-- TUNG-SOL -

DOUBLE DIODE TRIODE

MINIATURE TYPE

COATED UNIPOTENTIAL CATHODE

HEATER
12.6 VOLTS 0.15 AMP.
AC OR DC

ANY MOUNTING POSITION

BOTTOM VIEW
MINIATURE BUTTON
7 PIN BASE

7FB

THE 12EL6 IS A DOUBLE DIODE, HIGH-MU TRIODE IN THE 7 PIN MINIATURE CONSTRUCTION. IT IS DESIGNED FOR USE PRIMARILY AS A SECOND DETECTOR AUDIO AMPLIFIER IN OPERATION WHERE THE HEATER AND PLATE VOLTAGE ARE SUPPLIED DIRECTLY FROM A 12 VOLT AUTOMOTIVE STORAGE BATTERY.

DIRECT INTERELECTRODE CAPACITANCES WITHOUT EXTERNAL SHIELD

GRID TO PLATE	1.8	μμf
INPUT: G TO (H+K)	2.2	$\mu\mu f$
OUTPUT: P TO (H+K)	1.0	μμf
DIODE PLATE TO DIODE PLATE	1.0	$\mu\mu$ f

RATINGS INTERPRETED ACCORDING TO DESIGN CENTER SYSTEM

HEATER VOLTAGE ^A MAXIMUM PLATE VOLTAGE	12.6 30	VOLTS VOLTS
MAXIMUM CATHODE CURRENT	20	MA.
MAXIMUM GRID CIRCUIT RESISTANCE	10	MEGOHMS
MAXIMUM AVERAGE DIODE CURRENT	1.0	MA.
MAXIMUM HEATER-CATHODE VOLTAGE		
HEATER NEGATIVE WITH RESPECT TO CATHODE	30	VOLTS
HEATER POSITIVE WITH RESPECT TO CATHODE	30	VOL,TS

TYPICAL OPERATING CONDITIONS AND CHARACTERISTICS

CLASS A1 AMPLIFIER

1		
HEATER VOLTAGE	12.6	VOLTS
HEATER CURRENT	0.15	AMP.
PLATE VOLTAGE	12.6	VOLTS
GRID VOLTAGE	0	VOLTS
PLATE CURRENT	750	μ A.
TRANSCONDUCTANCE	1 200	μ MHOS
AMPLIFICATION FACTOR	55	
PLATE RESISTANCE	45 000	OHMS
AVERAGE DIODE CURRENT WITH 10 VOLTS		
APPLIED (EACH DIODE) B	2.0	MA.

CONTINUED ON FOLLOWING PAGE

TUNG-SOL

CONTINUED FROM PRECEDING PAGE

TYPICAL OPERATING CONDITIONS AND CHARACTERISTICS - CONT'D.

RESISTANCE COUPLED AMPLIFIER

HEATER VOLTAGE HEATER CURRENT PLATE SUPPLY VOLTAGE GRID VOLTAGE ^C	12.6 0.15 12.6	VOLTS AMPL VOLTS
GRID RESISTOR	1.0	MEGOHM
PLATE LOAD RESISTOR	1.0	MEGOHM
INPUT CAPACITOR	0.02	μ f
OUTPUT CAPACITOR	0.01	μ f
GRID RESISTOR OF FOLLOWING STAGE	2.0	ME GOHMS
VOLTAGE GAIN AT 400 CPS ^D	16	

ATHIS TUBE IS INTENDED TO BE USED IN AUTOMOTIVE SERVICE FROM A NOMINAL 12 VOLT BATTERY SOURCE.
THE HEATER IS THEREFORE DESIGNED TO OPERATE OVER THE 10.0 TO 15.9 VOLTAGE RANGE ENCOUNTERED IN
THIS SERVICE. THE MAXIMUM RATINGS OF THE TUBE PROVIDE FOR AN ADEQUATE SAFETY FACTOR SUCH THAT
THE TUBE WILL WITHSTAND THE WIDE VARIATION IN SUPPLY VOLTAGES.

BTEST CONDITION ONLY.

 $^{^{\}mathrm{C}}$ contact potential developed across specified grid resistor.

 $^{^{\}mathsf{D}}$ measured at an output voltage of 1.0 volt rms.