
-- TUNG-SOL -

TWIN DOUBLE-PLATE TRIODE

MINIATURE TYPE

COATED UNIPOTENTIAL CATHODE

HEATER

12.6 VOLTS 0.15 AMP.

AC OR DC

ANY MOUNTING POSITION

BOTTOM VIEW

GLASS BULB

THE 12FQ8 IS A TWIN DOUBLE-PLATE TRIODE IN THE 9 PIN MINIATURE CONSTRUCTION. EACH SECTION HAS A GRID AND TWO PLATES BROUGHT OUT TO A SEPARATE PIN.

DIRECT INTERELECTRODE CAPACITANCES

WITHOUT EXTERNAL SHIELD

INPUT , EACH SECTION	1.7	$\mu\mu f$
OUTPUT:		
PLATE #1 (SECTION 1)	0.34	μμŧ
PLATE #2 (SECTION 1)	0.24	μμ£
PLATE #1 (SECTION 2)	0.30	μμέ
PLATE #2 (SECTION 2)	0.18	$\mu\mu$ f
GRID TO PLATE:		
SECTION 1 GRID TO PLATE #1	0.9	μμf
GRID TO PLATE #2	0.9	$\mu\mu$ £
SECTION 2 GRID TO PLATE #1	0.9	$\mu\mu$ f
GRID TO PLATE #2	0.9	$\mu\mu$ f
PLATE TO PLATE, EACH SECTION	→0.7	μμf
PLATE #1 (SECTION 1) TO PLATE #1 (SECTION 2)	0.4	μμ f

RATINGS

INTERPRETED ACCORDING TO DESIGN MAXIMUM SYSTEM EACH SECTION

HEATER VOLTAGE	12.6	VOLTS
MAXIMUM PLATE VOLTAGE	330	VOLTS
MAXIMUM POSITIVE DC GRID VOLTAGE	0	VOLTS
MAXIMUM PLATE DISSIPATION, EACH PLATE	0.5	WATTS
MAXIMUM HEATER-CATHODE VOLTAGE:		
HEATER POSITIVE WITH RESPECT TO CATHODE		
DC COMPONENT	100	VOLTS
TOTAL DC AND PEAK	200	VOLTS
HEATER NEGATIVE WITH RESPECT TO CATHODE		
TOTAL DC AND PEAK	200	VOLTS

-- INDICATES A CHANGE.

CONTINUED ON FOLLOWING PAGE

TUNB-SOL -

CONTINUED FROM PRECEDING PAGE

TYPICAL OPERATING CONDITIONS AND CHARACTERISTICS

EACH SECTION

HEATER VOLTAGE	12.6	VOLTS
HEATER CURRENT	0.15	AMP.
PLATE VOLTAGE	250	VOLTS
GRID VOLTAGE	-1.5	VOLTS
AMPLIFICATION FACTOR, GRID TO EACH PLATE ^A	95	
PLATE RESISTANCE, (APPROX.) EACH PLATE	76000	OHMS
TRANSCONDUCTANCE, GRID TO EACH PLATE A	1250	μMHOS
PLATE CURRENT, EACH PLATE A	1.5	MA.

A OTHER PLATE OF SAME SECTION GROUNDED.

DESIGN-MAXIMUM RATINGS ARE LIMITING VALUES OF OPERATING AND ENVIRONMENTAL CONDITIONS APPLICABLE TO A BOCEY TUBE OF A SPECIFIED TYPE AS DEFINED BY ITS PUBLISHED DATA, AND SHOULD NOT BE EXCEEDED UNDER THE WORST PROBABLE CONDITIONS. THE TUBE MANUFACTURER CHOOSES THESE VALUES TO PROVIDE ACCEPTABLE SERVICEABILITY OF THE TUBE, TAKING RESPONSIBILITY FOR THE EFFECTS OF CHANGES IN OPERATING CONDITIONS DUE TO VARIATIONS IN TUBE CHARACTERISTICS. THE EQUIPMENT MANUFACTURER SHOULD DESIGN SO THAT INITIALLY AND THROUGHOUL LIFE NO DESIGNMAXIMUM VALUE FOR THE INTENDED SERVICE IS EXCEEDED WITH A BOCEY TUBE UNDER THE WORST PROBABLE OPERATING CONDITIONS WITH RESPECT TO SUPPLY VOLTAGE VARIATION, EQUIPMENT COMPONENT VARIATION, EQUIPMENT CONTROL ADJUSTMENT, LOAD VARIATION, SIGNAL VARIATION, AND ENVIRONMENTAL CONDITIONS.