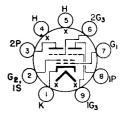

TUNG-SOL -

TWIN PENTODE


MINIATURE TYPE

COATED UNIPOTENTIAL CATHODE

HEATER 3.15 VOLTS 600±40 MA.

AC OR DC

ANY MOUNTING POSITION

BOTTOM VIEW
BASING DIAGRAM
JEDEC 9FG

GLASS BULB
SMALL BUTTON
9 PIN BASE E9-1
OUTLINE DRAWING
JEDEC 6-3

THE 38U8 IS A MINIATURE MULTISECTION TUBE WHICH INCORPORATES SEPARATE PLATES AND NUMBER 3 GRIDS FOR THE TWO SECTIONS TOGETHER WITH A COMMON SCREEN, NUMBER 1 GRID, AND CATHODE. THE TUBE IS INTENDED FOR USE AS A COMBINED SYNC-AGC TUBE IN TELEVISION RECEIVERS. IN THIS SERVICE, WHEN USED IN CONJUNCTION WITH SUITABLE CIRCUITRY, ONE SECTION OF THE 3BUS FUNCTIONS AS SYNC SEPARATOR AND SYNC CLIPPER, WHILE THE OTHER SECTION IS USED TO GENERATE THE AUTOMATIC-GAIN-CONTROL VOLTAGE. IN ADDITION, BY UTILIZING THE COMMON, #1 GRID, NOISE PULSES CAN BE SUPPRESSED FROM BOTH SYNCHRONIZING AND AUTOMATIC-GAIN-CONTROL CIRCUITS. THERMAL CHARACTER-ISTICS-OF THE HEATER ARE CONTROLLED SUCH THAT HEATER VOLTAGE SURGES DURING THE WARM-UP CYCLE ARE MINIMIZED PROVIDED IT IS USED WITH OTHER TYPES WHICH ARE SIMILARLY CONTROLLED. EXCEPT FOR HEATER RATINGS THE 3BUS IS IDENTICAL TO THE 6BUS.

DIRECT INTERELECTRODE CAPACITANCES - APPROX.

GRID #3 TO PLATE, (EACH SECTION)	1.9	рf
GRID #1 TO ALL	6.0	рf
GRID #3 TO ALL (EACH SECTION)	3. 6	рf
PLATE TO ALL (EACH SECTION)	3.0	рf
GRID #3 (SECTION 1) TO		
GRID #3 (SECTION 2) MAX.	0.015	рf

RATINGS

→ DESIGN MAXIMUM VALUES – SEE EIA STÄNDARD RS-239

MAXIMUM PLATE VOLTAGE (EACH SECTION) MAXIMUM SCREEN VOLTAGE MAXIMUM POSITIVE DC GRID #3 VOLTAGE (EACH SECTION)	300 150 3.0	VOLTS VOLTS VOLTS
MAXIMUM NEGATIVE DC GRID #3 VOLTAGE (EACH SECTION) MAXIMUM PEAK POSITIVE GRID #3 VOLTAGE (EACH SECTION)	50 50	VOLTS VOLTS
MAXIMUM NEGATIVE DC GRID #1 VOLTAGE MAXIMUM PLATE DISSIPATION (EACH SECTION)	50 1.1	VOLTS WATTS
MAXIMUM SCREEN DISSIPATION MAXIMUM DC CATHODE CURRENT	0.75 12	WATTS MA.

CONTINUED ON FOLLOWING PAGE

--> INDICATES A CHANGE.

TUNG-SOL -

CONTINUED FROM PRECEDING PAGE

RATINGS - CONT'D

DESIGN MAXIMUM VALUES - SEE EIA STANDARD RS-239

MAXIMUM HEATER-CATHOUE VOLTAGE.		
HEATER POSITIVE WITH RESPECT TO CATHODE		
DC COMPONENT	100	VOLTS
TOTAL DC AND PEAK	200	VOLTS
HEATER NEGATIVE WITH RESPECT TO CATHODE		
TOTAL DC AND PEAK	200	VOLTS
MAXIMUM GRID #1 CIRCUIT RESISTANCE	0.5	MEGOHMS
MAXIMUM GRID #3 CIRCUIT RESISTANCE (EACH SECTION)	0.5	MEGOHMS
HEATER WARM-UP TIME*	11.0	SECONDS

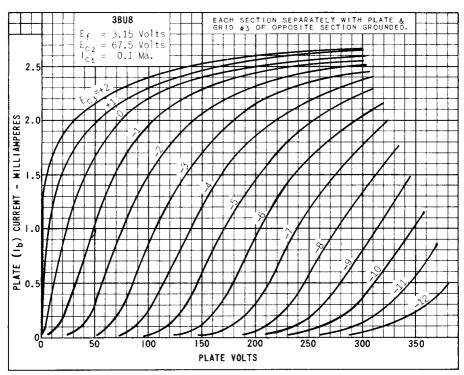
TYPICAL OPERATING CONDITIONS AND CHARACTERISTICS

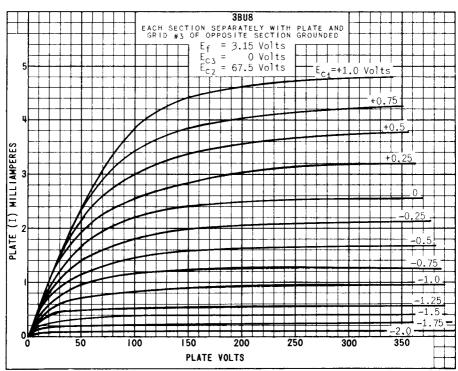
BOTH SECTIONS OPERATING

PLATE VOLTAGE (EACH SECTION)	100	100	VOLTS
SCREEN VOLTAGE	67.5	67.5	VOLTS
GRID #3 VOLTAGE (EACH SECTION)	-10	0	VOLTS
GRID #1 VOLTAGE	**	**	
PLATE CURRENT (EACH SECTION)		2.2	MA.
SCREEN CURRENT	6.5	3.3	MA.
CATHODE CURRENT	6.6	7.8	MA.

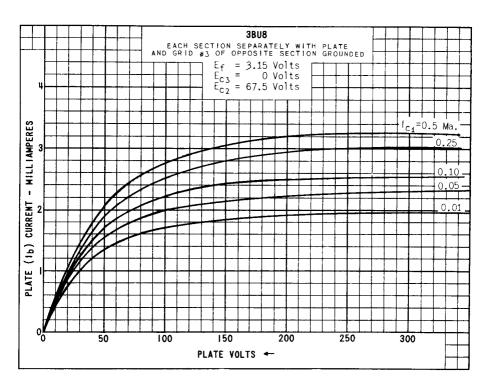
EACH SECTION SEPARATELY A

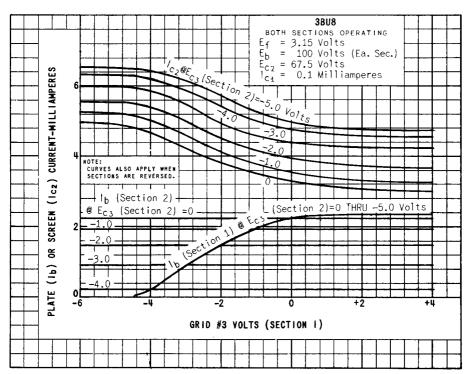
PLATE VOLTAGE	100	100	VOLTS
SCREEN VOLTAGE	67.5	67.5	VOLTS
GRID #3 VOLTAGE	0	0	VOLTS
GRID #4 VOLTAGE	0	**	VOLTS
GRID #3 TRANSCONDUCTANCE		180	μ MHOS
GRID #1 TRANSCONDUCTANCE	1 500		μ MHOS
PLATE CURRENT		2.2	MA.
GR!D #3 VOLTAGE (APPROX.) Ib=100µAMPS		-4.5	VOLTS
GRID #1 VOLTAGE (APPROX.) $I_{b}=100\mu$ AMPS		2.3	VOLTS

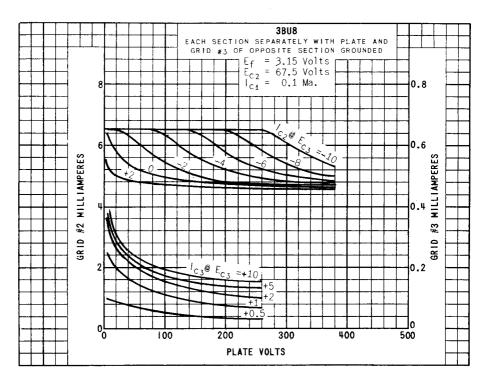

^{*}HEATER WARM-UP TIME IS DEFINED AS THE TIME REQUIRED FOR THE VOLTAGE ACROSS THE HEATER TO REACH
80% OF ITS RATEO VOLTAGE AFTER APPLITING 4 TIMES RATED HEATER VOLTAGE TO A CIRCUIT CONSISTING
OF THE TUBE HEATER IN SERIES WITH A RESISTANCE OF VALUE 3 TIMES THE NOMINAL HEATER OPERATING
RESISTANCE.

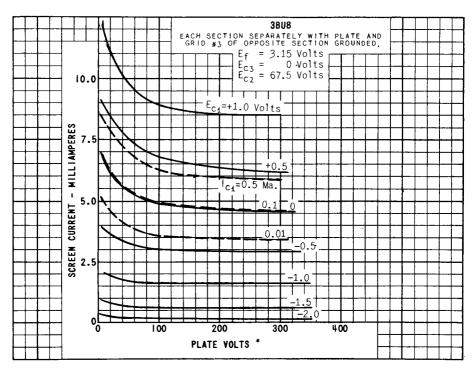

DESIGN-MAXIMUM RATINGS ARE THE LIMITING VALUES EXPRESSED WITH RESPECT TO BOGIE TUBES AT WHICH SATISFACTORY TUBE LIFE CAM BE EXPECTED TO OCCUR. TO OBTAIN SATISFACTORY CIRCUIT PERFORMANCE, THEREFORE, THE EQUIPMENT DESIGNER MUST ESTABLISH THE, CIRCUIT DESIGN SO THAT NO DESIGN-MAXIMUM VALUE IS EXCEDED WITH A BOGIE TUBE UNDER THE WORST PROBABLE OPERATING CONDITIONS WITH RESPECT TO SUPPLY-VOLTAGE VARIATION, EQUIPMENT COMPONENT VARIATION, EQUIPMENT CONTROL ADJUSTMENT, LOAD VARIATION, AND ENVIRONMENTAL CONDITIONS.

SIMILAR TYPE REFERENCE: Except for heater ratings and heater warm-up time the 3BUB is identical to the 6BUB.

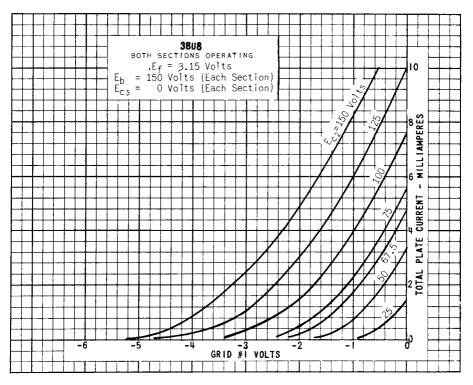

^{**}WITH GRID CURRENT ADJUSTED FOR 100 #AMPS D-C.

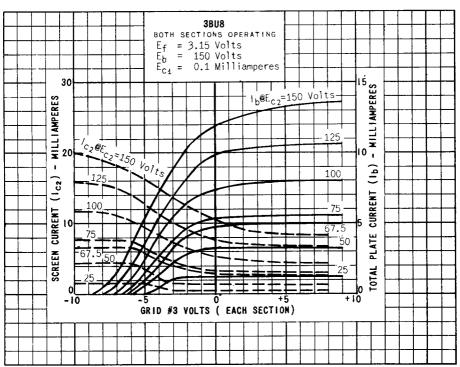

Awith plate and grid #3 of opposite section grounded.

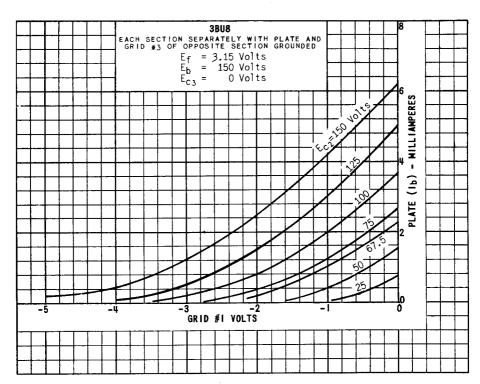


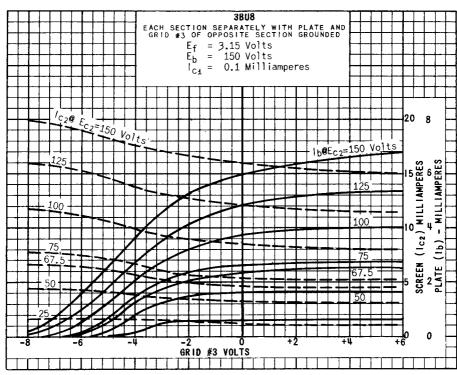


3BU8 TENTATIVE DATA

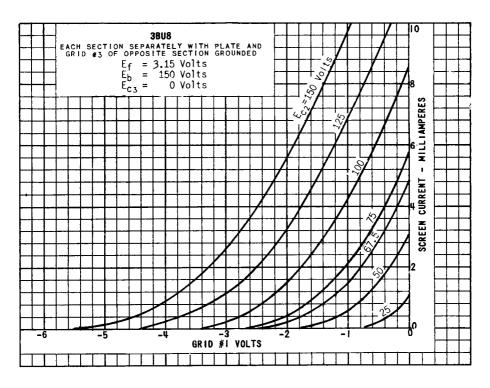


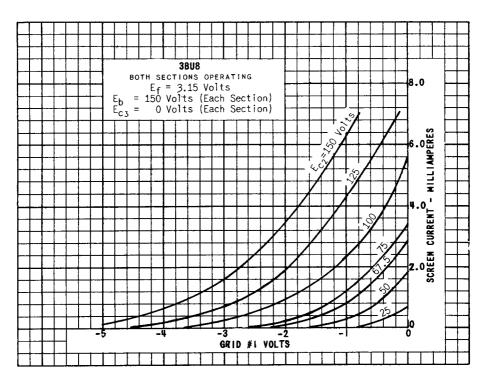






3BU8 TENTATIVE DATA





3BU8 TENTATIVE DATA

