TUNG-SOL -

BEAM POWER PENTODE

GLASS BULB SKIRTED MINIATURE CAP UNIPOTENTIAL CATHODE

HEATER
25.0 VOLTS 0.30 AMP.
AC OR DC

ANY MOUNTING POSITION

BOTTOM VIEW
SHORT MEDIUM—SHELL
7 PIN OCTAL
WITH EXTERNAL BARRIERS

6 AM

THE 25DQ6A IS A HIGH-PERVEANCE BEAM POWER PENTODE DESIGNED FOR USE AS A HORIZONTAL DEFLECTION AMPLIFIER TUBE IN HIGH EFFICIENCY DEFLECTION CIRCUITS OF TELEVISION RECEIVERS. THERMAL CHARACTERISTICS OF THE HEATER ARE CONTROLLED SUCH THAT HEATER VOLTAGE SURGES DURING THE WARM-UP CYCLE ARE MINIMIZED PROVIDED IT IS USED WITH OTHER TUBES WHICH ARE SIMILARLY CONTROLLED. EXCEPT FOR THE CONTROLLED HEATER WARM-UP TIME AND HEATER RATINGS THE 25DQ6A IS IDENTICAL TO THE 6DQ6A.

DIRECT INTERELECTRODE CAPACITANCES-APPROX.

GRID #1 TO PLATE GRID #1 TO CATHODE & GRID #3.	$\mu\mu$ f
HEATER AND GRID #2	<i>μμ</i> f
PLATE TO CATHODE & GRID #3, HEATER AND GRID #2 7	μμf

RATINGS A INTERPRETED ACCORDING TO DESIGN CENTER SYSTEM HORIZONTAL DEFLECTION AMPLIFIED

NONTZONTAL DEFECTION AMPLIFIER		
HEATER VOLTAGE	25.0	VOLTS
MAXIMUM PLATE VOLTAGE:		
DC (INCLUDING BOOST)	700	VOLTS
PEAK POSITIVE—PULSE (ABSOLUTE MAX.) B PEAK NEGATIVE—PULSE B	6 000 c	VOLTS
PEAK NEGATIVE-PULSE B	1 375	VOLTS
MAXIMUM DC GRID #2 VOLTAGE	200	VOLTS
MAX!MUM GRID #1 VOLTAGE:		
DC	-50	VOLTS
PEAK NEGATIVE-PULSE	300	VOLTS
MAXIMUM CATHODE CURRENT:	•	
DC	140	MA.
PEAK	440	MA.
MAXIMUM GRID #2 INPUT	3	WATTS

A FOR OPERATION IN A 525-LINE, 30-FRAME SYSTEM AS DESCRIBED IN "STANDARDS OF GOOD ENGINEERING PRACTICE FOR TELEVISION BROADCAST STATIONS; FEDERAL COMMUNICATIONS COMMISSION".

B.
THIS RATING IS APPLICABLE WHERE THE DURATION OF THE VOLTAGE PULSE DOES NOT EXCEED 15% OF ONE
HORIZONTAL SCANNING CYCLE. IN A 525-LINE, 30-FRAME SYSTEM, 15% OF THE HORIZONTAL SCANNING
CYCLE IS 10 MICROSECONDS.

 $^{ extsf{C}}_{ extsf{UNDER}}$ no circumstances should this absolute value be exceeded.

CONTINUED ON FOLLOWING PAGE

- TUNG-SOL -

CONTINUED FROM PRECEDING PAGE

RATINGS A- CONTID. INTERPRETED ACCORDING TO DESIGN CENTER SYSTEM HORIZONTAL DEFLECTION AMPLIFIER

MAXIMUM PLATE DISSIPATION ^D	15	WATTS
MAXIMUM PEAK HEATER-CATHODE VOLTAGE:	-	
HEATER NEGATIVE WITH RESPECT TO CATHODE		
TOTAL DC AND PEAK	200	VOLTS
HEATER POSITIVE WITH RESPECT TO CATHODE	200	VOLIS
DC COMPONENT	100	
	100	VOLTS
TOTAL DC AND PEAK	200	VOLTS
MAXIMUM BULB TEMPERATURE (AT HOTTEST POINT		
ON BULB SURFACE)	220	° c
MAXIMUM CIRCUIT VALUES:		· ·
GRID #4 CIRCUIT RESISTANCE:		
FOR GRID RESISTOR-BIAS OPERATIOND	1.0	МЕСОНМ
		MEGUMM
HEATER WARM-UP TIME (AVERAGE) *	11.0	SECONDS

TYPICAL OPERATING CONDITIONS AND CHARACTERISTICS

CLASS A1 AMPLIFIER

HEATER VOLTAGE	25.0	25.0	25.0	VOLTS
HEATER CURRENT	0.30	0.30	0.30	AMP.
PLATE VOLTAGE	60	150	250	VOLTS
GRID #2 VOLTAGE	150	150	150	VOLTS
GRID #1 VOLTAGE	0	-22.5	-22.5	VOLTS
MU-FACTOR, GRID #2 TO GRID #1		4.1		
PLATE RESISTANCE (APPROX.)			20 000	OHMS
TRANSCONDUCTANCE			6 600	μ MHOS
PLATE CURRENT	300 ^E		75	MA.
GRID #2 CURRENT	27 ^E		2.4	MA.
GRID #1 VOLTAGE (APPROX.)				
FOR PLATE CURRENT OF 1 MA.			-46	VOLTS

A FOR OPERATION IN A 525-LINE, 30-FRAME SYSTEM AS DESCRIBED IN "STANDARDS OF GOOD ENGINEERING PRACTICE FOR TELEVISION BROADCAST STATIONS; FEDERAL COMMUNICATIONS COMMISSION".

DIT IS ESSENTIAL THAT THE PLATE DISSIPATION BE LIMITED IN THE EVENT OF LOSS OF GRID SIGNAL. FOR THIS PURPOSE, SOME PROTECTIVE MEANS SUCH AS A CATHODE RESISTOR OF SUITABLE VALUE SHOULD RF FMPLOYED.

ETHESE VALUES CAN BE MEASURED BY A METHOD INVOLVING A RECURRENT WAVEFORM SUCH THAT THE PLATE DISSIPATION AND GRID #2 INPUT WILL BE KEPT WITHIN RATINGS IN ORDER TO PREVENT DAMAGE TO THE TUBE.

^{*}HEATER WARM-UP TIME IS DEFINED AS THE TIME REQUIRED FOR THE VOLTAGE ACROSS THE HEATER TO REACH 80% OF ITS RATED VOLTAGE AFTER APPLYING 4 TIMES RATED HEATER VOLTAGE TO A CIRCUIT COM-SISTING OF THE TUBE HEATER IN SERIES WITH A RESISTANCE OF VALUE 3 TIMES THE MOMINAL HEATER OPERATING RESISTANCE.

