
TUNG-SOL

HEPTODE

MINIATURE TYPE

COATED UNIPOTENTIAL CATHODE

HEATER

3.15 VOLTS 0.6 AMP.

AC OR DC

ANY MOUNTING POSITION

GLASS BULB

BOTTOM VIEW
MINIATURE BUTTON
7 PIN BASE

7 C H

THE 3BE6, A PENTAGRID CONVERTER USING THE 7 PIN MINIATURE CONSTRUCTION, IS DESIGNED FOR USE IN 600 MA. SERIES HEATER OPERATED SUPERHETERODYNE RECEIVERS. IT IS INTENDED FOR SERVICE AS A COMBINED OSCILLATOR AND MIXER. THERMAL CHARACTERISTICS OF THE HEATER ACCONTROLLED SUCH THAT HEATER VOLTAGE SURGES DURING THE WARM-UP CYCLE ARE MINIMIZED PROVIDED IT IS USED WITH OTHER TYPES WHICH ARE SIMILARLY CONTROLLED. WITH THE EXCEPTION OF HEATER RATINGS, ITS CHARACTERISTICS ARE IDENTICAL TO TYPE 6BE6.

DIRECT INTERELECTRODE CAPACITANCES

	WITH SHIELD ^A	WITHOUT SHIELD	
MIXER GRID TO PLATE: (G3 TO P) MAX.	0.25	0.30	μμ f
MIXER GRID TO OSCILLATOR GRID: (G3 TO G1) MAX	.0.15	0.15	μμ f
RF INPUT: G3 TO (H+K+G1+G2&4+G5+P)	7.0	7.0	μμ f
OSCILLATOR INPUT: G1 TO (H+K+G2&4+G3+G5+P)	5.5	5.5	μμ f
MIXER OUTPUT: P TO (H+K+G1+G2&4+G3+G5)	13	8.0	μμ f
OSCILLATOR GRID TO CATHODE: (G1 TO K+G5)	3.0	3.0	μμ f
OSCILLATOR OUTPUT: K TO (H+G2&4+G3+P)	20	15	μμ f
OSCILLATOR GRID TO PLATE: (G1 TO P) MAX.	0.05	0.1	μμ f

AEXTERNAL SHIELD #316 CONNECTED TO PIN #2.

RATINGS INTERPRETED ACCORDING TO DESIGN CENTER SYSTEM

HEATER VOLTAGE	3.15	VOLTS
MAXIMUM HEATER-CATHODE VOLTAGE:		
HEATER NEGATIVE WITH RESPECT TO CATHODE	000	
TOTAL DC AND PEAK HEATER POSITIVE WITH RESPECT TO CATHODE	200	VOLTS
DC	100	VOLTS
TOTAL DC AND PEAK	200	VOLTS
MAXIMUM PLATE VOLTAGE	300	VOLTS
MAXIMUM GRIDS #2 AND #4 VOLTAGE	100	VOLTS
MAXIMUM GRIDS #2 AND #4 SUPPLY VOLTAGE	300	VOLTS
MAXIMUM NEGATIVE DC GRID #3 VOLTAGE	-50	VOLTS
MAXIMUM POSITIVE DC GRID #3 VOLTAGE	0	VOLTS
MAXIMUM PLATE DISSIPATION	1.0	WATT
MAXIMUM GRIDS #2 AND #4 DISSIPATION	1.0	WATT
MAXIMUM CATHODE CURRENT	14	MA.
HEATER WARM-UP TIME (APPROX.)*	11.0	SECONDS

^{*} HEATER WARM-UP TIME IS DEFINED AS THE TIME REQUIRED FOR THE VOLTAGE ACROSS THE HEATER TO REACH 80\$ OF ITS RATED VOLTAGE AFTER APPLYING 4 TIMES RATED HEATER VOLTAGE TO A CIRCUIT CONSISTING OF THE TUBE HEATER IN SERIES WITH A RESISTANCE OF VALUE 3 TIMES THE NOMINAL HEATER OPERATING RESISTANCE.

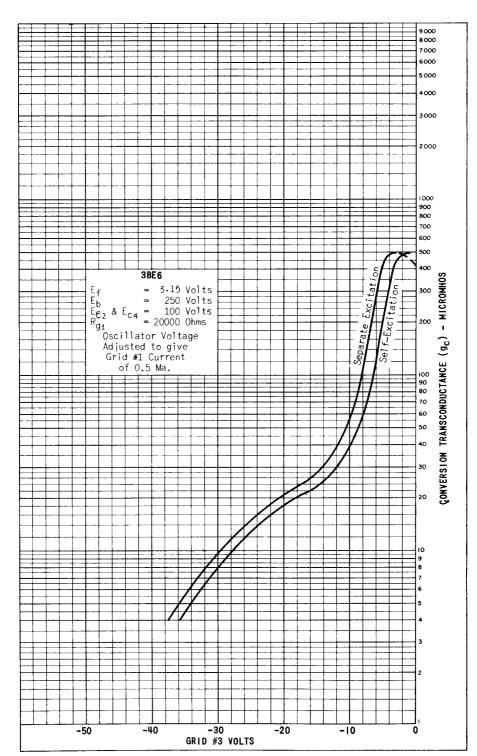
CONTINUED ON FOLLOWING PAGE

---- INDICATES A CHANGE.

TUNE-SOL

CONTINUED FROM PRECEDING PAGE

TYPICAL OPERATING CONDITIONS AND CHARACTERISTICS


CONVERTER SERVICE - SEPARATE EXCITATIONB

HEATER VOLTAGE	3.15	3.15	VOLTS
HEATER CURRENT	0.6	0.6	AMP.
PLATE VOLTAGE	100	250	VOL TS
GRID #3 VOLTAGE	-1.5	-1.5	VOL TS
GRIDS #2 AND #4 VOLTAGE	100	100	VOLTS
GRID #1 VOLTAGE (OSCILLATOR GRID) RMS	10	10	VOLTS
GRID #1 RESISTANCE (OSCILLATOR GRID)	20 000	20 000	OHMS
PLATE RESISTANCE (APPROX.)	0.4	1.0	ME GOHMS
GRID #1 CURRENT (OSCILLATOR GRID)	0.5	0.5	MA.
CONVERSION TRANSCONDUCTANCE	455	475	дмноѕ
PLATE CURRENT	2.6	2.9	MA.
GRIDS #2 AND #4 CURRENT	7.0	6.8	MA.
CATHODE CURRENT	10.1	10.2	MA.
GRID #3 VOLTAGE FOR GC = 10 µMHOS (APPROX.)	-30	-30	VOLTS
GRID #3 VOLTAGE FOR GC = 100 MMH09 (APPROX.)	- 6	-6	VOL.TS

B CHARACTERISTICS SHOWN ARE OBTAINED IN THE STANDARD RMA CONVERSION CONDUCTANCE TEST SET WHICH USES SEPARATE EXCITATION. THE CHARACTERISTICS UNDER THESE COMDITIONS CORRESPOND VERY CLOSELY WITH THOSE OBTAINED IN A SELF-EXCITED OSCILLATORY CIRCUIT OPERATING WITH ZERO BIAS.

OSCILLATOR CHARACTERISTICS

GRID #3 VOLTAGE	0	VOLTS
GRID #4 VOLTAGE (OSCILLATOR GRID)	0	VOLTS
GRIDS #2 AND #4 CONNECTED TO PLATE	100	VOLTS
TRANSCONDUCTANCE BETWEEN GRID #1 AND GRIDS #2 AND #4 CONNECTED TO PLATE	7 250	имноѕ
AMPLIFICATION FACTOR BETWEEN GRID #1 AND GRIDS #2 AND #4 CONNECTED TO PLATE	20	
CATHODE CURRENT	25	MA .
GRID #4 VOLTAGE (APPROX.) FOR IB = 10 MA	-11	VOLTS

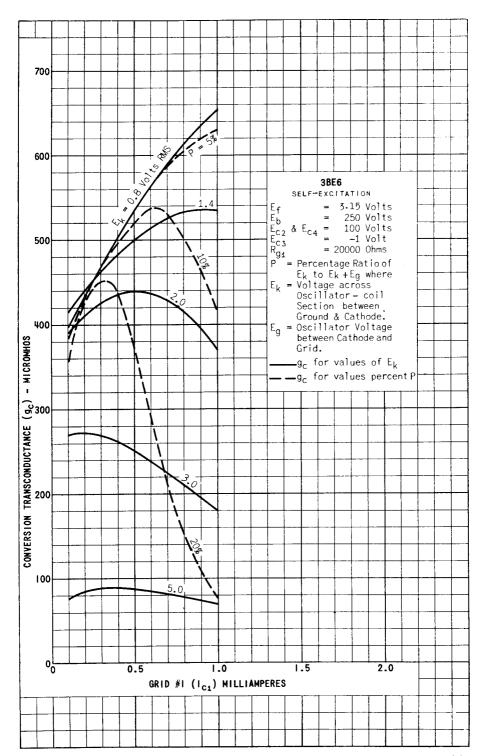
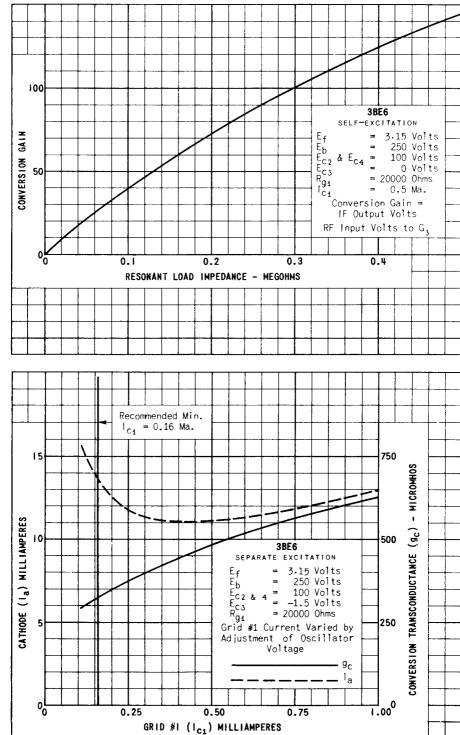



PLATE #3885 AUGUST 1, 1954 TUNG-SOL ELECTRIC INC. ELECTRON TUBE DIVISION BLOOMFIELD, NEW JERSEY, U.S.A.

TUNG-SOL ELECTRIC INC.

ELECTRON TUBE DIVISION BLOOMFIELD, NEW JERSEY, U.S.A.

AUGUST 1, 1954