TUNG-SOL -

PENTODE

MINIATURE TYPE

OUTLINE DRAWING JEDEC 5-2

COATED UNIPOTENTIAL CATHODE

HEATER

18 VOLTS 0.10 AMP.

AC OR DC

ANY MOUNTING POSITION

BOTTOM VIEW

BASING DIAGRAM JEDEC 7CC

THE 18FW6A IS A SEMI REMOTE CUTOFF PENTODE IN THE 7 PIN MINIATURE CON-STRUCTION. IT IS EXPECIALLY SUITED FOR USE IN AC/DC RADIOS THAT EMPLOY 100 MA. SERIES CONNECTED HEATERS. EXCEPT FOR HEATER RATINGS, THE 18FW6A IS IDENTICAL TO THE 18FW6.

DIRECT INTERELECTRODE CAPACITANCES A

GRID #1 TO PLATE (MAX.)	.0035	pf
INPUT	5.5	рf
OUTPUT	5.0	рf

AEXTERNAL SHIELD #316 CONNECTED TO PIN 7 (CATHODE).

RATINGS
INTERPRETED ACCORDING TO DESIGN MAXIMUM SYSTEM

HEATER CURRENT ^C	0.100±0.006	AMP.
MAXIMUM PLATE VOLTAGE	1.50	VOLTS
MAXIMUM GRID #2 SUPPLY VOLTAGE	150	VOLTS
MAXIMUM GRID #2 VOLTAGE	SEE RATING CHART	
MAXIMUM PLATE DISSIPATION	2.5	WATTS
MAXIMUM GRID #2 DISSIPATION	0.6	WATTS
MAXIMUM HEATER-CATHODE VOLTAGE		
HEATER NEGATIVE WITH RESPECT TO CATHODE		
TOTAL DC AND PEAK	100	VOLTS
HEATER POSITIVE WITH RESPECT TO CATHODE		
TOTAL DC AND PEAK	100	VOLTS
HEATER WARM-UP TIME*	20	SECONDS

TYPICAL OPERATING CONDITIONS AND CHARACTERISTICS

HEATER VOLTAGE HEATER CURRENT B		OPERATION) OPERATION)				18 0.10	VOLTS AMP.
PLATE VOLTAGE	(100	VOLTS
GRID #3 VOLTAGE		CONNECTED	то	CATHODE	ΑТ	SOCKET	
GRID #2 VOLTAGE						100	VOLTS
CATHODE BIAS RESI	STOR					68	OHMS
PLATE CURRENT						11	MA.
GRID #2 CURRENT						4.4	MA.
TRANSCONDUCTANCE						4400	μ MHOS
PLATE RESISTANCE	(APPROX.	.)				0.25	MEGOHM
GRID #1 VOLTAGE F	OR gm =	25 μMHOS				-20	VOLTS

- TUNG-SOL -

B_FOR SERIES OPERATION OF HEATERS, EQUIPMENT SHOULD BE DESIGNED THAT AT NORMAL SUPPLY VOLTAGE BOGEY TUBES WILL OPERATE AT THIS VALUE OF HEATER CURRENT.

 C HEATER VOLTAGE SUPPLY VARIATIONS SHALL BE RESTRICTED TO MAINTAIN HEATER CURRENT WITHIN THE SPECIFIED VALUES.

*HEATER WARM-UP TIME IS DEFINED A\$ THE TIME REQUIRED FOR THE VOLTAGE ACROSS THE HEATER TO REACH 80\$ OF ITS RATED VOLTAGE AFTER APPLYING 4 TIMES RATED HEATER VOLTAGE TO A CIRCUIT CONSISTING OF THE TUBE HEATER IN SERIES WITH A RESISTANCE OF VALUE 3 TIMES THE NOMINAL HEATER OPERATING RESISTANCE.