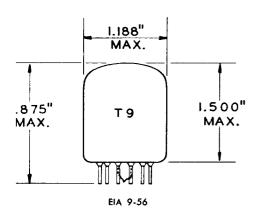
COMPACTRON TRIPLE TRIODE

Page 1 1-62

DESCRIPTION AND RATING

The 6AV11 is a compactron containing three medium-mu triodes suitable for general-purpose amplifier, phase inverter, or oscillator applications.

GENERAL


ELECTRICAL					MECHANICAL		
Cathode—Coated Unipotentia	1				Mounting Position—Any		
Heater Characteristics and Ra	tings				Envelope—T-9, Glass		
Heater Voltage, AC or DC \dagger					Base—E12-70, Button 12-Pin		
Heater Current‡					Outline Drawing—EIA 9-56		
Direct Interelectrode Capacitances§					Maximum Diameter. 1.188 Inches		
:	Section 1	Section 2	Section 3		Maximum Over-all		
Grid to Plate (g to p)	1.2	1.2	1.2	\mathbf{pf}	Length 1.875 Inches		
Input: g to $(h+k+i.s.)$	1.9	1.9	1.9	pf	Maximum Seated		
Output: p to $(h+k+i.s.)$	1.8	0.7	2.0	pf	Height1.500 Inches		

MAXIMUM RATINGS

DESIGN-MAXIMUM VALUES, EACH SECTION

Plate Voltage		Total DC and Peak200	Volts
Plate Dissipation	Watts	Heater Negative with Respect to Cathode	
Total Plate Dissipation, All Plates6.0	Watts	Total DC and Peak200	Volts
DC Cathode Current	Milliamperes	Grid Circuit Resistance	
Heater-Cathode Voltage		With Fixed Bias0.25	Megohms
Heater Positive with Respect to Cathode		With Cathode Bias	
DC Component	Volts		Ü

PHYSICAL DIMENSIONS

TERMINAL CONNECTIONS

Pin 1—Heater

Pin 2-Plate (Section 3)

Pin 3—Cathode (Section 3)

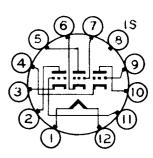
Pin 4—Cathode (Section 1)

Pin 5—Plate (Section 2)

Pin 6—Cathode (Section 2)

Pin 7—Grid (Section 2)

Pin 8—Internal Shield


Pin 9-Grid (Section 1)

Pin 10—Plate (Section 1)

Pin 11—Grid (Section 3)

Pin 12—Heater

BASING DIAGRAM

EIA-12BY

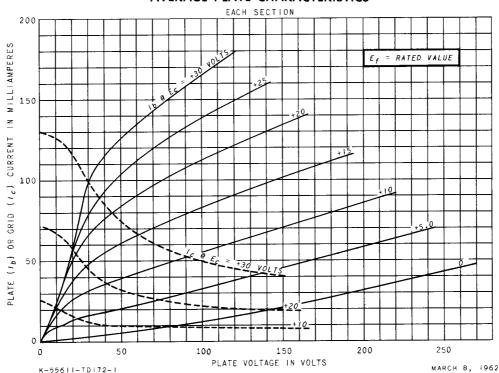
MAXIMUM RATINGS (Cont'd)

Design-Maximum ratings are limiting values of operating and environmental conditions applicable to a bogey electron tube of a specified type as defined by its published data and should not be exceeded under the worst probable conditions.

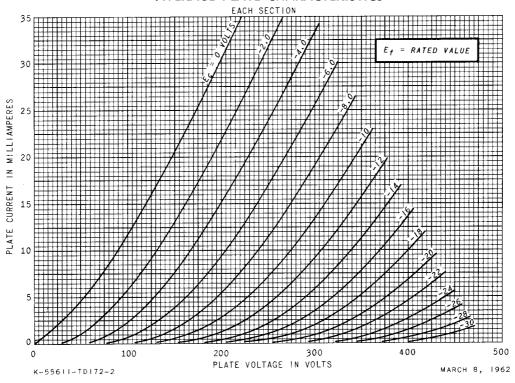
The tube manufacturer chooses these values to provide acceptable serviceability of the tube, making allowance for the effects of changes in operating conditions due to variations in the characteristics of the tube under consideration.

The equipment manufacturer should design so that initially and throughout life no design-maximum value for the intended service is exceeded with a bogey tube under the worst probable operating conditions with respect to supply-voltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of all other electron devices in the equipment.

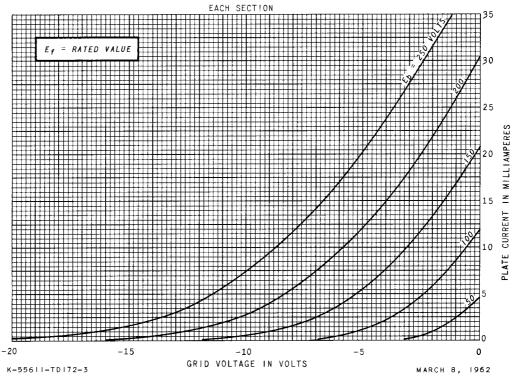
CHARACTERISTICS AND TYPICAL OPERATION


Average Characteristics, Each Section		
Plate Voltage	250	Volts
Grid Voltage 0	-8.5	Volts
Amplification Factor	17	
Plate Resistance, approximate	7700	Ohms
Transconductance3100	2200	Micromhos
Plate Current	10.5	Milliamperes
Grid Voltage, approximate		-
Ib = 10 Microamperes	-24	Volts

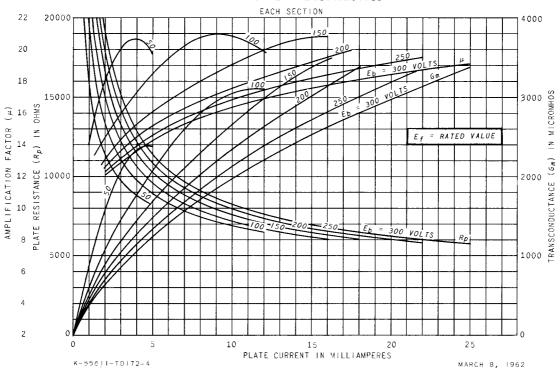
- † The equipment designer should design the equipment so that heater voltage is centered at the specified bogey value, with heater supply variations restricted to maintain heater voltage within the specified tolerance.
- ‡ Heater current of a bogey tube at $\mathbf{E}\mathbf{f} = 6.3$ volts.
- § Without external shield.


The tubes and arrangements disclosed herein may be covered by patents of General Electric Company or others. Neither the disclosure of any information herein nor the sale of tubes by General Electric Company conveys any license under patent claims covering combinations of tubes with other devices or

elements. In the absence of an express written agreement to the contrary, General Electric Company assumes no liability for patent infringement arising out of any use of the tubes with other devices or elements by any purchaser of tubes or others.


AVERAGE PLATE CHARACTERISTICS

AVERAGE PLATE CHARACTERISTICS



AVERAGE TRANSFER CHARACTERISTICS

6AV11 ET-T3035 Page 4

AVERAGE CHARACTERISTICS

RECEIVING TUBE DEPARTMENT

Owensboro, Kentucky