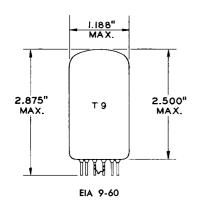
COMPACTRON BEAM PENTODE

FOR TV VERTICAL-DEFLECTION AMPLIFIER APPLICATIONS

DESCRIPTION AND RATING

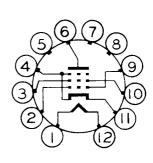
The 6HE5 is a compactron beam pentode designed for use as the vertical-deflection amplifier in television receivers.


GENERAL

ELECTRICAL	MECHANICAL		
Cathode—Coated Unipotential Heater Characteristics and Ratings	Operating Position—Any Envelope—T-9, Glass		
Heater Voltage, AC or DC* 6.3 ± 0.6 Volts Heater Current† 0.8 Amperes	Base—E12-70, Button 12-Pin Outline Drawing—EIA 9-60		
Direct Interelectrode Capacitances, approximate;	Maximum Diameter		
Grid-Number 1 to Plate: $(g1 \text{ to } p) \dots 0.54$ pf Input: $g1 \text{ to } (h+k+g2+b.p.) \dots 9.5$ pf	Maximum Over-all Length		
Output: p to $(h+k+g2+b.p.)$ 7.0 pf	_		

MAXIMUM RATINGS

VERTICAL-DEFLECTION AMPLIFIER SERV DESIGN-MAXIMUM VALUES	'ICE§	Heater-Cathode Voltage Heater Positive with Respect to Cathode	
DC Plate Voltage	Volts	DC Component	
Peak Pulse Plate Voltage2500	Volts	Total DC and Peak	Volts
Screen Voltage	Volts	Heater Negative with Respect to Cathode Total DC and Peak200	Volts
Plate Dissipation¶12	Watts	Grid-Number 1 Circuit Resistance	1 0100
Screen Dissipation¶2.75	Watts	With Fixed Bias	Megohms
DC Cathode Current	Milliamperes	With Cathode Bias	Megohms
Peak Cathode Current 260	Milliamperes	Bulb Temperature at Hottest Point200	C


PHYSICAL DIMENSIONS

TERMINAL CONNECTIONS

Pin 1—Heater
Pin 2—Grid Number 1
Pin 3—Grid Number 2 (Screen)
Pin 4—Cathode and Beam Plates
Pin 5—No connection
Pin 6—Plate
Pin 7—No Connection
Pin 8—No Connection
Pin 9—Grid Number 1
Pin 10—Grid Number 2 (Screen)
Pin 11—Cathode and Beam Plates

BASING DIAGRAM

EIA 12EY

Pin 12—Heater

MAXIMUM RATINGS (CONT'D)

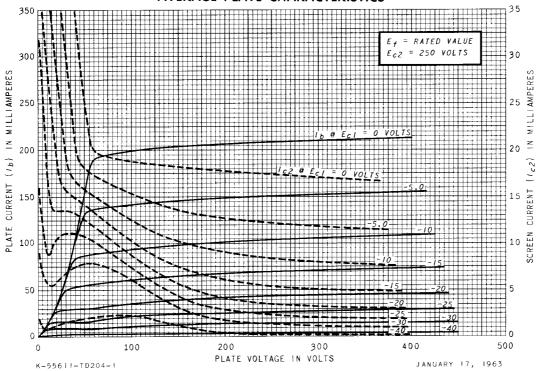
Design-Maximum ratings are limiting values of operating and environmental conditions applicable to a bogey electron tube of a specified type as defined by its published data and should not be exceeded under the worst probable conditions.

The tube manufacturer chooses these values to provide acceptable serviceability of the tube, making allowance for the effects of changes in operating conditions due to variations in the characteristics of the tube under consideration.

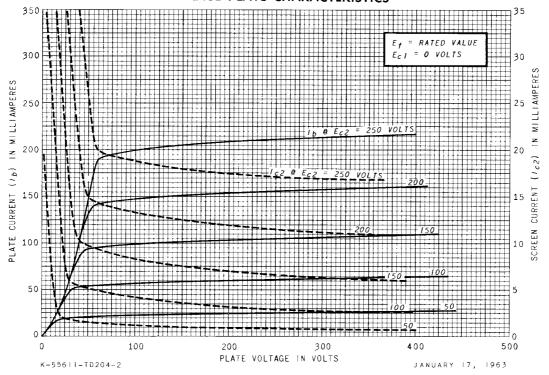
The equipment manufacturer should design so that initially and throughout life no design-maximum value for the intended service is exceeded with a bogey tube under the worst probable operating conditions with respect to supply-voltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of all other electron devices in the equipment.

CHARACTERISTICS AND TYPICAL OPERATION

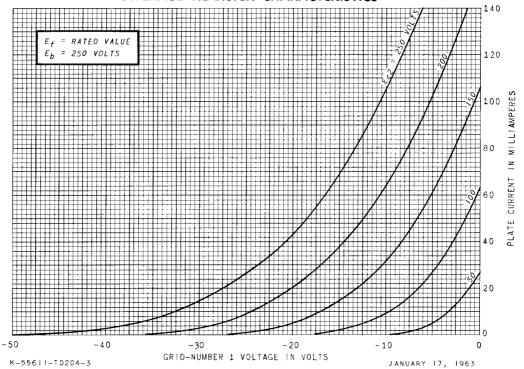
AVERAGE CHARACTERISTICS		
Plate Voltage	250	Volts
Screen Voltage	250	Volts
Grid-Number 1 Voltage 0#	-20	Volts
Plate Resistance, approximate	50000	Ohms
Transconductance	4100	Micromhos
Plate Current	43	Milliamperes
Screen Current	3.5	Milliamperes
Grid-Number 1 Voltage, approximate		
Ib = 100 Microamperes.	-5 0	Volts

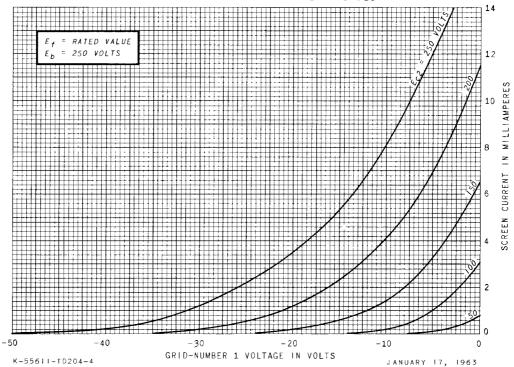

NOTES

- * The equipment designer should design the equipment so that heater voltage is centered at the specified bogey value, with heater supply variations restricted to maintain heater voltage within the specified tolerance.
- † Heater current of a bogey tube at Ef = 6.3 volts.
- ‡ Without external shield.
- § For operation in a 525-line, 30-frame television system as described in "Standards of Good Engineering Practice Concerning Television Broadcast Stations," Federal Communications Commission. The duty cycle of the voltage pulse must not exceed 15 percent of one scanning cycle.
- ¶ In stages operating with grid-leak bias, an adequate cathode-bias resistor or other suitable means is required to protect the tube in the absence of excitation.
- #Applied for short interval (two seconds maximum) so as not to damage tube.


The tubes and arrangements disclosed herein may be covered by patents of General Electric Company or others. Neither the disclosure of any information herein nor the sale of tubes by General Electric Company conveys any license under patent claims covering combinations of tubes with other devices or ele-

ments. In the absence of an express written agreement to the contrary, General Electric Company assumes no liability for patent infringement arising out of any use of the tubes with other devices or elements by any purchaser of tubes or others.





AVERAGE TRANSFER CHARACTERISTICS

AVERAGE TRANSFER CHARACTERISTICS

RECEIVING TUBE DEPARTMENT

