

2 1

PENTAGRID CONVERTER

COATED FILAMENT

1.4 VOLTS 0.05 AMPERE
DC

7AK

GLASS BULB

BOTTOM VIEW

LOCKING-IN 8 PIN BASE

THE TUNG-SOL 1LAG IS A LOW VOLTAGE, LOW CURRENT DRAIN, BATTERY TYPE PENTAGRID CONVERTER. IT IS DESIGNED FOR SERVICE AS AN OSCILLATOR AND MIXER IN SUPERHETERODYNE RECEIVERS WHICH REQUIRE ONLY 90 VOLTS OF "B" BATTERY AND A SINGLE DRY CELL "A" BATTERY. ITS ELECTRICAL CHARACTERISTICS ARE SIMILAR TO THOSE OF THE 1A7G.

RATINGS

MAXIMUM FILAMENT VOLTAGE

DRY BATTERY OPERATION - VOLTAGE MUST NEVER EXCEED	1.6	VOLTS
AC - DC POWER LINE OPERATION - DESIGN CENTER	1.3	VOLTS
MAXIMUM PLATE (P) VOLTAGE	90	VOLTS
MAXIMUM SCREEN (GS) SUPPLY VOLTAGE	90	VOLTS
MAXIMUM SCREEN VOLTAGE A	55	VOLTS
MAXIMUM OSCILLATOR ANODE (GA) VOLTAGE	90	VOLTS
MAXIMUM TOTAL CATHODE CURRENT-ZERO SIGNAL	3	MA.

A OBTAINED BY USING A PROPERLY BY-PASSED VOLTAGE DROPPING RESISTOR OF 45000 TO 75000 OHMS IN SERIES WITH A "B" SUPPLY VOLTAGE.

FOR "INTERPRETATION OF RATINGS" REFER TO FRONT OF BOOK-

CONTINUED NEXT PAGE

PLATE 1102-2 SEPT.17 1941

- TUNG-SOL

TYPICAL OPERATING CONDITIONS AND CHARACTERISTICS

CONVERTER SERVICE

PLATE (P) VOLTAGE	90	VOLTS
SCREEN (GS) VOLTAGE A	45	VOLTS
CONTROL GRID (G) VOLTAGE ⁸	0	VOLTS
OSCILLATOR ANODE (GA) VOLTAGE	90	VOLTS
OSCILLATOR GRID (GO) RESISTOR	200 000	OHMS
PLATE CURRENT	0.55	MA.
SCREEN CURRENT	0.6	MA.
OSCILLATOR ANODE CURRENT	1.2	MA.
OSCILLATOR GRID CURRENT	0.035	MA.
TOTAL CATHODE CURRENT	2.4	MA.
PLATE RESISTANCE	0.75	MEGOHM
CONVERSION TRANSCONDUCTANCE	250	µмноs
FOR CONTROL GRID (G) VOLTAGE = 0 V .		
CONVERSION TRANSCONDUCTANCE APPROX.	10	µмноs
FOR CONTROL GRID VOLTAGE = -3 V.		

DIRECT INTERELECTRODE CAPACITANCES⁵

CONTROL GRID (G) TO MIXER PLATE (P)	0.4	μμf
CONTROL GRID (G) TO OSCILLATOR ANODE (GA)	0.3	μμf
CONTROL GRID (G) TO OSCILLATOR GRID (G0)	0.15	μμf
OSCILLATOR GRID (GO) TO OSCILLATOR ANODE (GA)	0.6	μμ f
RF INPUT: CONTROL GRID (G) TO ALL OTHER ELECTRODES	7.7	μμf
OSCILLATOR INPUT: OSCILLATOR GRID (G_0) TO ALL OTHER ELECTRODES EXCEPT OSCILLATOR ANODE (G_A)	2.9	μμf
OSCILLATOR OUTPUT: OSCILLATOR ANODE (GA) TO ALL OTHER ELECTRODES EXCEPT OSCILLATOR GRID (G0)	3.3	μμf
MIXER OUTPUT: MIXER PLATE (P) TO ALL OTHER ELECTRODES	8.0	μμf

A OBTAINED PREFERABLY BY USING A PROPERLY BY-PASSED VOLTAGE DROPPING RESISTOR OF 45000 TO 75000 ONNS IN SERIES WITH A "B" SUPPLY VOLTAGE.

NOTE: THE TRANSCONDUCTANCE OF THE OSCILLATOR SECTION (NOT OSCILLATING) IS APPROXIMATELY 550
µMMOS, THE AMPLIFICATION FACTOR IS 40, AND THE OSCILLATOR ANODE CURRENT IS 2.2 MA.
CONDITIONS: PLATE VOLTAGE = 90 VOLTS, OSCILLATOR ANODE VOLTAGE = 90 VOLTS, SCREEN VOLTAGE = 45 VOLTS, AND THE GRID VOLTAGE = 0 VOLTS.

PLATE 1103-1

B A RESISTANCE OF AT LEAST 1 MEGONM SHOULD BE IN GRID RETURN TO MEGATIVE FILAMENT TERMINAL (PIN 48).

S WITH EXTERNAL SHIELD CONNECTED TO NEGATIVE FILAMENT TERMINAL.