IS A CATHODE-TYPE DOUBLE DIODE IN THE SUBMINIATURE CONSTRUCTION, CAPABLE OF OPERATION UP TO ABOUT 400 MC. AN INTERNAL SHIELD IS CONSTRUCTED BETWEEN THE TWO DIODE SECTIONS AND BROUGHT OUT ON A SEPARATE LEAD SO THAT ELECTRICALLY INDEPENDENT OPERATION CAN BE ASSURED. PRODUCT AVERAGE CONTROLS ON SUCH CHARACTERISTICS AS EMISSION AND FULL WAVE OPERATIONAL LOAD CURRENT ASSURE THAT THESE CRITICAL CHARACTERISTICS WILL REMAIN WELL CENTERED. SINCE IT MUST BE ABLE TO WITHSTAND SEVERE MECHANICAL TESTS TO MEET TEST SPECIFICATIONS, THE 5829WA IS ESPECIALLY SUITABLE FOR USE IN MILITARY AND INDUSTRIAL EQUIPMENT WHICH MAY BE SUBJECTED TO SEVERE SHOCK AND VIBRATION SUCH AS AIRBORNE COMMUNICATIONS EQUIPMENT.

DIRECT INTERELECTRODE CAPACITANCES

	WITHOUT SHIELD	
PLATE #1 TO ALL OTHER ELEMENTS (RATED)	2.6	μμf
MAXIMUM	3.5	µµ f
MINIMUM	1.9	$\mu\mu f$
PLATE #2 TO ALL OTHER ELEMENTS (RATED)	2.3	μμf
MAXIMUM	3.3	μμf
MINIMUM	1.7	μμf
CATHODE #1 TO ALL OTHER ELEMENTS (RATED)	3.9	μμf
MAXIMUM	4.2	μμf
MINIMUM	2.4	μμf
CATHODE #2 TO ALL OTHER ELEMENTS (RATED)	3.9	μμf
MAXIMUM	4.6	μμf
MINIMUM	2.8	μμf
PLATE #1 TO PLATE #2 (RATED)	0.1	μμf
MAXIMUM	0.12	μμf
MINIMUM	0.06	μμ f

CONTINUED ON FOLLOWING PAGE

--- TUNG-SOL ---

CONTINUED FROM PRECEDING PAGE

DIRECT INTERELECTRODE CAPACITANCES - CONT'D.

	WITHOUT SHIELD
CATHODE #1 TO HEATER (RATED)	2.0 µµf
MUM! XAM	2.2 μμ f
MINIMUŃ	1.1 µµf
CATHODE #2 TO HEATER (RATED)	2.0 <i>ա</i> աք
MAXIMUM	2.5 դալք
MINIMUM	1.3 μμf

RATINGS ABSOLUTE MAXIMUM VALUES

HEATER VOLTAGE	6.3±5%	VOLTS
MAXIMUM DC PLATE SUPPLY VOLTAGE (EACH SECTION)	130	VOLTS
MAXIMUM PEAK PLATE INVERSE VOLTAGE	360	VOLTS
MAXIMUM HEATER CATHODE VOLTAGE	±360	VOLTS
MAXIMUM DC OUTPUT CURRENT (EACH SECTION)	5.5	mA.
MAXIMUM PEAK PLATE CURRENT (EACH SECTION)	33	mA.
MAXIMUM SURGE CURRENT (EACH SECTION)	175	mA.
MAXIMUM BULB TEMPERATURE	220	• c
MAXIMUM ALTITUDE	60 000	FEET

TYPICAL OPERATING CONDITIONS AND CHARACTERISTICS HALF-WAVE RECTIFIER

HEATER VOLTAGE
6.3 VOLTS
HEATER CURRENT
MINIMUM TOTAL EFFECTIVE PLATE SUPPLY IMPEDANCE PER PLATE
5 MA.
AVERAGE TUBE VOLTAGE DROP @ 15 MA PER PLATE
5 VOLTS
5 VOLTS

CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN

Ef = 6.3V, E_{pp}/p = 117Vdc, Ehk = 0V, RL = 14000 0hms, C_L = 8 μf

EXCEPT AS MODIFIED BELOW

		INIT	AL	,	500 HOUR	LIFE TE	ST
	INDIV	DUAL MAX.	PROD. MIN.	AVG. Max.	INDIV Min.	IDUAL Max.	
HEATER CURRENT HEATER-CATHODE LEAKAGE	138	162			135	165	mAdc
(Ehk=±100 Vdc)		±10				±20	μ Adc
(Ep TO ALL =- 300 Vdc)	100				50		MEGOHMS
PLATE CURRENT (Ebb =O, Rp =400)	2	20					μ Adc
PLATE CURRENT DIFFERENCE BETWEEN SEC. GRID EMISSION		5.0					μAdc
(Es=6.5 Vdc)	15		16.5				μ * dc

CONTINUED ON FOLLOWING PAGE

- TUNG-SOL -

CONTINUED FROM PRECEDING PAGE

SPECIAL REQUIREMENTS

	MIN.	MAX.	
LOW PRESSURE VOLTAGE BREAKDOWN (PRESSURE =55±5mm Hg, VOLTAGE=330 Vac) A VARIABLE FREQUENCY VIBRATIONB			
(NO VOLTAGES, POST SHOCK AND VIBRATIONAL FATIGUE TEST END POINTS APPLY) SUBMINIATURE LEAD FATIGUE	 4		ARCS
SHOCK ⁰ (HAMMER ANGLE = 30°) VIBRATIONAL FATIGUE ^E			
(G= 2.5; FIXED FREQUENCY; F= 25MIN, 60MAX)			
POST SHOCK AND VIBRATIONAL FATIGUE TEST END POINTS HEATER CATHODE LEAKAGE OPERATION	7.0	±15	μAdc
SHORT AND CONTINUITYF			mAdc
GLASS STRAIN ^G HEATER CYCLING LIFE TEST			
(Ef=7.5V, Ehk=140Vac, Eb=0, 1 MIN ON 4 MIN OFF) HEATER CYCLING LIFE TEST END POINTS			
HEATER CATHODE LEAKAGE INTERMITTENT LIFE TEST		±20	μAdc
(T ENVELOPE= 220°C) H,J.			

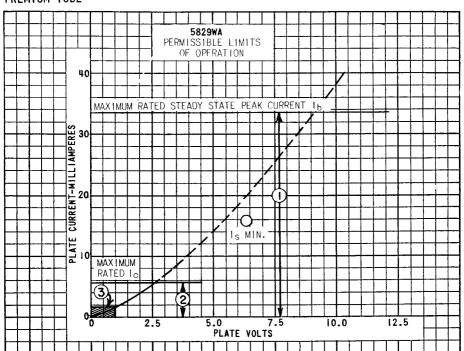
NOTES

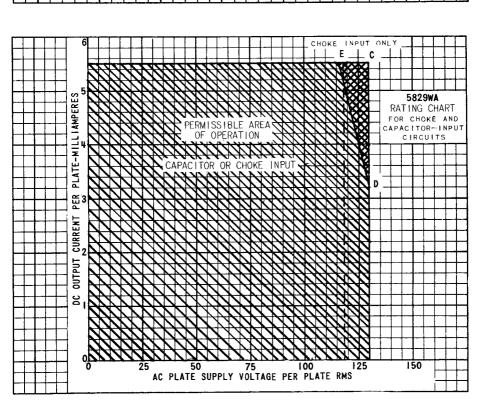
ATUBE SHALL BE TESTED IN A CHAMBER UNDER THE CONDITIONS OF PRESSURE SPECIFIED. THE SPECIFIED VOLTAGE SHALL BE APPLIED BETWEEN THE LEADS OF ELEMENTS CARRYING BY VOLTAGE AND THE ADJACEST LEADS. VOLTAGE SHALL BE OF A SINUSOIDAL WAVE FORM WITH F-60 CYCLES. TUBE SHOWING EVIDENCE OF CORONA OR ARCING SHALL BE CONSIDERED DEFECTIVE.

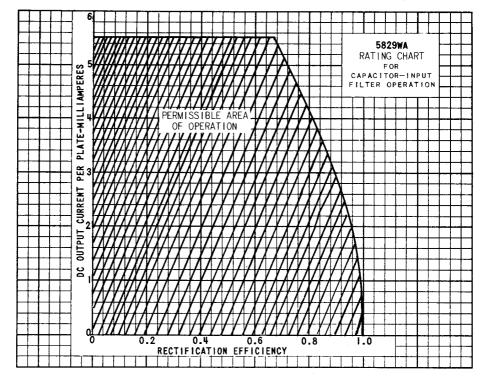
BSEE MIL-E-10 4.9.20.3

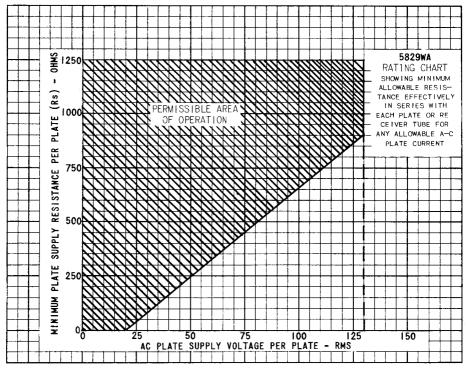
C SEE MIL-E-10 4.9.5.3

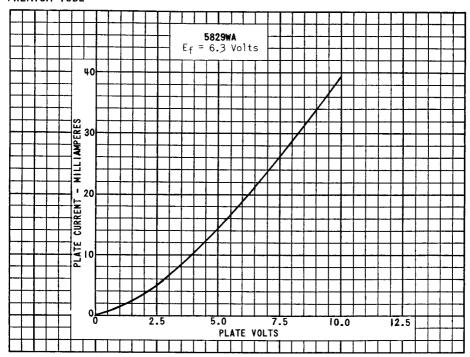
D SEE MIL-E-10 4.9.20.5


F SEE MIL-E-10 4.7.5


GLASS STRAIN TEST PROCEDURE: ALL TUBES SUBJECTED TO THIS TEST SHALL HAVE BEEN SEALED A MINIMUM OF 48 HOURS PRIOR THERETO. ALL TUBES SHALL BE AT ROOM TEMPERATURE IMMEDIATELY PRIOR TO THIS TEST. THE ENTIRE TUBE SHALL BE IMMERSED IN WATER OF NOT LESS THAN 85°C FOR 1.5 SECONDS AND IMMEDIATELY THEREAFTER IMMERSED IN WATER OF NOT MORE THAN 5°C FOR 5. SECONDS. THE VOLUME OF WATER SHALL BE LARGE ENOUGH THAT THE TEMPERATURE WILL NOT BE APPRECIABLY EFFECTED BY THE TEST. THE METHOD OF SUBMERSION SHALL BE IN ACCORDANCE WITH DRAWING \$245-JAN, AND SUCH THAT A MINIMUM OF MEAT IS CONDUCTED AWAY BY THE HOLDER USED. THE TUBES SHALL BE PLACED IN WATER SO THAT NO CONTACT IS MADE WITH THE CONTAINING VESSEL, WOR SHALL THE TUBES CONTACT EACH OTHER. AFTER THE 5-SECOND SUBMERSION PERIOD, THE TUBES SHALL BE REMOVED AND ALLOWED TO DRY AT ROOM TEMPERATURE ON A WOODEN SUBPRESION PERIOD, THE TUBES SHALL BE INSPECTED FOR EVIDENCE OF AIR LEAKS. ELECTRICAL REJECTS, OTHER THAN INOPERATIVES, MAY BE USED IN THE PERFORMANCE TEST.


HENVELOPE TEMPERATURE IS DEFINED AS THE HIGHEST TEMPERATURE INDICATED WHEN USING A THERMOCOUPLE OF #40BS OR SWALLER DIAMETER ELEMENTS WELDED TO A RING OF .025 INCH DIAMETER PHOSPHOR BRONZE PLACED IN CONTACT WITH THE ENVELOPE.


UN FULL-WAVE LIFE TEST CIRCUIT, THE VALUES OF RL AND CL GIVEN IN THE TEST CONDITIONS SHALL BE CONSIDERED AS APPROXIMATE AND SHALL BE ADJUSTED INITIALLY TO GIVE TO EQUAL TO OR GREATER THAN 10 made with 16 Equal to or greater than 25 ma. EMR = 117 vac.


ESEE MIL-E-10 4.9.20.6

