TUNG-SOL -

TWIN PENTODE MINIATURE TYPE

COATED UNIPOTENTIAL CATHODE

FOR T.V. APPLICATIONS

ANY MOUNTING POSITION

BOTTOM VIEW
BASING DIAGRAM
JEDEC 9FG

GLASS BULB
SMALL BUTTON
9 PIN BASE E9-1
OUTLINE DRAWING
JEDEC 6-3

THE 3HS8 IS A MINIATURE TWIN PENTODE THAT INCORPORATES SEPARATE PLATES AND #3 GRIDS FOR THE TWO SECTIONS TOGETHER WITH A COMMON SCREEN, #1 GRID, AND CATHODE. IT IS INTENDED FOR USE AS A COMBINED SYNC-AGC TUBE IN TELEVISION RECEIVERS. EXCEPT FOR HEATER RATINGS AND HEATER WARM-UP TIME, THE 3HS8 IS IDENTICAL TO THE 4HS8 AND THE 6HS8.

DIRECT INTERELECTRODE CAPACITANCES - APPROX.

WITHOUT EXTERNAL SHIELD

GRID #3 TO PLATE, EACH SECTION	2.0	рf
GRID #1 TO ALL	6.0	рf
GRID #3 (EACH SECTION) TO ALL	3.6	рf
PLATE (EACH SECTION) TO ALL	3.0	рf
GRID #3 (SECTION 1) TO GRID #3 (SECTION 2), MAX.	0.015	рf

HEATER RATINGS AND CHARACTERISTICS

DESIGN-MAXIMUM VALUES - SEE EIA STANDARD RS-239		
AVERAGE CHARACTERISTICS 3.15 VOLTS	600	MA.
HEATER WARM-UP TIME A	11	SECONDS
HEATER SUPPLY LIMITS:	600 ± 40	MA.
CUPRENT OPERATION	000 = 40	
MAXIMUM HEATER-CATHODE VOLTAGE:		
HEATER POSITIVE WITH RESPECT TO CATHODE		
DC COMPONENT	100	VOLTS
TOTAL DC AND PEAK	200	VOLTS
HEATER NEGATIVE WITH RESPECT TO CATHODE		
TOTAL DC AND PEAK	200	VOLTS
HEATER WARM-UP TIME A	11	SECONDS

A
HEATER WARM-UP TIME IS DEFINED AS THE TIME REQUIRED FOR THE VOLTAGE ACROSS THE HEATER TO REACH
80% OF ITS RATED VOLTAGE AFTER APPLYING 4 TIMES RATED HEATER VOLTAGE TO A CIRCUIT CONSISTING
OF THE TUBE HEATER IN SERIES WITH A RESISTANCE OF VALUE 3 TIMES THE NOMINAL HEATER OPERATING
RESISTANCE.

--- TUNG-SOL ----

CONTINUED FROM PRECEDING PAGE

MAXIMUM RATINGS

DESIGN MAXIMUM VALUES - SEE EIA STANDARD RS-239

PLATE VOLTAGE, EACH SECTION	500	VOLTS
SCREEN VOLTAGE	150	VOLTS
POSITIVE DC GRID #3 VOLTAGE, EACH SECTION	3.0	VOLTS
NEGATIVE DC GRID #3 VOLTAGE, EACH SECTION	50	VOLTS
PEAK POSITIVE GRID #3 VOLTAGE, EACH SECTION	50	VOLTS
NEGATIVE DC GRID #1 VOLTAGE	0ĉ	VOLTS
PLATE DISSIPATION, EACH SECTION	1.1	WATTS
SCREEN DISSIPATION	0.75	WATT
DC CATHODE CURRENT	12	MA.
GRID #1 CIRCUIT RESISTANCE	0.5	ME GOHM
GRID #3 CIRCUIT RESISTANCE, EACH SECTION	0.5	ме донм

TYPICAL OPERATING CHARACTERISTICS

AVERAGE CHARACTERISTICS - BOTH SECTIONS OPERATING

PLATE VOLTAGE, EACH SECTION SCREEN VOLTAGE GRID #3 VOLTAGE, EACH SECTION GRID #1 VOLTAGE B	100	100	VOLTS
	67.5	67.5	VOLTS
	-10	0	VOLTS
PLATE CURRENT, EACH SECTION SCREEN CURRENT CATHODE CURRENT	7.0 7.1	2.0 4.4 -8.5	MA. MA.

PLATE VOLTAGE SCREEN VOLTAGE GRID #3 VOLTAGE GRID #4 VOLTAGE GRID #3 TRANSCONDUCTANCE GRID #1 TRANSCONDUCTANCE PLATE CURRENT GRID #3 VOLTAGE, (APPROX.)	100 67.5 0 0 1100	100 67.5 0 8 450 2.0	VOLTS VOLTS VOLTS VOLTS MMHOS MA.
AT Ib = 100 µA GRID *1 VOLTAGE, (APPROX.)		3.5	VOLTS
Ib = $100 \mu AMPS$.		-2.3	VOLTS

 $[{]f B}$ with grid current adjusted for 100 microamperes dc.